
Insight into the Origin of Chiral-Induced Spin

Selectivity from a Symmetry Analysis of

Electronic Transmission
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Abstract

The chiral-induced spin selectivity (CISS) effect, which describes the spin-filtering

ability of diamagnetic structures like DNA or peptides having chiral symmetry, has

emerged in the past years as the central mechanism behind a number of important

phenomena, like long-range biological electron transfer, enantiospecific electrocatalysis,

and molecular recognition. Also, CISS-induced spin polarization has a considerable

promise for new spintronic devices and the design of quantum materials. The CISS

effect is attributed to spin–orbit coupling, but a sound theoretical understanding of

the surprising magnitude of this effect in molecules without heavy atoms is currently

lacking. We are taking an essential step into this direction by analyzing the importance

of imaginary terms in the Hamiltonian as a necessary condition for non-vanishing spin

polarization in helical structures. Based on first-principles calculations and analytical

considerations, we perform a symmetry analysis of the key quantities determining

transport probabilities of electrons of different spin orientations. These imaginary

terms originate from the spin–orbit coupling, and they preserve the Hermitian nature of
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the Hamiltonian. Hence, they are not related to the breaking of time-reversal symmetry

resulting from the fact that molecules are open systems in a junction. Our symmetry

analysis helps to identify essential constraints in the theoretical description of the CISS

effect. We further draw an analogy with the appearance of imaginary terms in simple

models of barrier scattering, which may help understanding the unusually effective

long-range electron transfer in biological systems.

2



1 Introduction

A substantial body of experimental results and theoretical work has established on firm

ground that electron transport, electron transfer or bond polarization in extended chiral sys-

tems translates into electron spin polarization.1 The phenomenon, know as Chiral-Induced

Spin Selectivity (CISS), is so pervasive that its effects have been established in local probe

measurements, e.g. scanning tunneling and atomic force microscopy (STM and AFM),

in molecular junctions; in electron photoemission through chiral monolayers;2 in electrode

chemical reactions3–6 and in enantio-selective response to magnetic polarization.7 It was ob-

served in DNA,8–10 proteins,11 oligopeptides,12,13 and helicenes.14,15 None of these structures

feature any intrinsic magnetization, so the spin filtering must result from symmetry break-

ing associated with the electronic structure of chiral molecules1 or external probes in the

transport configuration16. The effect is important not only from a fundamental science per-

spective, but also for catalytic processes such as water splitting,3,4,6 enantiomer separation

and spintronic devices.17

Based on a wide range of analytical and tight-binding theoretical analyses,18–26 it is

now broadly accepted that CISS is related to a combination of enhanced spin–orbit coupling

(SOC) connected to breaking of spatial inversion symmetry, similar to that present in Rashba

spin–orbit coupling27 observed, e.g., in metal surfaces28,29 and semiconductor nanosheets.30

Given that it was observed in diamagnetic molecules consisting uniquely of light atoms, e.g.

carbon, hydrogen, oxygen and nitrogen, where spin-orbit coupling is weak, the magnitude

of this CISS effect was (and still is) puzzling. To address this question from an ab initio

perspective, and for establishing structure–property relationships later on, a first-principles

approach is highly needed.

The CISS effect was the focus of several previous theoretical investigations. The first

atomistic approaches to describe CISS theoretically used tight-binding models with ad-hoc

effective parameters defining the Hamiltonian. Regarding the CISS effect, the first estimate

for a tight-binding Hamiltonian and its parameters based on a semi-empirical methodology
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was done by Medina et al.,19,31 showing an enhancement of the spin–orbit coupling for heli-

cal systems in analogy to the increased spin–orbit coupling in carbon nanotubes compared

to graphene. Later, Maslyuk et al. demonstrated that a helical structure leads to an en-

hancement factor in spin polarization of 102− 103 compared to a planar structure,23 using a

first-principles approach for the first time. However, none of the theoretical works published

so far have been able to explain the astonishing magnitude of the CISS effect, but rather

underestimate it by several orders of magnitude. It is therefore crucial to look deeper into

the relation between spin polarization and the underlying electronic structure to identify

what is missing in current theoretical approaches.

