
Direct Steering of de novo Molecular 
Generation using Descriptor Conditional 

Recurrent Neural Networks (cRNNs) 
 

Panagiotis-Christos Kotsias§, Josep Arús-Pous§⊥, Hongming Chen§, Ola Engkvist§, Christian Tyrchan¥, 

Esben Jannik Bjerrum§* 

§   Hit Discovery, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden 

¥     Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and 

Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden 

⊥ Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, 

Switzerland 

*   Corresponding author: Esben.bjerrum@astrazeneca.com 

 

Abstract 

Deep learning has acquired considerable momentum over the past couple of years in the domain of 

de-novo drug design. Particularly, transfer and reinforcement learning have demonstrated the 

capability of steering the generative process towards chemical regions of interest. In this work, we 

propose a simple approach to the focused generative task by constructing a conditional recurrent 

neural network (cRNN). For this purpose, we aggregate selected molecular descriptors along with a 

QSAR-based bioactivity label and transform them into initial LSTM states before starting the 

generation of SMILES strings that are focused towards the aspired properties. We thus tackle the 

inverse QSAR problem directly by training on molecular descriptors, instead of iteratively optimizing 

around a set of candidate molecules. The trained cRNNs are able to generate molecules near multiple 

specified conditions, while maintaining an output that is more focused than traditional RNNs yet less 

focused than autoencoders. The method shows promise for applications in both scaffold hoping and 

ligand series generation, depending on whether the cRNN is trained on calculated scalar molecular 

properties or structural fingerprints. This also demonstrates that fingerprint-to-molecule decoding is 

feasible, leading to molecules that are similar – if not identical – to the ones the fingerprints originated 



from. Additionally, the cRNN is able to generate a larger fraction of predicted active compounds against 

the DRD2 receptor when compared to an RNN trained with the transfer learning model.  

 

Introduction 

The disruptive impact deep generative models have delivered over the past couple of years in the 

domain of de-novo drug design is profound, due to offering the capability of directing the generative 

process towards chemical regions of interest [1–3]. Specifically, deep learning has found applications 

in biological tasks such as bioactivity and synthesis prediction, image processing and de novo design of 

novel molecules [4]. A challenging task deep networks tried to address is the inverse molecular design 

[5] which refers to the generation of molecular structures that meet desired conditions, such as specific 

physicochemical properties or properties predicted by Quantitative Structure-Activity Relationship 

(QSAR) models. 

The Simplified Molecular-Input Line-Entry System (SMILES) [6] is a popular choice [7] to represent 

molecules when using recurrent neural networks (RNNs). The alphanumeric nature of SMILES strings 

makes them compatible with state-of-the-art natural language processing algorithms performing 

sequence modelling and generation, such as RNNs. In particular, RNNs are a widely accepted approach 

to the task of sequence modeling because of their ability to memorize past inputs and incorporate 

them into their inference [8]. 

Unbiased RNN generative models trained on a relatively small number of SMILES strings were shown 

to be able to cover a much larger chemical space [9]. Moreover, the augmentation of a dataset using 

SMILES with randomized atom order has demonstrated state-of-the-art performance with respect to 

the uniformity and completeness of the coverage of chemical regions, compared to simply using their 

canonical variants [10]. After learning the general rules of the chemical space, e.g. atom types, bond 

types and size of molecules, the prior network can be further specialized using smaller datasets in a 

transfer learning fashion [11] or using reinforcement learning [12–14]. 

More complicated architectures such as autoencoders [15], which include two jointly-trained neural 

networks responsible for converting the input to and back from a latent representation, have been 

extensively benchmarked [16, 17]. The quality of the latent space of an autoencoder was also proven 

to benefit from the usage of randomized SMILES strings [18–20]. Moreover, the latent space 

representation of a molecule can be used towards optimizing QSAR endpoints using GANs [21], 

Bayesian Optimization [15] or Particle Swarm Optimization [22]. The combination of a heteroencoder 



[19], that is trained on pairs of randomized SMILES strings of the same molecule, with a generative 

adversarial network (GAN) [23] has further demonstrated automatic navigation towards properties of 

interest. 

Alternatively, learning to precondition the structure generation eliminates the need for optimization 

loops. One approach demonstrated this capability by concatenating SMILES strings with the properties 

of interest as input to a variational autoencoder [24]. Molecular graphs [25] have also been used in 

pairs along with the desired change in properties as conditions to train a variational autoencoder on. 

Latent representations that are generated from a GAN architecture may also be exploited as input 

conditions for decoding neural networks [23]. 

In this work, we demonstrate that molecule side information, such as molecular descriptors, can be 

incorporated into the RNN-based generative process. We construct conditional recurrent neural 

networks (cRNNs) by setting the internal states of long short-term memory cells (LSTM [26]) as  the 

input conditions. The architecture is related to, but conceptually simpler than, a conditional 

autoencoder as we only utilize an RNN-based decoder part. The generation is conditioned with 

properties calculated directly from the molecular structure or QSAR models, thus the encoder part is 

no longer needed. The conditional seed successfully steers the focus of the RNN towards a particular 

subset of the chemical domain, such as bioactive compounds with respect to a specific protein target. 

