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ABSTRACT  

The performance of solid state lithium ion batteries can be improved through the use of interfacial 
coating materials, but computationally identifying materials with sufficiently high lithium-ion con-
ductivity can be challenging.  Methods such as ab-initio molecular dynamics that work well for 
superionic conductors can be prohibitively expensive when used on materials that conduct lithium 
ions less well but are still suitable for use as interfacial coatings.  We demonstrate a way to address 
this problem using machine-learned interatomic potentials models in the form of moment tensor 
potentials. To prevent the potentials from significantly deviating from density functional theory 
calculations we use molecular dynamics simulations coupled with on-the-fly machine learning. 
This approach increases the efficiency of the calculations by seven orders of magnitude compared 
to purely ab initio molecular dynamics, significantly reducing the uncertainty in calculated migra-
tion energies and improving agreement with experimentally-determined activation energies. Using 
this approach, we identify two particularly promising materials for use as coatings in batteries as 
well as several others that are candidates for doping-enhanced ionic conduction.

1.INTRODUCTION  
Lithium-ion batteries have become the dominant energy storage devices for portable electronics 
and electric vehicles. These batteries convert Li chemical potential differences into electric current 
by shuttling lithium ions between two electrodes. Due to the low atomic weight and highly elec-
tropositive nature of lithium, lithium-ion batteries can achieve high energy density, high rate ca-
pability, and long cycle life.1 Compared with a liquid electrolyte, the use of solid-state electrolytes 
has emerged as an appealing alternative that has the potential to accommodate higher-voltage cath-
ode materials and a metallic lithium anode.2, 3 

Considerable research efforts have focused on identifying solid-state electrolytes with high ionic 
conductivity. The lithium-ion conductivities of several families of electrolytes, such as 
Li₁₀GeP₂S₁₂ and Li₇P₃S₁₁, are approaching that of liquid electrolytes at 10−2 S/cm.4 Despite the 
high bulk conductivity of battery components, the actual rate capability of all-solid-state batteries 
is generally lower than estimated, especially at high states of charge or at high temperatures. The 
degradation of battery performance is typically attributed to increased impedance at the interface 
between electrodes and the electrolyte.2, 5-9 Studies suggest that the two main causes of high inter-
facial resistance are poor contact between the electrode and electrolyte and formation of undesired 
interphases.6, 10, 11 The prevailing issue of interface reactivity originates from abrupt electrochem-
ical potential changes at the electrode-electrolyte interface,8, 12-15 which can be addressed by put-
ting a protective coating layer between the incompatible materials.11, 16-23 Materials with desirable 
chemical and electrochemical stability against both the electrode and the electrolyte can function 
as an interlayer that eliminates any unanticipated reactions and enhances the cyclability of the 
battery.  

Previous progress on identification of protective coating materials was achieved primarily by ex-
perimental trial and error. Typical protective coating materials between the cathode and sulfide-
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based solid electrolytes include LiNbO₃,24, 25 Li₂SiO₃,26 Li₄Ti₅O₁₂,18 Li₂O-ZrO₂,27 LiTaO₃28 and 
Li₃PO₄.16 It has also been reported that garnet oxide electrolytes coated with Li₃BO₃29, Li₂CO₃ 
and their mixtures30 exhibit improved cycle life over non-coated systems. Theoretical predictions 
of cathode / electrolyte interfacial products and protective coatings are in good agreement with 
experimental observations.12, 15, 31 With reliable ab initio databases such as those provided by the 
Materials Project32 and Open Quantum Materials Database33 (OQMD), thermodynamic analysis 
of phase equilibria can be performed in a high-throughput fashion. Snydacker et al.34 have per-
formed a high-throughput screening to identify coating materials that are predicted to form stable 
interfaces with metallic (Na, Li, and Mg) anodes. Aykol et al.31 screened the OQMD database for 
coatings that stabilize the interface between the cathodes and liquid electrolytes by considering 
their thermodynamic stability, electrochemical stability, and hydrofluoric acid reactivity. Recently, 
Xiao et al.35 demonstrated a high-throughput screening scheme for coating materials based on 
similar criteria with an additional requirement on chemical stability with the sulfide electrolyte 
and the oxide cathode.  

One of the greatest obstacles to the integration of these identified compounds as functional inter-
face coatings is the inherently inhibited Li⁺ conduction in many candidate coating materials, which 
compromises the battery’s rate capability. The chance that a randomly chosen material forms stable 
interfaces and conducts Li⁺ quickly is unfortunately small. Fast lithium ion conductors have been 
found in sulfide compounds, but they are susceptible to be oxidized by the cathodes. This is con-
sistent with the fact that the identified stable protective coatings are made up of oxides, halides, 
nitrides but few sulfides. Across four decades of materials discovery for solid electrolytes, only a 
handful of oxide-based structure families with liquid-level Li conduction (>10−2 S/cm) at room 
temperature have been identified.36 This slow discovery in oxide-based superionic conductors in-
dicates the scarcity of ultra-fast ionic conductors in this category. Stoichiometric oxides generally 
possess Li⁺ conductivity lower than 10-6 S/cm at ambient temperature,37 while ionic conductivity 
of chlorides and fluorides have been studied less.  