To this end, we start by approximating the full Hermitian Hamiltonian matrix as a single-

particle effective matrix built with real orbitals as in conventional density functional theory.

In the absence of spin–orbit interaction, this matrix (the Fock matrix) is real symmetric.

Adding the spin–orbit interactions results in the appearance of an imaginary term, while

preserving the hermiticity of the Fock matrix. We discuss the effect of the spin–orbit term

on the symmetry of the Green’s function matrices, which in turn determines the electron

propagation in the Landauer–Buttiker formulation. In our work, the influence of matrix

symmetries on spin polarization will be shown analytically, and the effect of the molecular

structure of the described system will be studied numerically for (1) a linear and (2) a helical

carbon chain.

We furthermore show an analogy between spin polarization in a Landauer transmission

formalism and in barrier scattering, where spin–orbit coupling strongly modifies the length

dependence of electron transfer. Through this combined approach, we hope to provide a

mechanism for polarization enhancement in electron transport through helical structures,

but also into the remarkable efficiency of electron transport in biological structures over long

distances.
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2 The link between chirality-dependent spin polariza-

tion and the imaginary part of the effective one-

electron Hamiltonian matrix

To investigate the spin polarization of a current within a molecular junction, we take a closer

look at the mathematical formulation of electron transport and the consequences of spin–

orbit coupling on it. A widely used and well-established approach to describe such electron

transport in the coherent tunneling regime is the Landauer–Imry–Büttiker approach. Tun-

neling is the dominant transport mechanism for the short oligopeptides for which CISS has

been studied experimentally,32,33 and for helicene (the description of transport for longer

molecules, e.g segments of DNA,34 requires the inclusion of incoherent transport). This

approach has been combined with theories which describe electronic structures in an effec-

tive single-particle picture, such as Kohn–Sham density functional theory (KS-DFT) and

semi-empirical and tight-binding models. Despite the shortcomings of such single-particle

approaches, they have been very successful in understanding single-molecule conductance.35

Also, DFT was found to quantitatively describe Rashba-type splitting in, e.g., gold surface

states28 (for tight-binding approaches, compare Ref.,36 which suggests DFT to be in principle

able to describe CISS. Combinations of the Landauer approach and effective single-particle

theories have indeed been used to investigate the CISS effect, both within tight-binding

models21,22,24 and within DFT.23 While the effect was reproduced qualitatively, it was un-

derestimated by several orders of magnitude. To understand what is lacking in these state-of-

the-art theoretical approaches, it is essential to understand how spin polarization originates

and, consequently, how it might be enhanced.

In the following, we will show analytically how direction-dependent spin polarization en-

ters the Landauer approach due to imaginary terms induced by spin–orbit coupling. Subse-

quently, an analysis of effective single-particle Hamiltonian matrices calculated with DFT will

confirm the importance of imaginary terms for the description of CISS using first-principles
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methods.

2.1 Electron transport considering spin–orbit coupling

In the Landauer–Imry–Büttiker approach ,37 the current IRL through an electrode–molecule–

electrode junction from right to left is evaluated by integrating over a transmission function1

TRL,

IRL =

∫ E+ eV
2

E− eV
2

TRL(E)dE, (1)

where the transmission function is obtained as

TRL = Tr
[
ΓLGΓRG†

]
. (2)

The central (scattering) region’s Green’s function G at any energy E can be calculated

by partitioning the full effective single-particle Hamiltonian matrix H and the full overlap

matrix S into a central, left- and right-electrode region, as

G =
1

ESC −HC −ΣL −ΣR

, (3)

with HC as the effective single-particle Hamiltonian matrix of the central region, SC as the

overlap matrix of the central region, and ΣL and ΣR as the self-energies of the left and right

electrodes. The central region can comprise the molecule only or an “extended molecule”

which also includes parts of the electrodes. The effective single-particle Hamiltonian (in the

following simply referred to as “Hamiltonian”) can result from electronic structure theories

such as Kohn–Sham density functional theory, Hartree–Fock theory, sempiempirical methods

or Hückel / tight binding models2.