Our approach complements the existing state-of-the-art conditional generative models such as 

conditional VAE, reinforcement learning etc. and may be used for populating molecular libraries. 

 

Methods 

Datasets 

The datasets used in this work originate from two publicly available sources: ChEMBL  [27] and ExCAPE-

DB [28]. Data from ChEMBL were used to train the generative neural network and data from the 

dopamine receptor D2 (DRD2) target data in ExCAPE-DB were used to train a Quantitative Structure-

Activity Relationship (QSAR) model using a support vector classification model to estimate the potency 

of a generated compound towards DRD2. 

 



ChEMBL 

The neural network was trained with a subset of the ChEMBL version 25. Initially, the complete dataset 

has been standardized using the MolVS Python module [29] using the super parent setting, which 

standardizes fragment, charge, isotope, stereochemistry and tautomeric states. Molecules were 

filtered to only contain the atoms [H, C, N, O, F, S, Cl, Br] with total heavy atoms less than 50. Next, the 

known active molecules found in the DRD2 dataset (see below) were removed from the dataset. The 

dataset was split into training and test subsets with a 9:1 ratio. During training, 10% of the training 

subset was used as a fixed validation set. 

 

ExCAPE-DB 

All data regarding the DRD2 entry in ExCAPE-DB were downloaded [30] and preprocessed as follows: 

first, duplicate compounds as well as SMILES strings [6] that were not sanitizable by RDKit v2018.09.1 

[31] were removed from the DRD2 dataset. All compounds with a pXC50 value greater than five were 

selected as known actives along with 100,000 random DRD2 measured inactive compounds from 

ExCAPEDB. Stereochemical information was removed by converting all molecules to non-isomeric 

SMILES strings. The dataset was further reduced to exclude SMILES strings that were longer than the 

ones in ChEMBL or contained characters not found in ChEMBL. This led to removing strings with iodine 

and phosphorus. All active molecules were clustered based on the pairwise Tanimoto distance of their 

Morgan fingerprints with a radius of two using the implementation of the Butina algorithm [32] found 

in RDKit. The maximum distance threshold for the algorithm to associate neighbours was fixed to 0.4 

with a value above it dictating different clusters. All clusters were sorted based on their size and were 

assigned to the train, validation and test subsets iteratively using a “4-1-1” scheme, i.e. for every four 

clusters assigned to the train set, one cluster was assigned to the validation set and one cluster to the 

test set in order of decreasing cluster size. 

 

SMILES strings Randomization and Vectorization 

During training, the atom order of all molecules was randomized using RDKit. After converting them 

back to SMILES, every constituting character was one-hot encoded. Every SMILES string was thus 

represented by a two-dimensional array with dimensions corresponding to the length of the 

vocabulary and the maximum canonical SMILES length found in ChEMBL, with an offset of five extra 

characters to account for randomized SMILES which were longer than their canonical representation. 

The characters “^” and “$” were inserted in the beginning and end of each one-hot encoded string 



respectively. Resulting arrays that corresponded to shorter SMILES strings were padded with the end-

character “$”. The considered vocabulary consisted of 35 tokens that included all common unique 

alphanumeric characters found in ChEMBL and DRD2 datasets after filtering, the delimiters “^” and 

“$” and the token “?” to account for one-hot encoding of unknown characters. 

The randomization and vectorization of all SMILES strings was performed dynamically using a modified 

version of the molvecgen Python package [33] during training. 

 

DRD2 QSAR Model 

A probabilistic Support Vector Machine Classification model was used for bioactivity prediction. The 

standard implementation of a support vector machine from scikit-learn v0.20.3 [34] Python package 

was used, with the radial basis function as a kernel function. The model was trained to discriminate 

active compounds from inactive ones based on their 2048-bit radius 2 Morgan fingerprint 

representations. The hyperparameters C and γ were optimized with randomized search, where 50 

different values per parameter were drawn from two exponential distributions with replacement. 

 

Recurrent Neural Network 

The neural network resembles the decoder architecture described in [19]. It was implemented in Keras 

v2.2.4 [35] with TensorFlowGPU v1.12.0 backend [36] and it is schematically shown in Figure 1. The 

network accepts a vector of molecular descriptors as inputs to a set of six Dense layers of 256 units 

each using the ReLU [37] activation function. The output of each individual Dense layer is used to set 

either the cell state or the hidden state of each of the recurrent layers of the network. There are in 

total three unidirectional recurrent layers in the network, each one consisting of 256 Long Short-Term 

Memory (LSTM) [26] neurons. The output of the final LSTM layer is fed to a feedforward layer with 35 

units, which is the length of the character space, using softmax activation. Batch normalization was 

applied to the outputs of all LSTM and all but the last Dense layers. Keras CUDA-enabled CuDNNLSTM 

units were used in the recurrent layers.  