In solid-state batteries, the thickness of the electrolyte is typically thousands of times larger than 
that of a coating layer between the electrode and electrolyte.38 Lithium diffusion paths in interface 
coatings can be further shortened to the angstrom scale with state-of-the-art fabrication tech-
niques.39 Thus the requirement of high ionic conductivity for a coating layer is relaxed compared 
with the solid electrolyte. Assuming the time spent to pass through the surface coating can be 
approximated as the time frame for Li⁺ transfer through micrometer-thick superionic conductor, 
materials with ionic conductivity of 10-6-10-8 S/cm may be qualified to be integrated as nanometer-
scale coatings without significantly affecting battery charge and discharge rates. Protective coating 
materials with moderate ionic conductivity could potentially strike a balance between long-term 
cyclability and high rate capability. In contrast to the pursuit of superionic conductors for solid 
electrolytes, a primary goal in coating design is to identify materials that exhibit a fast-to-medium 
Li⁺ diffusion rate while maintaining chemical stability against both the solid electrolyte and the 
cathode. 
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Despite the critical role of viable Li⁺ conduction in coating functionality, it is uncommon to find 
it as a search criterion in computational screening of coating materials. The main challenge lies in 
the high cost of accurate prediction of lithium ion conductivity. Current computational approaches 
for ionic conductivity evaluation include the climbing image nudged elastic band method,40, 41 
molecular dynamics simulations, and several ionic conductivity descriptors such as those based on 
lattice dynamics42 or the bond-valance model.43 The nudged elastic band method is frequently used 
to determine the energy of the transition state along the minimum energy path. Prior knowledge of 
the diffusion pathway in the structure is essential to initialize nudged elastic band calculations, 
which critically affects the accuracy of the calculated migration energy. (Throughout this manu-
script we will refer to the calculated activation energy for lithium ion migration as the “migration 
energy”.) The prior guess of the diffusion mechanism is challenging when searching for novel 
materials for which Li⁺ conduction has not been characterized, especially in systems where Li⁺ 
diffusion occurs via highly correlated motion as opposed to simple lithium ion hops into vacant 
sites. Possibilities of other diffusion mechanisms are often overlooked with this calculation 
method. Molecular dynamics (MD) has several advantages for computing Li⁺ conductivity as well 
as for direct observation of hopping events. Molecular dynamics explores state space and identifies 
the states and mechanisms that are most conducive to high ionic conductivity.  Due to the lack of 
well-developed interatomic potentials over a wide chemical space, ab initio molecular dynamics 
(AIMD) has been widely used for exploring new ionic conductors. However, as this method is 
computationally demanding, the time scale of a simulation is typically limited to tens to hundreds 
of picoseconds. Since cation migration becomes exponentially slower as the migration energy in-
creases, AIMD is only suitable for the determination of conductivity at room temperature when 
the migration energy is lower than about 0.2 eV, and even for a material with such a low migration 
energy there can be significant error in the predicted diffusivity.44 Modeling materials with higher 
migration energies requires simulations at higher temperatures which can only be used to extrap-
olate room temperature conductivity if no phase transformation take place between room temper-
ature and the temperatures at which AIMD simulations are run. This presents a problem for the 
types of materials with moderate Li⁺ conductivity that may be used as coating materials, as it may 
not be possible to calculate accurate diffusion rates at low temperatures because insufficient sta-
tistical data can be captured within AIMD simulation time scales at reasonable computational 
cost.44  

To expand the timescale of AIMD and retain a similar level of accuracy, machine-learned intera-
tomic potentials parameterized by ab initio data have been employed to optimize the efficiency-
versus-accuracy tradeoff.45-50 Such interatomic potential models are capable of simulating dynam-
ics orders of magnitude faster than DFT and scale linearly with system size. The computational 
cost of such models is typically dominated by the cost of generating the data used to train them.  
To minimize the amount of data required to train a potential model while reducing the likelihood 
that the model has large prediction errors, active learning methods can be used to automatically 
decide whether a configuration encountered during molecular dynamics can be treated reliably by 
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a machine learning model or if the model needs to be retrained with more data points.51, 52 This 
strategy, sometimes referred to as “learning on the fly” (LOTF), preserves the accuracy of machine 
learning potentials and prevents highly unphysical atomic dynamics.  

We present a workflow for calculating lithium ion diffusivities based on a learning-on-the-fly 
scheme with moment tensor potentials (MTP), a recently-developed machine-learned interatomic 
potential model.45 As a statistical method, the accuracy of diffusivity values calculated from mo-
lecular dynamics trajectories relies on the amount of observed diffusion events. As the LOTF/MTP 
approach reduces the computing time for each time step by about 7 orders of magnitude relative 
to DFT, we are able to extend the length of MD simulations to hundreds of nanoseconds with 
accuracy in the predicted energies that is comparable to DFT. Consequently, we are able to make 
accurate numerical predictions of low-to-medium migration energies (up to about 0.8 eV) for lith-
ium ion diffusion and identify new candidate coating materials.  Thus this framework enables an 
efficient and automated search for viable ionic conductors as protective coating materials.   

2. METHODS 
2.1 Ab initio molecular dynamics 

AIMD simulations were performed using the PBE GGA functional53 and projector augmented 
wave54 potentials as listed in the Supplementary Information (SI). In line with previous reports,55, 

56 the calculation parameters were selected to balance accuracy versus computational cost. We 
used a plane wave energy cut-off of 400 eV and a minimal Γ-centered 1 × 1 × 1 k-point mesh. 
Computations are performed with spin polarization and with magnetic ions initialized in a high-
spin ferromagnetic state for materials containing transition metal atom(s). Non-spin-polarized cal-
culations were performed otherwise. A time step of 2 fs was adopted. The supercell sizes were 
constructed to ensure there were at least 9 Å between neighboring images55 to avoid periodic 
boundary effects. The lattice parameter is fixed at that of the cell fully relaxed at 0 K. 

In each AIMD run, the material is firstly equilibrated at the target temperature for 2 ps and then a 
13 ps dynamic trajectory is produced. For each material, AIMD is initially performed at 1600 K. 
If the averaged mean-square-displacement of non-lithium species exceeds 3 Å2, partial melting is 
considered to have occurred and the temperature is discarded. The simulation temperature is dec-
remented by 100 K and the process is repeated until we collect data points at three different tem-
peratures for each benchmark material.  
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2.2 Ionic conductors screening with learning on-the-fly MD 

To enable the automated screening of materi-
als for lithium-ion conductivity, we devel-
oped a standardized workflow that can be ap-
plied to any crystalline material that contains 
lithium. The ionic conductor screening pro-
cess is illustrated by the flowchart in Figure 1. 
For all moment tensor potentials we set the 
size of the polynomial basis using levmax = 10, 
where levmax is related to the maximum poly-
nomial degree and defined in reference 57. 
The cut-off radius for the local atomic envi-
ronment was set as 5 Å. The MTP models 
were trained on both DFT-calculated energies 
and DFT-calculated forces, with the forces 
given ten times the weight of the energies. All 
potentials were pre-trained by DFT data gen-
erated in AIMD simulations before being 
used in on-the-fly molecular dynamics simu-
lations. 

 

MTP molecular dynamics were run in LAMMPS.58  The interface between moment tensor poten-
tial molecular dynamics and DFT geometry optimization was carried out by the Machine Learning 
of Interatomic Potentials (MLIP) software package.59 During the dynamic evolution of the struc-
ture, MTP re-training is conditionally activated by the occurrence of an “unlabeled” configuration 
as determined by the D-optimality criterion,60 corresponding to the extrapolation grade59 param-
eter coded in MLIP. The maximal allowed extrapolation grade is defined as the selection threshold, 
the value of which can be specified by the user. It has been shown that a selection threshold value 
between 2 and 11 is a good choice for efficiency-versus-accuracy performance.59 The molecular 
dynamics simulation is terminated once the extrapolation grade exceeds the selection threshold, 
which we set to 10.  Then structures with extrapolation grade over 1.5 are selected from the mo-
lecular dynamics trajectory to be added to the DFT training set. DFT calculations on these struc-
tures are performed in VASP with DFT input parameters consistent with the initial AIMD simula-
tion. The DFT-calculated structures are added to the training set, the MTP is retrained, and the 
molecular dynamics run is restarted with the new potential. By sampling the configurational space 
in this way, MTP eventually becomes sufficiently well-informed of the complete energy landscape 
that it needs no additional training data to complete the molecular dynamics simulation with suf-
ficient accuracy. 