1This equation is strictly valid at a temperature of 0K, but it is also a good approximation at higher
temperatures.

2Kohn–Sham density functional theory is a many-body description where actual electrons are replaced
by fermionic quasi-particles. While this leaves open fundamental questions on the relation between these
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We implemented an approach introduced in, e.g., Refs.38,39 into our program package

Artaios40,41 to investigate the effect of spin–orbit coupling on the transmission function

and to take into account the possibility of spin flips during electron transport. This ansatz is

based on a two-component Kohn–Sham DFT description of the electronic structure, where

all orbitals have a spin-up (α, ↑) and a spin-down (β, ↓) component. Since spin polarization

in the experiment occurs with respect to electron spins in or against transport direction, we

choose the z axis, corresponding to the transport direction, for spin quantization. When

representing effective single-particle operators ô in a set of atom-centered basis functions

{χµ}, all matrices M assume a 2× 2 structure of the type

M =

 M↑↑ M↑↓

M↓↑ M↓↓

 , (4)

where Mσσ′
denotes a block of matrix elements Mσσ′

µν = 〈χσµ|ô|χσν ′〉 with the two basis func-

tions referring to electrons of spin orientation σ and σ′, respectively (σ, σ′ ∈ {↑, ↓}). The

transmission function in this two-component approach is a sum of four different contributions

(two spin-flip and two spin-conserving ones, for details see Section C),

T =T ↑↑RL + T ↓↑RL + T ↑↓RL + T ↓↓RL. (5)

From this, the spin polarization P (i.e., the normalized difference in transmission between

spin-up and spin-down electrons) can be evaluated as

P =
T ↑↑RL + T ↓↑RL − T

↑↓
RL − T

↓↓
RL

T
. (6)

This is an energy-dependent quantity, with the value at the Fermi energy giving an estimate

of measured spin polarization at small bias voltages.

fermions and measurable properties, in practice transport calculations from KS-DFT have proven very
successful for understanding molecular conductance.
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To learn about the origin of the chirality-dependent spin filtering, we take a closer look

at the symmetries of the matrices used to calculate the transmission function. We show

that these symmetries can be broken as spin–orbit coupling leads to imaginary parts in the

Hamiltonian matrix, and evaluate the resulting consequences for spin polarization.

2.2 Symmetry breaking by imaginary terms introduced by spin–

orbit coupling

To analyze under which circumstances the spin polarization of the transmitted electrons can

be different from zero, we focus on the symmetry properties of the Green’s function G and

the resulting symmetries of the transmission function. Time-reversal and spatial-inversion

symmetry translate into the following properties of the transmission function,

T ↑↑RL = T ↑↑LR and T ↑↓RL = T ↓↑LR (spatial-inversion symmetry) (7)

T ↑↑RL = T ↓↓LR and T ↑↓RL = T ↑↓LR (time-reversal symmetry) . (8)

If both apply, we can formulate the relation

T ↑↑RL = T ↓↓RL = T ↓↓LR = T ↑↑LR, (9)

and no spin polarization can occur.

Time-reversal symmetry as defined in Eq. (8) (also compare Ref.36) will hold as long as

there is no external magnetic field (as is the case in all CISS experiments so far)3. In the

Landauer transport formulation, a different type of time-reversal symmetry breaking arises

3It can be shown that when time-reversal symmetry is maintained, Kramer’s degeneracy applies.42

This leads to zero spin polarization in thermodynamic equilibrium.43 When a bias voltage is applied, this
selects one of the Kramers pairs, opening up the possibility of spin polarization. Also note that previous
work showing that spin polarization is not possible when considering leads with one transport mode in two-
terminal setups44 are not directly transferable to our work, since the realistic modeling of molecular junctions
as provided by first-principles descriptions allows for multiple transport channels. Similar conclusions can
result from considering that spin polarization arises from spin accumulation in the electrodes once a transport
direction has been selected by the experimental bias.
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from the fact that the molecule in a molecular junction is an open system connected to

electrodes acting as reservoirs. A formulation using a circuit-model analysis45 has recently

appeared in the literature, where the claim is made that spin polarization cannot be detected

in two-terminal devices. This result is valid only if the self-energy term in the Landauer-

Buttiker formulation is neglected, which is not the case here.