The model was trained for 100 epochs with randomized SMILES strings following the Teacher’s Forcing 

method [38], using the ground truth at each step as prior knowledge instead of the character 

previously predicted by the network. A batch size of 128 sequences was used along with the Adam 

optimizer with default parameters [39] and an initial learning rate of  10−3. A custom learning rate 



schedule was used, where the learning rate was kept constant for the first 50 epochs and then decayed 

exponentially at each epoch, down to a value of 10−6 at the final epoch. 

A copy of the trained model was modified for the purpose of predicting single characters to jointly 

form SMILES strings. While maintaining the trained connection weights, the shape of the output of the 

last feedforward layer was set to a one-dimensional vector expressing the probability of sampling each 

of the known characters at every step. Also, the LSTM layers were set to stateful mode. During 

inference, a single character per iteration is sampled out of this vector of probabilities using 

multinomial sampling. After setting the initial states according to the descriptors of interest, the biased 

generation is triggered by feeding the start-character “^” to the network and ends when the end-

character “$” is sampled.  

Two different cRNN models were constructed and trained following this procedure, each based on 

different input descriptors. The first PhysChem-Based (PCB) model is shown schematically in Figure 1A. 

The model uses the Wildman-Crippen partition coefficient (LogP) [40], topological polar surface area 

(TPSA), molecular weight (MW), number of hydrogen bond acceptors (HBA), number of hydrogen bond 

donors (HBD) and the drug-likeness score (QED) [41] calculated using their RDKit implementations as 

well as the soft label predicted by the QSAR SVC model described above. The calculated values were 

scaled individually to achieve a distribution with zero mean and unit variance and they were 

concatenated. The second FingerPrint-Based (FPB, Figure 1B) model was trained solely on Morgan 

fingerprints of radius two and 2048 bits, which are similar to Extended Connectivity Fingerprints 

(ECFP). The training and inference schemes of the cRNN models are described in Figure 1A-B and Figure 

1C respectively. 

Model training and inferencing was performed on an NVIDIA Tesla V100 GPU on a 64-bit CentOS v7.5 

server with 128 GB of RAM. The training process of the PCB and FPB models utilized 5 and 25 GB of 

RAM, respectively.  

 



 

Figure 1: Conditional Recurrent Neural Network (cRNN) models based on different conditions. A) The PhysChem-
Based (PCB) model accepts six scalar properties calculated by RDKit Python library and concatenates them with 
the probabilistic bioactivity prediction of the QSAR model. B) The FingerPrint-Based (FPB) model accepts a 2048-
bit Morgan fingerprint vector calculated by RDKit. Both models are trained on randomized SMILES strings as 
targets. C) Model inference is biased by the conditional seed and triggered by the starting character “^”. 
Inferencing stops when “$” is generated. 

 

Transfer Learning Model 

The baseline model consists of the same neural network architecture as described above with the 

notable difference that the initial states, instead of being set based on known descriptors, are rather 

being reset to zero in the beginning of the generation of each string. This approach is similar to the 

prior network described in [12] with the difference that each character is treated independently rather 

than within multi-character tokens. The network was likewise trained with Teacher’s Forcing, learning 

the character set and the grammar of the SMILES strings found in ChEMBL. The selected RNN 

dimensions were identical to the ones in the case of the conditional RNN. 

Next, the prior model was further trained exclusively with the known actives of the DRD2 train dataset 

for an additional 200 epochs, following a transfer learning strategy [42]. The initial learning rate was 

set to 10−4.5 and it was decayed exponentially down to 10−6 by the end of the training. 

 



Likelihood of Known Sequences 

The likelihood of sampling a given SMILES strings was estimated using the negative log likelihood (NLL) 

as previously described [9], with a modification that incorporates the knowledge that is induced into 

the initial states of the generation in the case of a conditional model. The conditional negative log-

likelihood is described in Equation 1.  

 

𝐶𝑁𝐿𝐿(𝑆|𝑐) =  − [ln 𝑃(𝑋1 = 𝑇1 | 𝑐) +  ∑ ln 𝑃(𝑋𝑖 = 𝑇𝑖|  𝑋𝑖−1 = 𝑇𝑖−1, … , 𝑋1 = 𝑇1, 𝑐)

𝑁

𝑖=2

] 

(Equation 1) 

 

𝑇𝑖 are the characters in the known SMILES sequence S, 𝑋𝑖  are the predicted model outputs, N is the 

length of the sequence S and c refers to the seeding conditions. The sign of the log-likelihood is negated 

to reflect that higher values correspond to more improbable sequences. 