Figure 1. Flowchart of the LOTF-MD ionic con-
ductor screening process.  
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For each structure the initial dataset used to train the MTP consists of 15 ps (2 fs per time step) of 
an AIMD simulation at 1000 K as described in 2.1. We chose a temperature for the initial training 
sets higher than the temperature range of interest for diffusivity to increase the likelihood that we 
adequately sample the space of structures likely to be encountered at lower temperatures, as sug-
gested by Novoselov et al.61 We chose a temperature lower than that of the initial temperature for 
AIMD simulations (1600 K) to reduce the risk of an unwanted phase transition from the room-
temperature structure (including melting).  

In the MLIP learning-on-the-fly implementation, the MTP molecular dynamics simulation is re-
started from its initial state every time DFT is requested. In addition, each DFT calculation on a 
structure during the LOTF stage starts from scratch, which requires significantly more computing 
time than in an AIMD simulation where the charge density for a structure is initialized based on 
previous steps.  For these reasons, a desirable initial training set should contain sufficient data so 
that re-training is rarely prompted during the MTP molecular dynamics run.  To estimate the proper 
timescale of the 1000 K AIMD simulations used to generate the initial dataset, we tested different 
lengths of the initial molecular dynamics run. In general, we found that with MTP trained on 7500 
configurations, the length of the LOTF-MD trajectories could typically reach the order of nano-
second before the first DFT request is activated. 

In each MTP molecular dynamics run, we firstly equilibrate the structure at the target temperature 
for 20 ps. The molecular dynamics simulation is terminated when at least 4 ns of statistics have 
been gathered and the total mean squared displacement (TMSD) of Li⁺ exceeds 2000 Å2.  Based 
on benchmarking work done by He et al,44 simulations in which the TMSD reaches 2000 Å2 are 
estimated to be sufficient to converge predicted diffusivity values with a standard deviation of 
about 27% of the diffusivity. At each temperature, the maximum length of molecular dynamics is 
set as 200 ns. Within this time scale and assuming 20 lithium atoms per simulation cell (which is 
typical for the compounds studied in this work), we estimate we can calculate diffusivities as low 
as about 2×10-9 cm2/s with an estimated standard deviation less than 50% of the diffusivity (the 
derivation is shown in Supplementary Information S3). To identify the onset of possible melting, 
we also calculate the mean squared displacement of species other than lithium. We determine melt-
ing occurred if the mean squared displacement of non-lithium species exceeds 3 Å2.  

The initial temperature for our LOTF-MD simulations is 700 K.  Li⁺ hopping observed at 700K 
for 4 ns is used as the first filter to rule out unlikely room temperature Li⁺ conductors. Using a 
typical hopping distance of 3 Å between neighboring Li sites and an activation energy of 0.5 eV, 
we estimate that the room-temperature diffusivity would be 6×10-13 cm2/sec or lower if no Li dif-
fusion is observed in 4 ns at 700 K (see the Supplementary Information S4 for derivation). For 
structures passing the first filter, the molecular dynamics production time, during which statistics 
are gathered, ranges from a minimum of 4 ns to a maximum of 200 ns depending on the Li⁺ mo-
bility in the structure. The use of a minimum simulation time is to improve statistical accuracy as 
well as the reliability of the moment tensor potential that is trained on the fly. Diffusivity data 
points are collected at temperatures decremented by 50 K until the diffusivity is so low that the 
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total mean squared displacement does not reach 2000 Å2 within 200 ns. The lowest five qualifying 
temperatures are used to fit the Arrhenius relationship.  The increase in the number of samples 
relative to AIMD is made possible by the dramatically improved speed of LOTF-MD. 

2.3 Arrhenius parameters fitting and statistical uncertainties estimation 

The tracer diffusion coefficient ( ) of the diffusing species is given by the slope of the mean 
squared displacement averaged over all diffusing atoms:  

  (1) 

where  is the position of the ith particle after time ,  is the number of lithium ions, and the 

constant 6 is used for three-dimensional diffusion.  We denote the estimated tracer diffusivity at 
temperature  as .  Following the Arrhenius relationship, 

  (2) 

the activation energy , can be calculated from a linear fit of  to , where  is 

Boltzmann’s constant. Since the probability of ionic hopping decays exponentially at lower tem-
perature, the calculated diffusivity at low temperatures may have a higher statistical uncertainty, 
especially from simulations terminated by the time limit instead of the TMSD criterion. Thus the 
variance of the independent variable  should be taken into account when fitting the Arrhenius 
equation for a statistically meaningful estimation of . We estimated the variance of the diffu-
sivity of lithium ions using the equation reported by He et al.44 and propagated to the variance of 

 using equation (7) in Supplementary Information S5.  These variances were then used in 

a weighted least squares regression to estimate .  Details of the weighted least square regression 
are provided in Supplementary Information S5.  

Using the Nernst−Einstein relation, assuming that the Haven ratio is equal to one,62 the room tem-
perature conductivity (σ) can be approximated by63 

   (3) 

where  is the volume density of the diffusing species,  is the unit electron charge,  is the 

charge of the ionic conductor (here 1 for Li⁺), and  is the extrapolated room-temperature 
tracer diffusivity. 
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2.4 LOTF-MD diffusion study of structures that contain vacancies 

In addition to the diffusion study on pristine stoichiometric structures, we studied vacancy-medi-
ated diffusion by removing one lithium ion from the simulation supercell. In the ab initio training 
set, a background charge is applied to the system to maintain the oxidation states of the remaining 
atoms in the material upon cation removal. We note that the charge of the lithium vacancy may in 
practice be offset by other defects, which for simplicity we do not consider here.  As the supercell 
size is held constant, any energy shift due to interactions between periodic charges and the chem-
ical potential of the electrons is not expected to affect lithium diffusion dynamics. Following the 
same LOTF-MD workflow (section 2.2), MTP is trained on-the-fly by the DFT-calculated config-
urations containing one charged vacancy per supercell.  