We find the result that time reversal symmetry (in the sense of Eq. (8)) and spatial

inversion symmetry for the transmission functions for a closed-shell system is maintained if

G is either symmetric,

G = GT , (10)

or Hermitian,

G = G† (11)

(for details, see Section D and E in the Appendix). For a DFT calculation without spin–orbit

coupling (and employing real orbitals), both the effective single-particle Hamiltonian matrix

of the scattering region HC and G are symmetric, and thus no spin polarization is possible

(see Section D).

Spin–orbit coupling adds real (spin-flip) and imaginary parts (spin-flip and spin-conserving)

to HC
46,47 (see Section B in the Appendix). The resulting HC remains Hermitian but is not

symmetric anymore. SC remains purely real, and the symmetry properties of the two ma-

trices can be written as

HC =H†C 6= HT
C (12)

SC =S†C = STC . (13)
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In contrast, ΣL and ΣR are not Hermitian48 — in our approach, they are purely imaginary

and symmetric (where we enforce them to have collinear spin structures such that the spin

orientations of incoming and transmitted electrons are well defined, see Section A). Therefore,

we can write

ΣL = iIm(ΣL) = i [Im(ΣL)]T (14)

(and analogously for the right electrode). The presence of imaginary components in HC ,

combined with its Hermicity and with ΣL and ΣR being symmetric, can be identified as

responsible for spin polarization of transmitted electrons in closed-shell systems: If spin–

orbit coupling is considered in the calculation of HC , the resulting G is in general neither

Hermitian,

G =
1

ES−HC − iIm [ΣL]− iIm [ΣR]
6= G† =

1

ES−HC + iIm [ΣL] + iIm [ΣR]
, (15)

nor symmetric,

G =
1

ES−HC − iIm [ΣL]− iIm [ΣR]
6= GT =

1

ES−H∗C − iIm [ΣL]− iIm [ΣR]
, (16)

leading to a loss of the spatial-inversion symmetry in the transmission functions, and to the

relation T ↑↑RL = T ↓↓RL no longer being enforced. This opens the door for spin polarization

(for details, see Section E in the appendix). In other words, by having an imaginary part

in the Hamiltonian matrix, the sign of spin polarization can depend on the direction of the

transport or, equivalently, on the helicity for a given transport direction (since helicity leads

to sign changes of imaginary parts of HC , see Section 3.3.1 below).
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3 Insights from first-principles electron transport for

ideal carbon helices

In the previous section, we have shown the possibility of helicity- or direction-dependent

spin polarization by including spin–orbit coupling in the Landauer formalism. It remains

open how the imaginary parts of the Hamiltonian matrix can help us understand which parts

of the structure are responsible for spin polarization. To gain insight into this question, we

calculated the transmission and the polarization of the transmitted electrons for ideal carbon-

based helical and linear chains using DFT. For the helical structures, we would expect the

polarization to change its sign upon changing the handedness of the helix, while for the

linear chains, there should be no polarization at all. We discuss the resulting polarization in

the light of the imaginary part of the Hamiltonian matrix, since this is the source of nonzero

polarization. For simplicity, we focus on the spin-conserving parts (note that it is also the

spin-conserving transmission that dominates polarization). The transmission functions will

be shown in the Supporting Information for completeness.