 

Results and Discussion 

Resulting Datasets 

The filtering process described in the previous section resulted in the sizes of datasets shown in Table 

1. The QSAR Support Vector Classification model with parameters C=5.53 and γ=0.022 was selected as 

the one with the highest F1-score (0.92) towards the DRD2 validation set. This model was used to label 

all compounds in the ChEMBL dataset leading to 2.3% of ChEMBL compounds being classified with a 

probability greater than 50% of being active against the DRD2 receptor (Table 1). As shown in Figure 

2, the property distribution of the two datasets largely follows each other, except that the QED score 

of the DRD2 dataset is shifted towards higher values since those molecules are expected to be a priori 

drug-like. 

 

 

 



Table 1: Size and percentage of active compounds per dataset 

Dataset Total Samples Active % 

DRD2_TRAIN 71,512 6.7(1) 

DRD2_VALID 17,800 6.3(1) 

DRD2_TEST 17,817 6.4(1) 

CHEMBL_TRAIN 1,347,173 2.3(2) 

CHEMBL_TEST 149,679 2.3(2) 

(1): Known active compounds 
(2): Predicted active compounds (probability ≥ 0.5) by the 
QSAR model 

 

 

 

Figure 2: Distribution of A) lipophilicity (logP), B) topological polar surface area (TPSA), C) molecular weight (MW), 
D) drug-likeness score (QED), E) number of hydrogen bond acceptors (HBA) and F) hydrogen bond donors (HBD) 
with respect to the complete CHEMBL25 and DRD2 datasets before splitting. Subfigures A-D show the continuous 
histogram density as estimated by the kdeplot method of the seaborn Python library using default parameters. 

 

NLL distributions of datasets 

The NLL of sampling all molecules in the ChEMBL25 dataset and all known active compounds in the 

DRD2 dataset was calculated with respect to all different models based on canonical SMILES strings. 

Figure 3 shows all different NLL distributions using the smoothened estimate of the density function 

of the underlying histograms. 

 



 

Figure 3: Negative Log Likelihood (NLL) of sampling all canonical SMILES per dataset with the physchem-based 
(PCB), fingerprint-based (FPB), transfer learning (TL) and prior models. The plots show the estimate of the density 
of the underlying NLL histograms. The mean and standard deviation of the true distributions are annotated. The 
CHEMBL25 sets consist of both predicted active and inactive compounds whereas only the known actives were 
selected from the DRD2 sets for this test. The graphs are truncated at a maximum NLL value of 70. 

 

In all datasets the FPB model results in the sharpest distribution of NLL with the lowest mean and 

variance compared to the other three models. Likewise, the PCB model shows the second lowest NLL 

mean value per dataset. The order of the distributions plots is expected because the amount of 

chemical information in the 2048 bits of a Morgan fingerprint exceeds the information that is 

contained within the seven scalar descriptors used in the PCB model, especially from a structural point 

of view. The graphs of the conditional models show a slight shift towards higher values for the DRD2 

datasets, due to the uncertainty that is inherent to unseen data. Nevertheless, both conditional models 

have a lower mean NLL – and thus a higher probability – of sampling the canonical SMILES the 

conditions originated from, compared to the prior network both before and after being trained with 

transfer learning. The transfer learning model curve changes its relative position compared to the prior 

model curve between the two datasets because the focus of the model trained with transfer learning 

has been shifted away from the majority of molecules in ChEMBL and, thus it is more difficult to sample 

them.  

Ideally, all models should be able to sample the intended chemical space uniformly and this would be 

expressed by zero variance of the NLL distribution and the NLL curve should approximate a Dirac 

distribution. Under such ideal conditions, it would be possible to estimate the size of the output space 

by simply inverting the (constant) probability of sampling any molecule, e.g. a probability of 0.01 would 



mean that in total 100 molecules could be sampled. As an example, a sharp NLL distribution around a 

value of 10 would imply a uniform probability distribution at a value of 4.54 · 10−5 or an equiprobable 

output space of 22,000 unique randomized SMILES strings. Likewise, NLL values of 20 and 30 would 

point to output domains of approximately 108 and 1013 SMILES strings respectively. Those numbers 

would serve as an upper boundary for underlying unique molecules because the same molecule may 

be represented by multiple randomized SMILES. Even though the distributions of Figure 3 are far from 

Dirac distributions, a comparison of the distributions may serve as a qualitative insight on the relative 

change in the order of magnitude of their output space. 

Additionally, the position of the distributions can be interpreted in two ways: first, the closer to zero 

the NLL distribution moves, the more deterministic the output of the model gets. This can be due to 

either limited generalizability of the model or more detailed description of the target, such as in the 

case of a conditional network. Second, differences in NLL distributions between train and test sets can 

be a sign of overfitting or mode collapse [9]. This seems to be the case with the transfer learning model, 

which exhibits a distribution with a lower mean NLL towards the active compounds in the DRD2 train 

dataset compared to the unseen active ones in the DRD2 test set. In contrast, the NLL distributions of 

sampling all four datasets with either of the conditional networks regardless of the dataset are on par, 

which makes overfitting a less likely cause. Here, the similar distributions regardless of a dataset 

demonstrates that the conditional models are able to generate both active and inactive compounds at 

equal ease, given that the states are set accordingly.  