3. RESULTS AND DISCUSSION 
3.1 LOTF-MD performance benchmark 

To assess the efficiency and accuracy of the LOTF-MD framework, we selected eight lithium-
containing crystalline structures including oxides, sulfides and chlorides for which experimentally 
measured activation energies have been reported. Among these benchmark materials, the activa-
tion energies measured by electrochemical impedance spectroscopy range from 0.2 eV to 1.2 eV. 
Moment tensor potentials were developed for each material, with root-mean-square fitting errors 
for energies and forces of 5 meV/atom and 0.24 eV/Å respectively for the configurations used to 
pre-train the potentials.  

Over the 8 benchmark materials, the mean absolute error for calculated migration energies relative 
to experimental activation energies is 0.13 eV when the migration energy is calculated by LOTF-
MD and 0.32 eV when it is calculated by AIMD (Table 1).  This improvement is primarily due to 
two effects. The first is that the quality of linear correlation between log(D) vs. 1/T is greatly 
improved by LOTF-MD (average R² = 0.97) as compared with AIMD (average R² = 0.82), espe-
cially for structures with intermediate-to-high migration energies (Figure 2). Statistically, im-
proved linearity of the Arrhenius plots mainly results from the reduced statistical uncertainty in 
each diffusivity data point as a direct consequence of more ionic hops in LOTF-MD simulations.44 
The statistical uncertainty in predicted migration energies is similarly reduced (Table 1). 

The second reason for the improved accuracy is that the LOTF-MD simulations are better able to 
model room-temperature phases, as the simulations can be run at lower temperatures.  For AIMD 
simulations of Li₄GeS₄ and LiZr₂P₃O₁₂ there is relatively little deviation from the Arrhenius linear 
fit (Figure 2), but the extrapolated migration energies for these materials were underestimated by 
0.2 – 0.4 eV compared with the experimental activation energies at room temperature (Table 1). 
For these materials the assumption of an identical diffusion mechanism over the extrapolation 
temperature range does not strictly apply. Li₄GeS₄ is known to melt at about 850 °C.64  Although 
partial melting was not observed in the fixed unit cell during AIMD simulations, the structural 
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instability at high temperatures likely led to a lower calculated migration energy than observed at 
lower temperatures.  Similarly, LiZr₂P₃O₁₂ is known to undergo several temperature-dependent 
phase transitions among different polymorphs with different conductivities.65, 66  

Due to the stochastic nature of the MD simulation, the accuracy of information extracted from MD 
trajectories depends on the amount of observed diffusion events. The benchmarks on Li₄GeS₄ and 
LiZr₂P₃O₁₂ suggest that although running simulations at high temperature can improve the statis-
tics by sampling more diffusion events, this comes at the cost of compromised accuracy in the 
extrapolated properties for materials in which the stable high-temperature and room-temperature 
structures differ significantly.  The LOTF-MD simulations, including the cost of all training data 
generation, generated about 107 times as much data as AIMD simulations per CPU hour (Table 2). 
Thus LOTF-MD is able to collect statistics at moderate temperatures that reduce the risk of un-
wanted structural transitions.  The use of LOTF-MD reduced the difference between calculated 
migration energies and experimental activation energies from 0.21 eV to 0.01 eV for Li₄GeS₄ and 
from 0.46 eV to 0.09 eV for LiZr₂P₃O₁₂. 

 
Figure 2. Diffusivities simulated by AIMD at high temperatures and by LOTF-MD at intermediate 
temperatures on the Arrhenius plot. The migration energies (eV) calculated by the weighted least 
square regression between log(D) vs. 1/T are shown next to the fitting dash line for LOTF-MD 
data set. The error bars indicate the magnitude of the estimated standard error of log(D).   
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Table 1. Experimental activation energies and calculated migration energies for 8 materials, listed 
with the estimated standard errors (stderr). 

 Experimental high-T AIMD LOTF – MD 
MP 
entry id  

Composition Eₐ (eV) T (K) R² 
Eₐ ± stderr 
(eV) 

ΔEₐ T (K) R² 
Eₐ ± stderr 
(eV) 

ΔEₐ 

mp-10499 LiZr₂P₃O₁₂ 0.5965 700 - 900 0.81 0.13±0.32 -0.46 300 – 500 0.94 0.50±0.01 -0.09 
mp-30249 Li₄GeS₄ 0.5267 800 - 1000 0.92 0.31±0.23 -0.21 400 – 600 0.97 0.53±0.03 -0.01 
mp-4556 Li₂SO₄ 1.268, 1.169 500 - 700 0.88 0.41±0.52 -0.69 500 – 700 0.97 0.96±0.05 -0.19 
mp-4558 Li₄GeO₄ 0.8270, 0.9071 1400 - 1600 0.94 1.16±0.57 0.30 700 – 900 0.95 1.14±0.09 0.28 
mp-554577 Li₄P₂O₇ 0.9572 900 - 1100 0.92 0.45±0.38 -0.5 550 – 750 0.96 0.99±0.06 0.04 
mp-641703 Li₇P₃S₁₁ 0.1873 800 - 1000 0.86 0.05±0.15 -0.13 300 – 500 0.99 0.38±0.01 0.2 
mp-675083 Li₂MnCl₄ 0.6367 800 - 1000 0.97 0.47±0.35 -0.16 300 – 500 0.99 0.43±0.02 -0.21 
mp-985583 β-Li₃PS₄ 0.1674 800 - 1000 0.27 0.13±0.19 -0.03 450 – 650 0.95 0.23±0.02 0.07 

Table 2. Total computing time and MD production time for migration energy benchmark calcula-
tions 

Method 
Total 
CPU 
hour 

MD  
time (ns) 

production /cost  
(ns / CPU hour) 

AIMD 23291 3.75×10⁻⁴ 1.61×10⁻⁸ 
LOTF - MD 7186 1388 1.88×10⁻¹ 

 