3.1 Molecular structures

The helical molecular structures were created by placing 40 carbon atoms, evenly spaced

(1.3 Å), along a perfect helical path with a pitch of 3 Å and a radius of 2 Å (see Fig. 1). The

linear structures were built by placing carbon atoms evenly spaced (1.3 Å) along a perfect

linear path. Two linear molecules were investigated (20 and 40 carbon atoms) to make sure

the calculated polarization increases with length just as in the experiment. Two hydrogen

atoms were added at each of the ends, resulting in an overall cumulene-like structure. The

hydrogen atoms used for the saturation were structurally relaxed, while the helical carbon

backbone was kept fixed. The relaxed structures were placed between two gold clusters of

10 atoms each, mimicking the electrodes, so that the terminal carbon atoms were in fcc

adsorption positions with gold–carbon distances of 2.48 Å. The central (scattering) region
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was defined to be the helical/linear molecule only.

It is clear that with a gold–molecule–gold junction in the absence of external magnetic

fields, one would not detect any spin polarization experimentally. For this, at least one mag-

netic electrode would be required (e.g., a nickel tip in the scanning tunneling microscope,12

for which conductance would be probed with two different orientations of its magnetization,

in transport direction and opposite to transport direction). However, we can mimick the

effect of this magnetic electrode, i.e., letting through preferentially electrons of a given spin

orientation, by considering transmission of spin-up and spin-down electrons separately and

evaluating their (normalized) difference according to Eq. (6). The advantage of this approach

is that we do not introduce spin polarization on the molecule itself, so that all polarization

in the resulting transmission can be attributed uniquely to spin–orbit coupling 4.

Right-handed helix

Linear

Left-handed helix

Right-handed helix

Linear

Left-handed helix

Figure 1: Gold-molecule-gold junctions as used in the DFT calculations consisting of a
molecule placed between two 10-atomic gold clusters. Left-handed helix (lower system),
right-handed helix (upper system), and the 40-atomic chain (middle system) are depicted.

4Similar systems were already investigated by Cuniberti et al.,23 using a different methodology and
without analyzing the origin of the spin polarization within the Hamiltonian. A short discussion concerning
the deviations of our data from these results is given in the Supporting Information.
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3.2 Polarization of transmitted electrons

To discuss the energy-dependent polarization of the transmitted electrons, we will focus on

the most significant extremum of the polarization, Pextr. For the left-handed helix, Pextr has

a positive sign (1.06 %), while for the right-handed helix, the sign is negative (−1.05 %). As

with Pextr, the polarization changes its sign for any energy upon changing the handedness of

the helix (see Figure 2b)). Reducing the length of the helix leads to a decrease of the spin

polarization, as to be expected for the CISS effect (see Supporting Information). For both

linear molecules, the polarization is close to zero for any energy value (see Figure 2a)). This

is consistent with the expectations for the CISS effect.

The underlying transmission functions are shown in the Supporting Information. Im-

portantly, we find both overall transmission and polarization to be dominated by the two

spin-conserving contributions to the transmission, while the spin-flip components play a neg-

ligible role. This is in line with previous theoretical work based on DFT23 and on macroscopic

rate equations.49

Linear Chain
20 Carbon atoms

Linear Chain
40 Carbon atoms

Right-handed
helix

Left-handed
helix

b) c)a)

Imaginary terms set to zero

Right-handed
helix

Left-handed
helix

Figure 2: Calculated polarization of the transmitted electrons in the range of -6.00 eV to
-2.00 eV, using the B3LYP exchange–correlation functional. The linear molecules do not
show significant polarization, while for the helical ones the polarization can reach absolute
values of about 1%. The sign of the polarization changes upon changing the handedness of
the helix. If the calculations are done without the imaginary part of the Hamiltonian matrix,
the polarization becomes nearly zero for the whole calculated energy range.

Since we suggested that polarization originates from the imaginary parts of the Hamilto-

nian matrix Im(HC), we additionally recalculated the polarization for the helical molecules

13



setting Im(HC) to zero. The results confirm the importance of Im(HC), since the polar-

ization completely vanishes (see Figure 2c). Nevertheless, the amount of spin polarization

is much smaller compared to the experiments, suggesting that some contributions to CISS

for helical structures are missing in the used approach. We therefore focus on understand-

ing the mechanism leading to the absence of spin polarization for the linear molecules (the

linear molecules also have a non-zero Im(HC)) and the changing sign of spin polarization

comparing the left- and right-handed helices. Both will be investigated next.