 

Sampling of Active Molecules 

The structures shown in Figure 4 were generated by the two conditional networks using known active 

compounds from the DRD2 test set as conditional seeds, which are shown in the centre. The 

exemplified molecules in the dashed circle were generated by the FPB model whereas the ones outside 

of it were generated by the PCB model. All the molecules were filtered to have a QED score greater 

than 0.8 and were predicted to be active by the QSAR model with a probability greater than 0.8.  

 



 

Figure 4: Generated structures from two different known active seeds (center) selected randomly from the DRD2 
test set. The FPB (within dashed circle) and PCB (outside of dashed circle) generations have QED ≥ 0.8 and a 
predicted active probability ≥ 0.8. The FPB-generated molecules mostly maintain the seeding scaffold whereas 
the PCB-generated ones hop scaffolds. 

 

The FPB-based generations demonstrate almost identical structure to the seed at least at a scaffold 

level. On the other hand, the PCB-generated molecules have clearly different scaffolds to seed, which 

can be attributed to the fact that the selected physicochemical descriptors do not encode structural 

information directly. 

The correlation between the seed and the output of the models was further investigated by calculating 

the Tanimoto similarity of multiple generations. For that purpose, 100 seeds were randomly selected 

from the unseen active compounds of the DRD2 test set and for each one, 256 molecules were 

generated in a batch by each of the conditional models yielding a total of 25,600 SMILES strings. For 

each batch, the pairwise Tanimoto similarities were calculated between the scaffolds of the associated 

seed and of all uniquely generated compounds. The results are plotted in Figure 5A, while  the 

predicted probabilities of being active for each compound were plotted in Figure 5B. The PCB-

generated scaffolds tend to be dissimilar to their seeds in contrast to the FPB-generated ones, the 

similarity of which to the seeding scaffolds follows a bimodal distribution that is shifted to the right, 

showing that similar or identical scaffolds are generated. However, in both cases the distribution of 

active probabilities is comparable (Figure 5B), proving that both models can generate predicted active 

compounds given the appropriate conditions. 

 



 

Figure 5: Distribution of pairwise Tanimoto similarity of scaffolds with the seed and predicted active probability 
of all unique generated structures per model. A) The PCB model generates new scaffolds whereas the FPB model 
generates structures that are more similar or even identical to the seed. B) Both models generate compounds 
that are predicted to be active with similar probability distributions.  

 

This supports the previous observation that the PCB model can generate different scaffolds from the 

same seed. Additionally, it identifies the sampling domain of each model. The main advantage of using 

fingerprints is that structural restrictions are directly encoded, a fact that is of use when scaffolds that 

are similar or identical to the seed need to be generated. On the other hand, using physicochemical 

properties as conditions offers a more versatile sampling and this model could thus be applicable to 

explorations outside of a known scaffold, yet within the boundaries of the desired property setpoints. 

 

Benchmarking 

In an attempt to further compare all models, all three of them were tested with respect to the metrics 

provided by the MOSES framework [16].  For that purpose, 25,600 compounds were additionally 

sampled by the model trained with transfer learning, similar to the sampling done for the other models 

as described above. The metrics were calculated with respect to the active compounds of the DRD2 

test set that was used as a reference dataset. 

  



 

Table 2: Comparison of the physchem-based (PCB), fingerprint-based (FPB) and transfer learning models (TL) with 
respect to MOSES and custom metrics. The DRD2 test set was used as a reference set for the MOSES framework 
such that the seed conditions were drawn from it. Top-pointing arrows show that higher scores are considered 
better and bottom-pointing arrows show that lower scores are considered better. Numbers in bold show the best 
score for that metric. Molecules with a predicted probability greater than 0.5 by the QSAR model were considered 
active. 

 Metrics  Models 

      PCB FPB TL 

M
O

SE
S 

Valid ↑ 0.881 0.951 0.968 

Unique@1k ↑ 0.996 0.276 1.000 

Unique@10k ↑ 0.996 0.304 0.996 

FCD ↓ 7.981 5.590 8.438 

SNN ↑ 0.341 0.774 0.375 

Frag ↑ 0.920 0.966 0.938 

Scaf ↑ 0.094 0.491 0.193 

IntDiv ↑ 0.845 0.834 0.846 

C
U

ST
O

M
 

Novelty (1) ↑ 0.878 0.299 0.953 

Predicted Active Fraction (2) ↑ 0.536 0.194 0.474 

Reconstructability (3) -   ≤0.001 0.630 - 

(1): calculated with respect to the generated active compounds and the merged active compounds of the DRD2_TRAIN 
and CHEMBL25_TRAIN datasets only 
(2): fraction of 25,600 generations that are valid, unique and predicted active compounds 
(3): calculated based on the most frequently sampled SMILES string out of 256 generations per conditional seed 

 