3.2 Computational search for coating materials 

We search for coating materials that are likely to be thermodynamically stable, as determined by their 
existence on the 0 K convex hull in the Materials Project database. As materials with a high concentration 
of Li sites are likely to provide more potential pathways for Li-ion conductivity,35 we considered only 
materials with more than 10% mole fraction Li in our search for coating materials. From this set of com-
pounds we identified 1545 materials.  During battery operation, the cathode can undergo a drastic change 
in lithium chemical potential, which affects the chemical environment of the surface coating. To maintain 
interface equilibrium against the cathode throughout the charge/discharge cycle, the coating layer adjacent 
to an active electrode material is required to endure high Li chemical potentials without decomposition. 
Since the voltage of fully charged cathode materials is on the order of 4 V relative to metallic Li,75 we 
screened for coating materials with an electrochemical oxidation voltage limit of at least 4 V using the 
grand phase diagram developed by Ong, S et.al.55 We do not set a limit on the reduction voltage, requiring 
only interfacial stability between the coating material and the electronically insulating electrolyte. Using 
the above criteria, we found 234 qualified compounds by screening all the lithium-containing inorganic 
crystalline materials in Materials Project database.   
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Table 3. Oxide-based cathode and sulfide-based solid electrolyte materials studied in the work, 
composition of cathodes is displayed in charged / discharged states 

Cathode Solid  
Electrolyte 

LiCoO2 / LiCo2O4 Li7P3S12 

LiFePO4 / FePO4 Li10GeP2S12 

LiMn2O4 / MnO2 Li10SnP2S12 

Li(MnNiCo)1/3O2 / Li1/3(MnNiCo)1/3O2 Li10SiP2S12 

LiMn1.5Ni0.5O2 / Mn1.5Ni0.5O2 Li6PS5Br 
 

Li6PS5Cl 

 

To avoid unwanted reactions at the interface, the protective coating material should also form thermody-
namically stable interfaces with both the cathode and the solid electrolyte. In this work, we consider the 
five leading cathode materials and six solid electrolytes listed in Table 3. We specifically focused on the 
sulfide-based electrolyte materials because of their excellent ionic conductivity and mechanical compli-
ance but high reaction susceptibility to reactions with oxide cathodes. A suitable cathode coating layer 
could significantly improve the performance of sulfide electrolyte batteries. Using the reactivity energy 
calculation method developed by Xiao et.al,35 we identified 181 candidate cathode coatings showing no 
reactivity with at least one of the five cathode materials in both lithiated and delithiated phases. Of these 
181 materials, 19 were determined to have no interfacial reaction energy with at least one of the sulfide 
electrolytes and were further investigated for ionic conductivity.  

We applied the LOTF-MD workflow to calculate the lithium ion conductivity the 19 candidate coating 
materials. 14 materials exhibited mean squared displacements smaller than 9 Å2 in 4 ns MD at 700 K. 
They were determined to be unlikely to conduct Li⁺ at reasonable rates at room temperature and were 
removed from the screen. The remaining five candidate materials were LiCl, Li₂B₃O₄F₃, Li₂B₆O₉F₂, 
Li₃B₇O₁₂ and Li₃Sc₂(PO₄)₃. Li⁺ conduction in Li₂B₃O₄F₃ notably slowed down as the temperature de-
creased from 700 K to 650 K, with a total mean squared displacement of only 1503 Å2 after 200 ns.  Thus 
it is unlikely that Li₂B₃O₄F₃ conducts lithium ions at a sufficiently high rate at room temperature. With 
ionic conduction studied at decremented temperatures following the LOTF-MD workflow, we were able 
to determine the migration energies for LiCl (1.11 ± 0.13 eV),  Li₃Sc₂(PO₄)₃ (0.64 ± 0.04 eV), Li₂B₆O₉F₂ 
(0.79 ± 0.10 eV) and Li₃B₇O₁₂ (0.56 ± 0.05 eV). (Throughout this paper the values following the ± symbol 
for calculated migration energies represent the estimated standard error.) The migration energies and the 
extrapolated room temperature lithium ion conductivities are listed in Table 3, along with any available 
experimental values for reference.  

LiCl has been shown to be a poor Li conductor76 at room temperature with an experimental activation 
energy of 0.83 eV.77 This activation energy is below our calculated migration energy by about 0.28 eV, 
which is consistent with the magnitude of ΔEₐ for materials with similarly high activation energies in our 
benchmark set.  The relatively large difference is accompanied by a relatively large uncertainty (± 0.13 
eV) in the calculated value, as the number of diffusion events that can be sampled decreases exponentially 
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with migration energy.  However materials with such high activation energies are unlikely to be good 
candidates for as coating materials; both the calculated migration energy and experimental activation en-
ergy indicate that if LiCl were to be used as a coating material it would likely be rate-limiting. 

For Li₃Sc₂(PO₄)₃, we observed a slope change at 540 K on the Arrhenius plot (Figure 3), which indicates 
a phase transition. There is a reported superionic phase transition from a monoclinic (α-phase) to an or-
thorhombic (γ-phase) accompanied by an abrupt conductivity jump in the vicinity of 500 K.78 We do not 
directly observe this phase transition due to our use of the NVT ensemble with a fixed lattice, but the 
discontinuity we observe at 540 K may be due to a related transition within the constraints of the lattice. 
The calculated low-temperature activation energy, 0.62 eV, is in good agreement with the experimentally-
determined value of 0.68 eV for the low-temperature phase, and well above the activation energy of the 
high-temperature phase. This example is another demonstration of the importance of moderate simulation 
temperatures for accurate predictions. Li₃Sc₂(PO₄)₃	has been previously identified as a lithium ion con-
ducting material from computational screening but the migration energy was underestimated by 0.35 eV 
due to the high temperature extrapolation.79   

 

Figure 3. Calculated Arrhenius plot of Li₃Sc₂(PO₄)₃ with LOTF-MD.  The error bars indicate the magni-
tude of the estimated standard error of log(D).    
 

The remaining two candidates are the lithium borates Li₂B₆O₉F₂ and Li₃B₇O₁₂, the Arrhenius plots of 
which are shown in Figure 4. Lithium borates have been recognized for their excellent interfacial stabil-
ity,35 but ionic conductors in this category have rarely been identified.80 The activation energy of lithium 
ion diffusion in Li₂B₆O₉F₂ has been experimentally determined to be 0.92 eV by heating the sample up 
to 623 K.81 Using LOTF-MD, we calculated diffusivities from molecular dynamics simulations at tem-
peratures as low as 570 K. The migration energy in Li₂B₆O₉F₂ calculated in the range of 570 K – 670 K 
is 0.79 ± 0.10 eV, which is 0.13 eV lower than the experimental activation energy.  To our knowledge, 
Li₃B₇O₁₂, which is predicted to have excellent interfacial stability, has not been characterized in terms of 
Li⁺ conduction. Our calculations predict that it has an intermediate migration energy 0.56 ± 0.05 eV and 
an estimated room-temperature conductivity of 9.95×10⁻⁸	S/cm.  