3.3 Origin of polarization

The presence of CISS for cumulene-like structures within DFT in combination with the

Landauer approach was shown by Cuniberti et al.23 Here, we provide a detailed analysis of

the matrix elements of the helical and linear cumulenes’ Hamiltonian matrix HC , which may

offer additional insights into the structural origin of the polarization. We will investigate

why no polarization is observed for the linear molecule, and why the polarization for different

helices changes. In addition to the structural origin of the polarization, we will investigate

the relation between the imaginary part of the matrix elements of HC in the scattering region

and the spin–orbit coupling of the electrodes, comparing HC within a gold–molecule–gold

junction with H of the isolated molecule.

3.3.1 Helicity dependence of imaginary Hamiltonian elements

To investigate the importance of the helical structure for the polarization of the transmitted

electrons, we take a closer look at the matrix elements of the isolated linear and helical

molecules. We are focusing on a single nearest-neighbor p-p block of the H↑↑C block (V↑↑i,(i+1);

i denotes an arbitrary atom in the molecule and i + 1 the atom closest to atom i along

transport direction.)5. For simplicity, we are using a modified basis set without polarization

functions (i.e., no p-orbitals for hydrogen and no d-orbitals for carbon atoms; for details see

5 Since the s-orbitals’ contribution to the spin–orbit coupling is small, we will not discuss them in detail.
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Section A).
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Figure 3: Orientation of the p orbitals after having transformed the Cartesian basis into a
helical basis. The px orbitals are tangent to the helix and the positive lobe (blue) is pointing
into ascending direction of the helix (indicated by the arrowhead). The pz orbitals remain
oriented along the helix axis. The positive lobe of the py orbitals is pointing into the center
of the helix.

A problem in comparing the matrix elements of the left- and right-handed helical struc-

ture is the usage of a standard atom-centered basis set as provided by electronic structure

codes, where the basis functions will be oriented along the Cartesian coordinate axes in a

somewhat arbitrary fashion, even when aligning the molecules along a selected axis. In such

a basis, the detailed values and signs of S and HC comparing helices of different handedness

will depend on the orientation of the molecule. To circumvent this problem, the basis is

transformed into a helical basis, where the px is tangent to the helix, and the positive lobe
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of the py orbital points into the center of the helix. The positive lobe of the pz orbitals is

oriented along the helix axis (see Figure 3; a similar scheme was used by Medina et al.19).

First, we look at V↑↑i,(i+1) for the left- and right-handed helix. Upon changing the handed-

ness of the helix, Re(V↑↑i,(i+1)) does not change its sign, while Im(V↑↑i,(i+1)) does (see Figure 4).

This reinforces the importance of Im(HC) as the origin of the change in the polarization’s

sign upon changing the handedness of the helix.

3.3.2 “Direction-dependence” of imaginary Hamiltonian elements

While this may explain the different signs of the polarization for helices with different hand-

edness, it does not give a simple picture of why the linear one does not show any polarization,

since Im(HC) is also non-zero for the linear molecule. However, comparing Im(V↑↑(i,i+1)) and

Im(V↑↑(i+1,i))
6 of the linear and helical molecule, a significant difference can be identified;

For the helical molecule, Im(V↑↑i,(i+1)) of the p-orbitals is different from Im(V↑↑(i+1),i) of the

p-orbitals, while for the linear molecule both are the same (see Figure 5). This indicates

that the spin–orbit coupling induced p− p-nearest-neighbor coupling between the atoms in

the perfect linear molecule is direction-independent, while for the perfect helical molecules,

it is direction-dependent. An illustration of the origin of this difference is given in Figure 6.