The PCB model performs the worst with respect to most metrics, except for predicted active fraction 

and uniqueness among 10,000 samples. However, the metrics need to be interpreted carefully. The 

seed conditions used for the generation were extracted from active compounds of the DRD2 test set, 

which were not included in the training set of both conditional models. The active class is heavily 

underrepresented in the datasets that they were trained on (only 2.3% of predicted actives in ChEMBL, 

cf. Table 1) and thus the set of conditional seeds correspond to a demanding task, which becomes even 

harder for the PCB model to fulfil since much less information is included in the physicochemical 

descriptors than in the fingerprints.  On the contrary, the transfer learning model was trained directly 



on known actives and it is independent of any input during generation, while trying to replicate what 

has been seen during training. Lacking input conditions offers an implicit advantage over the 

conditional models in terms of valid generated structures, because specific input combinations may 

cause a consistent drop in generated validity. However, within a sample of 10,000 generated 

structures, the PCB and the transfer learning models are on par regarding uniqueness. This metric is a 

performance indicator, yet it does not fully expose the differences between the models, simply 

because the output space is too large to generate enough duplicates within only 10,000 samples. On 

the other hand, the FCB model has low uniqueness, but this is expected as the more deterministic 

nature and the lower number of possible SMILES to sample from a single fingerprint naturally lead to 

duplicated outputs and penalized uniqueness. 

The Frechét ChemNet distance (FCD) [43] underlines the chemical distance between the reference and 

the generated distributions. As such, it is heavily in favour of the conditional models, because the seeds 

drawn from the test set purposely force the generated distributions towards it and consequently 

towards lower FCD values. Moreover, since the DRD2 train and test sets had been clustered, the fact 

that the transfer learning model was further trained on one of them explains the deviation from the 

other with respect to the FCD metric. Internal diversity exhibits also expected behaviour for a similar 

reason; the seeds narrow the output down compared to an ideally random sampler in the DRD2 active 

domain, such as the transfer learning model. 

Among all 25,600 molecule generations, higher novelty was achieved by the transfer learning model. 

This was due to the lower validity and uniqueness of the conditional models because the upper novelty 

boundary is defined by the product of validity and uniqueness. For the PCB model that boundary is 

approximately 0.881 · 0.996 = 0.877 which is reached as seen in Table 2. This is an indicator that the 

PCB model, even though it suffers from lower validity compared to the transfer learning model, it does 

not copy the training dataset. Similarly, the upper novelty boundary for the FPB is around 0.951 · 0.304 

= 0.289 which was slightly exceeded because uniqueness@10k calculated by MOSES is probably lower 

than the complete uniqueness of all 25,600 generations. For the transfer learning model, the upper 

boundary 0.968 · 0.996 = 0.964 was almost reached as well. As observed, even though the absolute 

number of novel compounds was higher for the transfer learning model, none of the models actually 

replicated the training datasets. 

It is noteworthy that a higher fraction of unique predicted active compounds was sampled by the PCB 

model whereas the least of them were generated by the FPB model. The FPB model was punished 

because of its high reconstructability, which negatively affects its uniqueness score. 



More specifically, the molecular reconstructability of the input descriptors was assessed by trying to 

retrieve the molecule that was represented by them at each batch. By identifying the most frequently 

sampled molecule out of 256 generations using a single conditional seed, almost 65% of the FPB 

generations were proven to be successful reconstructions of the molecule behind the seeding 

fingerprint. Further experimentation with a deeper FPB model with four decoding layers and 512 LSTM 

units each made it possible to increase the reconstructability to 72%. Nonetheless, reconstructions 

were very scarce when using the physicochemical descriptors in the PCB model, because 256 samples 

were not enough to completely rediscover the diverse molecular space behind a given input condition. 

In order to investigate whether novelty of the conditional models is influenced by the training or 

seeding dataset, 100 new conditions were drawn from each one of the training and test subsets of 

ChEMBL. Then, the novelty of the unique valid generated structures out of 256 generations (one batch) 

per set of conditions was assessed with respect to both datasets. The results are shown in Figure 6. As 

hypothesized, both models use the conditions stemming from unseen molecules and generate 

structures that are not present in either dataset. For any of the models, the difference between 

datasets is insignificant, reflecting a consistent generation of novel compounds regardless of the origin 

of the seeding conditions. 

 

 

Figure 6. Novelty of generated molecules with respect to the train and test ChEMBL datasets using the physchem-
based (PCB) and fingerprint-based (FPB) models. The first element of every pair on the x-axis corresponds to the 
dataset the conditions were drawn from. The second element represents the dataset with respect to which novelty 
was calculated. For any model the difference between datasets is insignificant, reflecting a consistent generation 
of novel compounds regardless of the seeding conditions. The numbers correspond to the fraction of valid unique 
novel molecules out of 25,600 generations. 