 

 

14 

 

Figure 4. Calculated Arrhenius plot of (a) Li₂B₆O₉F₂ (b) Li₃B₇O₁₂	with LOTF-MD.  The error bars indi-
cate the magnitude of the estimated standard error of log(D).   

 

The room temperature conductivities of Li₃Sc₂(PO₄)₃ and Li₃B₇O₁₂ potentially satisfy the rate criterion 
for a nanometer thick coating interlayer. They are promising coating candidates with reasonably high 
predicted Li⁺ mobility and high predicted chemical/electrochemical stability.35 Li₃Sc₂(PO₄)₃ is predicted 
to form a stable coating layer between Li₇P₃S₁₁ and the cathodes Li(MnNiCo)₁/₃O₂ or LiFePO₄.  
Li₂B₆O₉F₂ is predicted to stabilize the interface between Li₇P₃S₁₁ and cathodes Li(MnNiCo)₁/₃O₂, 
LiFePO₄ or Li₂Mn₃NiO₈ without largely compromising the battery efficiency. Li₃B₇O₁₂ is predicted to 
be stable against all six solid electrolytes listed in Table 3 cathodes LiCoO2, LiFePO4, and 
Li(MnNiCo)₁/₃O₂. 
3.3 Vacancy-mediated lithium-ion conduction 

We have so far considered diffusion in defect-free materials, but lithium-ion conductivity may be higher 
through a vacancy-mediated mechanism. Through this mechanism, the migration energy is essentially the 
maximum activation energy for Li⁺ hopping from one lattice site to an adjacent vacant site along the 
diffusion path. Using the approach described in section 2.3, we have calculated the migration energies for 
vacancy-mediated diffusion for the eight different benchmark materials using LOTF-MD (Table 5). As an 
experimental point of comparison, the activation energy for vacancy-mediated diffusion has been meas-
ured in doped Li₄GeO₄.82 The experimentally-measured activation energy of 0.5 eV is in excellent agree-
ment with the LOTF-MD prediction of 0.54 eV.  

The activation energy for diffusion via a vacancy-mediated diffusion mechanism with intrinsic vacancies 
is the sum of the migration energy and the formation energy for a vacancy. Thus the difference between 
the experimentally-determined activation energy and the calculated migration energy for vacancy-medi-
ated diffusion provides an estimate of the vacancy formation energy that would be required for vacancy-
mediated diffusion to be the experimentally-observed diffusion mechanism in undoped materials.  This 
difference is provided in the third column of Table 5.  Computationally determining the intrinsic vacancy 
formation energies in each of these materials would require a full evaluation of the different combinations 
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of defects that could co-exist and is not attempted here. However the strong agreement between the ex-
perimentally-observed activation energies and the calculated migration energies for perfect crystals (Table 
1) suggests that under the experimental conditions at which diffusion was measured, the dominant diffu-
sion mechanism was not vacancy mediated. 

 

Table 4. LOTF-MD simulated Li migration energies and room-temperature ionic conductivities 
for candidate coating materials 

MP entry id  Composition LOTF-MD Eₐ ± 
stderr (eV) Experimental Eₐ (eV) σ (300K) (S/cm) 

Experimental  
Li⁺ conductivity 
(S/cm) 

mp-16828 Li₃B₇O₁₂ 0.56 ± 0.05 -- 9.95×10⁻⁸ -- 

mp-6565 Li₃Sc₂(PO₄)₃ 0.62 ± 0.04 0.6878, 0.7683 4.48×10⁻⁶ ∼10−7 (360 K) 

mp-1200209 Li₂B₆O₉F₂ 0.79 ± 0.10 0.9281 1.75×10-10  2.2×10-10 (473 K) 

mp-1185319 LiCl 1.11 ± 0.13 0.8377 4.9×10⁻¹² ∼10−9 (300 K) 

mp- 1196457 Li₂B₃O₄F₃, -- 1.0584 -- 1.6×10-9 (473 K) 

 

We applied LOTF-MD to study the diffusion behavior of 19 protective coating candidates with intrinsic 
vacancies. In the defective structures of LiF, LiMgAlF₆, LiAlSiO₄, LiYbAlF₆, Li₄Be₃P₃ClO₁₂, 
Li₄Be₃P₃BrO₁₂, and Li₂CaHfF₈ no lithium hopping was observed at 700 K for 4 ns. The calculated mi-
gration energies for the other 12 coating candidates are listed in Table 6 along with the simulated Li 
vacancy concentration. These materials may make suitable coating materials if sufficient vacancy con-
centrations can be introduced without sacrificing stability.    

4. CONCLUSION  
Our benchmark results indicate that LOTF-MD offers advantages over high-temperature AIMD in accu-
racy and cost-efficiency when predicting lithium-ion migration energies. The mean absolute error in the 
calculated migration energies compared to experimental activation energies was reduced from 0.32 eV 
using AIMD to 0.13 eV using LOTF-MD, with the LOTF-MD calculations requiring only about one third 
the computational cost of AIMD. The benefit gained in using LOTF-MD is especially significant with 
intermediate-rate ionic conductors, such as those that might be useful as coating materials in solid state 
batteries.  The reduced prediction error can be mainly attributed to the improved statistics by extended 
simulation time and the prevention of high-temperature phase transformations by enabling molecular dy-
namics simulations at moderate temperatures.  

Our screen of possible coating materials based on high lithium content, a high oxidation limit of the elec-
trochemical stability window, low chemical reactivity with sulfide electrolytes and oxide cathodes, and 
low lithium-ion migration energies reveals Li₃Sc₂(PO₄)₃ and Li₃B₇O₁₂ as promising candidates. 
Li₃B₇O₁₂ is predicted to provide excellent interfacial stability and has not to our knowledge been exper-
imentally investigated for lithium-ion conductivity. If high vacancy concentrations can be introduced 
without sacrificing stability, Li₃AlF₆, Li₂B₃O₄F₃, CsLi₂Cl₃, LiCl, Li₂BeF₄, Li₃PO₄, LiYF₄, and 
Li₂B₆O₉F₂,	LiMgPO₄,	LiLuF₄ may also have suitably high stability and lithium-ion conductivity. 
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Table 5. LOTF-MD calculated migration energies in structures containing vacancies compared 
with experimental activation energies for 8 benchmark materials 

MP 
entry id  

Composition 
Em ± stderr  
(eV) 

Experimental 
Eₐ (eV) 

Eₐ - Em 

(eV) 
mp-10499 LiZr₂P₃O₁₂ 0.15 ± 0.02 0.59 0.44 

mp-30249 Li₄GeS₄ 0.32 ± 0.02 0.52 0.20 

mp-4556 Li₂SO₄ 0.41 ± 0.02 1.20 0.79 

mp-4558 Li₄GeO₄ 0.54 ± 0.08 0.82 0.28 

mp-554577 Li₄P₂O₇ 0.46 ± 0.04 0.95 0.49 

mp-641703 Li₇P₃S₁₁ 0.20 ± 0.01 0.18 -0.02 

mp-675083 Li₂MnCl₄ 0.28 ± 0.03 0.63 0.35 

mp-985583 β-Li₃PS₄ 0.19 ± 0.01 0.16 -0.03 

 

Table 6. LOTF-MD simulated Li migration energies and room-temperature ionic conductivities of 
candidate coating materials with introduced vacancies  

MP entry id  Composition Li vacancy concentration LOTF-MD Em (eV) σ (300K) (S/cm) 

mp-1185319 LiCl 6.25%  0.31 ± 0.02   9.53×10⁻⁴  
mp-1190687 CsLi₂Cl₃ 6.25%  0.29 ± 0.14   3.26×10⁻⁶  
mp-1196457 Li₂B₃O₄F₃ 6.25%  0.21 ± 0.03   4.67×10⁻⁴  
mp-1200209 Li₂B₆O₉F₂ 8.33%  0.47 ± 0.05   6.59×10⁻⁶  
mp-13725 Li₃PO₄ 4.17%  0.38 ± 0.06   1.97×10⁻⁵  
mp-15254 Li₃AlF₆ 1.85%  0.24 ± 0.02   9.70×10⁻⁴  
mp-16828 Li₃B₇O₁₂ 8.33%  0.51 ± 0.13   2.38×10⁻⁷  
mp-3700 LiYF₄ 10.00%  0.39 ± 0.21   5.51×10⁻⁷  
mp-4622 Li₂BeF₄ 4.17%  0.37 ± 0.04   5.41×10⁻⁵  
mp-561430 LiLuF₄ 10.00%  0.62 ± 0.13   4.03×10⁻⁸  
mp-6565 Li₃Sc₂(PO₄)₃ 4.17%  0.20 ± 0.02   4.47×10⁻³  
mp-9625 LiMgPO₄ 6.25%  0.60 ± 0.10   4.40×10⁻⁸  
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Table S1: Computational parameters of AIMD simulations  
 

 MP 
entry id Composition 

Number of 
atoms in 
simulated 
supercell 

VASP PAW-PBE potentials 

Experimental 
benchmark 
 
 
 
 
  

mp-10499 LiZr₂(PO₄)₃ 144 Li_sv, Zr_sv, P, O 
mp-30249 Li₄GeS₄ 72 Li_sv, Ge_d, S 
mp-4556 Li₂SO₄ 56 Li_sv, S, O 
mp-4558 Li₄GeO₄ 72 Li_sv, Ge_d, O 
mp-554577 Li₄P₂O₇ 104 Li_sv, P, O 
mp-641703 Li₇P₃S₁₁ 84 Li_sv, P, S 
mp-675083 Li₂MnCl₄ 56 Li_sv, Mn_pv, Cl 
mp-985583 Li₃PS₄ 64 Li_sv, P, S 

Interface 
protective 
coating 
candidates 

mp-10103 LiYbAlF₆ 72 Li_sv, Yb_2, Al, F 
mp-1138 LiF 72 Li_sv, F 
mp-1185319 LiCl 32 Li_sv, Cl 
mp-1190687 CsLi₂Cl₃ 48 Cs_sv_GW, Li_sv, Cl 
mp-1193222 LiMgAlF₆ 81 Li_sv, Mg_pv, Al, F 
mp-1196457 Li₂B₃O₄F₃ 96 Li_sv, B, O, F 
mp-1200209 Li₂B₆O₉F₂ 114 Li_sv, B, O, F 
mp-13725 Li₃PO₄ 64 Li_sv, P, O 
mp-15254 Li₃AlF₆ 180 Li_sv, Al, F 
mp-16577 Li₂CaHfF₈ 60 Li_sv, Ca_sv, Hf_pv, F 
mp-16828 Li₃B₇O₁₂ 88 Li_sv, B, O 
mp-18220 LiAlSiO₄ 84 Li_sv, Al, Si, O 
mp-3700 LiYF₄ 60 Li_sv, Y_sv, F 
mp-4622 Li₂BeF₄ 84 Li_sv, Be_sv, F 
mp-554560 Li₄Be₃P₃BrO₁₂ 92 Li_sv, Be_sv, P, Br, O 



mp-560894 Li₄Be₃P₃ClO₁₂ 92 Li_sv, Be_sv, P, Cl, O 
mp-561430 LiLuF₄ 60 Li_sv, Lu_3, F 
mp-6565 Li₃Sc₂(PO₄)₃ 160 Li_sv, Sc_sv, P, O 
mp-9625 LiMgPO₄ 112 Li_sv, Mg_pv, P, O 

  



Table S2: 19 protective coating material candidates and compatible battery components 
correspondingly 
 
MP entry id Composition Cathode Sulfide - based solid electrolyte 

mp-10103 LiYbAlF₆ 
Li(MnNiCo)₁/₃O₂   
Li₂Mn₃NiO₈ 
LiFePO₄ 

Li₁₀GeP₂S₁₂ 
Li₁₀SiP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₇P₃S₁₁ 

mp-1138 LiF 

Li(MnNiCo)₁/₃O₂   
LiCoO₂ 
LiFePO₄ 
LiMn₂O₄ 

Li₁₀GeP₂S₁₂ 
Li₁₀SiP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₆PS₅Br 
Li₆PS₅Cl 
Li₇P₃S₁₁ 

mp-1185319 LiCl 

Li(MnNiCo)₁/₃O₂   
LiCoO₂ 
LiMn₂O₄ 
LiFePO₄ 

Li₁₀GeP₂S₁₂ 
Li₁₀SiP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₆PS₅Br 
Li₆PS₅Cl 
Li₇P₃S₁₁ 

mp-1190687 CsLi₂Cl₃ Li(MnNiCo)₁/₃O₂  
Li₁₀GeP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₆PS₅Cl 