 

 



Control of Generated Properties 

The primary advantage of the PCB model is the ability to generate molecules that follow the desirable 

properties. This was tested by using 10 conditional seeds derived from randomly selected active 

compounds from the DRD2 test set whose QED scores are all greater than 0.8. For each conditional 

seed, a batch of 256 SMILES were generated and the physicochemical properties defined in the 

condition were calculated for all the generated valid molecules using RDKit. As shown in Figure 7, most 

of the properties of generated compounds exhibit only small deviation from the defined conditional 

setpoint, with the QED property having relatively large variance around the reference level. 

 

 

Figure 7: Reference properties (red) vs. properties of generated compounds (blue) for 10 random conditional seeds 
from the DRD2 test set. The length of the step denotes the amount of valid SMILES generations out of a batch of 
256. The patterns of all generated properties follow the reference. The QED constraint is the hardest to satisfy. 

 

To further investigate the capability of a cRNN to control the properties of its generated molecules, 

more experiments were conducted where single properties were varied in both directions while 

keeping the rest of them fixed.  A molecule from within the first and third quartiles with respect to all 

properties of the DRD2 test dataset was selected to obtain the initial conditions from. Then, for each 

of the descriptors apart from the active probability, five values were tried out in a step-wise ascending 

fashion spanning the value range between the first and third quartile of each property, while keeping 

the rest of the conditions at the initial level. The tested conditions correspond to arbitrary property 



setpoints, unlike the ones shown in Figure 7. The reference (red line) and generated properties (blue 

dots) of all valid SMILES strings are shown in Figure 8.  Each column of cells per plot corresponds to the 

tuning of a single property while keeping the other five conditions fixed at the initial values. In overall, 

LogP, TPSA, molecular weight and HBD setpoints were adequately matched in the generated molecular 

properties, followed by HBA which seems to be unstable for low values of LogP and high values of 

molecular weight. The QED formula contains the weighted sum [41] of all the other five properties 

and, consequently, the requested conditions along with the QED setpoint may render it impossible for 

that equation to be satisfied. Therefore, the QED property was hard to keep at the reference value as 

shown by the large spread around the target value (Figure 8).  

 

 

Figure 8: Optimization of conditions varied individually in every direction. The pattern of the properties of the 
generated molecules (blue dots) seems to follow the set conditions (red lines). The length of a step represents the 
amount of valid generations for that setpoint out of 256 samples. Low molecular weight or high QED setpoints 
lead to unstable generation of valid SMILES for the given condition. QED displays the largest deviations from the 
seed conditions and is the hardest property to control as the formula contains a weighted sum of the other 5 
properties [41]. The area annotated by arrows refers to an input combination with a high QED target that caused 
the generations to collapse with respect to the rate of valid SMILES and fulfillment of the specified conditions. 

 

This is particularly evident in the region around low values of molecular weight or requested high 

values of QED for the given seed.  In the first case, LogP and QED decreased under the influence of the 

value of molecular weight that was controlled by the cRNN. From the short length of the step, it is 

observed that this batch of generations suffered from a high number of invalid SMILES strings and as 

far as the valid ones are concerned, their LogP and QED were much lower than the setpoint. Similarly, 

requested high values of QED given the values of the other 5 properties were impossible to achieve, 

which affected the values of all properties and eventually led to none of their setpoints being 

respected, as annotated with the arrow markings in Figure 8. 



Those are cases in which input combinations were ill-defined and resulted to either unattractive 

molecules or invalid structures, something that has also been observed in the latent space vectors of 

autoencoders [21]. In the cRNN context, such combinations may refer to under-represented regions in 

the training dataset, which are either due to the lack of relevant samples in the source or due to 

conflicts between the requested descriptor ranges. The conditions are entangled since they depend 

on each other, as observed from the behaviour of the QED score. In most cases, the user is probably 

interested in tuning only one of the properties rather than restraining many of them; nonetheless, the 

property conditions ought to be set at reasonable values to avoid the entanglement problem. More 

sophisticated sampling approaches, such as the LatentGAN architecture [23], could potentially address 

the entanglement problem. Particularly, the generator component of the LatentGAN may be used to 

autonomously propose a valid combination of input properties that lead to active generations towards 

bioactivity targets.  

 

Exclusivity of Sampling 

Sampling the cRNN model with the seed conditions derived from a query structure should theoretically 

make it more likely to generate structures similar to the seed (c.f. Figure 3) and less likely to sample 

dissimilar molecules.  To investigate this hypothesis, 100,000 molecules were randomly selected from 

the ChEMBL test set and clustered using the DBSCAN algorithm [44], based on the Euclidean distance 

of their five scaled physicochemical properties (LogP, TPSA, MW, HBA, HBD). A value of ε = 0.1 and 10 

minimum samples for associating core points were selected as parameters of the DBSCAN algorithm. 

Next, two clusters of molecules (with size of 53 and 57 respectively) were manually selected to keep 

the variance of their descriptors within a range as narrow as possible, with preferably small overlap. 

The distributions of LogP, TPSA and MW of the selected clusters are shown in Figure 9A-C. All the 

molecules of the first cluster resulted in an HBA count of four and an HBD count of zero and all 

molecules of the second cluster resulted in counts of four and one respectively. The selected clusters 

show minimal or no overlapping with respect to LogP, TPSA and HBD count whereas they share the 

same count of HBA and similar values of MW. The values of QED and predicted probability of being 

active were not considered during clustering. 

 



                            

Figure 9: A-C) Distribution of Properties of each cluster. D) Distribution of calculated Negative Log Likelihood of 
sampling each cluster using the two cluster centers as seeds interchangeably. It is shown that using a relevant 
seed makes it more probable to sample chemically neighboring molecules than molecules from another cluster.  

 

The seed conditions were selected as the coordinates of the geometric centre of each cluster.  The 

conditional NLL of sampling the canonical SMILES of each cluster under different seeds was calculated 

according to Equation 1 (Figure 9D).  The cross-conditional NLL was calculated for each cluster by 

swapping the conditional seeds of both clusters. Theoretically, the generation of molecules from these 

two clusters during conditional sampling should be mutually exclusive using their own cluster centre 

as seed. In other words, using each cluster centre as the seed should have a higher probability to 

sample the compounds within the same cluster.  

This hypothesis is actually supported by Figure 10D.  In overall, the molecules in cluster 1 (blue curve) 

are more likely to be sampled than the ones in cluster 2 (green curve), when the conditional vector is 

derived from the seed of cluster 1. When the seeds of both clusters are swapped, it is less probable to 

sample any molecule from one cluster using the seed of the other. Even though there is an overlap 

between the self-conditional and cross-conditional NLL curves, in both cases the former ones describe 

lower NLL values, thus showing that relevant molecules are more likely to be sampled. By comparing 

the self-conditional NLL curves of Figure 9 to the curves of Figure 3, it is observed that the NLL curves 

of Figure 8 are all shifted towards higher NLL values. This is expected though, since the conditions 

considered for each SMILES string were not derived from its own properties but from the mean 

properties of the cluster instead. 

Applications to Drug Discovery 

The cRNN architecture provides a way to address the inverse QSAR problem directly. Particularly, the 

PCB cRNN is able to generate molecular structures with desired properties. In contrast, other available 



methods suggest the use of optimization algorithms [15][22] or reinforcement learning [12] to close 

the loop and steer one or more initial candidate molecules towards the aspired region of the chemical 

domain in an iterative process. Such optimization approaches require computationally expensive 

looping over a cost or desirability function, whereas in our case a batch of 256 potentially interesting 

SMILES strings with properties close to predefined target values can be generated within less than a 

second. Runtime is of concern when scaling up the generative process for the design of diverse 

molecular libraries, the populating of which in a timely and interactive fashion might be essential. 

Having a quasi-instant generation also allows interactive applications to be built, where a fast feedback 

cycle permits experimentation with the target properties for library generation. 

The pretrained cRNN could also serve as a starting point for additional optimization techniques such 

as reinforcement learning [12], where the standard conditions combined with the cRNN are 

complemented with project specific QSAR and desirability functions. Other optimization techniques 

such as Particle Swarm Optimization [22] or Bayesian Optimization [15] could be used to optimize the 

conditional seed, which in the case of the PCB model would be directly interpretable and for the FBP 

model could yield a series of similar compounds. 

 

Conclusions 

In this work, the effect of introducing molecular descriptors as inputs to an existing SMILES generator 

architecture based on recurrent neural networks has been investigated. Primarily, it was shown that 

known molecules are more likely to be rediscovered when sampling using the descriptor conditions 

that represent them as inputs to a cRNN, compared to a prior unbiased model that is simply trained 

on the complete molecular dataset. Our approach also demonstrated the capacity of generating novel 

compounds that were predicted active against the DRD2 receptor, which were also chemically closer 

to known active compounds than a baseline model trained with transfer learning. Additionally, a larger 

fraction of predicted actives was generated by the cRNN than the baseline model. Using molecular 

fingerprints as conditions focuses the molecular generation even more than physicochemical 

properties, by acting as structural restrictions that impose a scaffold on the output that is similar, if 

not identical, to the reference. This also demonstrated the proposed architecture’s capability to 

function as a fingerprint inverter, by being able to resample the original molecule even up to 72% of 

the time by using a more complex network. On the other hand, physicochemical properties are more 

versatile and lead to molecules with more diverse structures and different scaffolds than the molecule 

that the conditions were derived from. The cRNN architecture tackles the inverse QSAR problem by 



directly shaping the properties of the generated molecules while avoiding computationally expensive 

optimization loops. Nonetheless, even though we have been able to optimize the conditions 

independently of each other, not all input combinations led to valid structures due to the conditions 

being correlated. As an example, this was observed when conditioning with a high QED setpoint while 

keeping the other conditions, which are constituents of the QED score calculation, fixed. The cRNN has 

thus been demonstrated as a potentially useful architecture with intermediate output space between 

unbiased character-based RNNs and fully steered autoencoders with a 1:1 relation between latent 

space vectors and molecules.  
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