mp-1193222 LiMgAlF₆ 
Li(MnNiCo)₁/₃O₂   
Li₂Mn₃NiO₈ 
LiFePO₄ 

Li₇P₃S₁₁ 

mp-1196457 Li₂B₃O₄F₃ Li(MnNiCo)₁/₃O₂   
LiFePO₄ Li₇P₃S₁₁ 

mp-1200209 Li₂B₆O₉F₂ 
Li(MnNiCo)₁/₃O₂   
Li₂Mn₃NiO₈ 
LiFePO₄ 

Li₇P₃S₁₁ 

mp-13725 Li₃PO₄ 
Li(MnNiCo)₁/₃O₂   
LiCoO₂ 
LiMn₂O₄ 

Li₁₀GeP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₆PS₅Br 
Li₆PS₅Cl 
Li₇P₃S₁₁ 



mp-15254 Li₃AlF₆ 
Li(MnNiCo)₁/₃O₂   
Li₂Mn₃NiO₈ 
LiFePO₄ 

Li₁₀GeP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₇P₃S₁₁ 

mp-16577 Li₂CaHfF₈ 
Li(MnNiCo)₁/₃O₂   
Li₂Mn₃NiO₈ 
LiFePO₄ 

Li₇P₃S₁₁ 

mp-16828 Li₃B₇O₁₂ 
Li(MnNiCo)₁/₃O₂   
LiCoO₂ 
LiFePO₄ 

Li₁₀GeP₂S₁₂ 
Li₁₀SiP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₆PS₅Br 
Li₆PS₅Cl 
Li₇P₃S₁₁ 

mp-18220 LiAlSiO₄ Li(MnNiCo)₁/₃O₂   
LiCoO₂ 

Li₁₀GeP₂S₁₂ 
Li₁₀SiP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₆PS₅Br 

mp-3700 LiYF₄ 
Li(MnNiCo)₁/₃O₂   
Li₂Mn₃NiO₈ 
LiFePO₄ 

Li₁₀GeP₂S₁₂ 
Li₇P₃S₁₁ 

mp-4622 Li₂BeF₄ 
Li(MnNiCo)₁/₃O₂   
Li₂Mn₃NiO₈ 
LiFePO₄ 

Li₁₀GeP₂S₁₂ 
Li₁₀SiP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₆PS₅Br 
Li₆PS₅Cl 
Li₇P₃S₁₁ 

mp-554560 Li₄Be₃P₃BrO₁₂ Li(MnNiCo)₁/₃O₂   
LiFePO₄ 

Li₁₀GeP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₆PS₅Br 
Li₆PS₅Cl 
Li₇P₃S₁₁ 

mp-560894 Li₄Be₃P₃ClO₁₂ Li(MnNiCo)₁/₃O₂   
LiFePO₄ 

Li₁₀GeP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₆PS₅Cl 
Li₇P₃S₁₁ 



mp-561430 LiLuF₄ 
Li(MnNiCo)₁/₃O₂   
Li₂Mn₃NiO₈ 
LiFePO₄ 

Li₁₀GeP₂S₁₂ 
Li₁₀SiP₂S₁₂ 
Li₁₀SnP₂S₁₂ 
Li₆PS₅Br 
Li₆PS₅Cl 
Li₇P₃S₁₁ 

mp-6565 Li₃Sc₂(PO₄)₃ Li(MnNiCo)₁/₃O₂   
LiFePO₄ Li₇P₃S₁₁ 

mp-9625 LiMgPO₄ Li(MnNiCo)₁/₃O₂   
LiFePO₄ Li₇P₃S₁₁ 

 
  



S3: Lowest diffusivity with a relative standard deviation of at least 0.5 observable in 200 
nanoseconds 

He, X. F., et al. defined the relative standard deviation as the ratio between the standard deviation 
of the diffusivity and the diffusivity itself.1  Through a series of benchmarks they fit the following 
equation for the relative standard deviation (RSD) of lithium-ion diffusivities:  
 

   (1) 

 
where  
 

   (2) 

 
where  is the total mean squared displacement (the sum of the mean squared 
displacements of the lithium atoms) after time  and  is the length of a lithium ion hop.   
 

   (3) 

 
where N is the total number of mobile ions in the simulated supercell. We use 3 Å as the estimate 
for a. Based on the above equations,  must reach at least 500 Å² to achieve . 
The diffusivity is calculated as the slope between MSD among all mobile ions and the time interval 
according to Einstein relation: 
 

   (4) 

 
Following equations (1) and (4) with the assumption of 20 lithium atoms per supercell and the 
longest simulation time of 200 nanoseconds, we estimate 2 × 1012cm5/sec  to be the lowest 
diffusivity we can calculate with the constraint of .   
  

RSD =
σ D

Dtrue
= 3.43

Neff
+ 0.04

Neff =
max

Δt
TMSD Δt( )⎡⎣ ⎤⎦
a2

TMSD Δt( )
Δt a

TMSD Δt( ) = MSD Δt( )
N

( )TMSD tD RSD ≤ 0.5

D = MSD(Δt)
6Δt

RSD ≤ 0.5



S4: Estimation of room temperature diffusivity 

If no diffusive hops have been observed in the first 4 nanoseconds, we estimate the upper limit of 
diffusivity by assuming that each Li⁺ undergoes a site-to-site hopping exactly every 4 nanoseconds. 
The materials in this study have a typical hopping distance between adjacent Li sites of about 3 Å. 
Using equation (4) we estimate the upper limit on Li diffusivity at 700K : = <

=
× (?	Å)B

C	DE
=

3.75 × 101Jcm5/sec. Suppose the material has an intermediate activation barrier of 0.5 eV, we 
extrapolate the diffusivity at 700K down to 300K assuming Arrhenius scaling by a factor of  
K(?LLM)

K(NLLM)
= OP

Q.R
SQQT

OP
Q.R
UQQT

= 1.6 × 101W, which gives room-temperature diffusivity of 6 × 101<?cm5/sec.  

  



S5: Arrhenius fitting and error analysis 

To estimate the uncertainty in the calculated activation energies we start from the Arrhenius 
equation  
 

   (5) 
 
where  is the diffusivity at temperature ,  is the diffusivity in the limit of infinite 

temperature, and  is the activation energy for diffusion. Taking the natural log of both sides 
gives an equation that is linear in : 
 

   (6) 

 
The variance of , , is approximately related to the variance in , , 

through the following equation:2 
 

   (7) 

 
where we estimate  using the equation of He, X. F., et al.1 (Equation(2)).  We estimate  by 

performing a weighted least squares regression3 of  with respect to  , where the 

weight of each sample is the inverse of  for that sample.  is a coefficient of the linear 

estimator, and the variance of is taken as the square of the standard error of the coefficient. The 
weighted least squares regression and standard error of the coefficient were calculated using the 
SciPy package. 4   
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−
Ea
kBT

D T( ) T D0
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