6 This is based on interpreting the block Vi,(i+1) as transition amplitudes against transport direction
and the block V(i+1), i as transition amplitudes in transport direction, in line with considering such elements
as nearest-neighbor hopping elements in tight-binding approaches.
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Figure 4: Exemplary block of p − p orbital nearest-neighbor coupling in H↑↑C (V↑↑i,(i+1)) in
transport direction for the isolated molecules. Comparing the left- and right-handed helix
in a helical basis, the elements of S↑↑i,(i+1) and Re(V↑↑i,(i+1)) do not change their sign upon

changing the handedness, all elements of Im(V↑↑i,(i+1)) do so. This may be the origin of
the change-of-sign in the polarization upon changing the handedness of the helix. For the
linear molecule, much more elements are zero compared to the helical molecules. The plot
was made for Im(H↑↑) for the isolated carbon helix, where non-zero matrix elements were
defined to be larger than 10−8 a.u. (positive) and smaller than −10−8 a.u. (negative). It has
the same qualitative structure as Im(H↑↑C ) for the helix in the presence of gold electrodes (see
Figure 7 for a comparison), but was chosen for its more regular structure. For simplicity,
only one block of the p− p coupling is shown (owing to the double-zeta basis, there are two
such blocks, see Section A for details on the construction of the basis).
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Figure 5: Exemplary block of p−p orbital nearest-neighbor coupling in Im(H↑↑C ) (Im(V↑↑i,(i+1)))
along and against the transport direction, illustrating the Hermitian symmetry of the matrix.
For the linear molecule, the sign of all elements in transport direction is the same as against
transport direction, while for the right-handed helix, the sign of some elements in Im(V↑↑i,(i+1))

changes comparing along and against transport direction. The same holds for the Re(V↑↑i,(i+1))

of the p-orbitals. This implies that T ↑↑LR = T ↑↑RL may be valid for the linear molecule, which
would prevent any polarization of the transmitted electrons. The plot was made for Im(H↑↑)
for the isolated carbon helix, where non-zero matrix elements were defined to be larger than
10−8 a.u. (positive) and smaller than −10−8 a.u. (negative). It has the same qualitative
structure as Im(H↑↑C ) for the helix in the presence of gold electrodes (see Figure 7 for a
comparison), but was chosen for its more regular structure. For simplicity only one block of
the p − p coupling is shown (owing to the double-zeta basis, there are two such blocks, see
Section A for details on the construction of the basis).
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Figure 6: Direction dependence of nearest-neighbor spin–orbit matrix elements between p
atomic orbitals on atom I and atom J , in and against transport direction (z axis). The size
of such elements can be estimated by the overlap of a rotated p-orbital with an unrotated
p-orbital (see Appendix B). For a perfect linear molecule, the p–p overlap does not depend
on which atom the orbitals were rotated on, while for the helical molecule in a helical basis,
it does. The imaginary part of the p–p coupling of atom I to atom J (Im(VIJ)) is different
from the coupling of atom J to atom I (Im(VJI)), indicating a possible difference of the
transport in and against transport direction.

This may be the reason for the absence of polarization in the linear molecule, since the

direction-independent imaginary p− p coupling may indicate that T ↑↑RL = T ↑↑LR. In combina-

tion with our derived relation T ↑↑RL = T ↓↓LR, we retain the relation T ↑↑RL = T ↓↓LR = T ↑↑RL = T ↓↓LR

from the SOC-free case, which prohibits any polarization. The causality of the relation
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between direction-independent coupling and absence of spin polarization (and its general-

ity) have to be verified in future work. It is important to note that direction-independent

coupling is also present for the p–p and s–s blocks of Re(V↑↑i,(i+1))/Re(V↑↑(i+1),i), and the

s–p blocks of Im(V↑↑i,(i+1))/Im(V↑↑(i+1),i). However, it is not the case for the s–p block of

Re(V↑↑i,(i+1))/Re(V↑↑(i+1),i) (owing to the ”direction-dependence” of overlap between s and

p orbitals, see Supporting Information for the whole matrices). Nevertheless, we assume

Im(H↑↑C ) to be most important for the CISS effect, because this part originates from the

spin–orbit coupling and is a prerequisite for non-zero polarization.

3.3.3 A proximity effect of gold?

To investigate the influence of the gold electrodes on the effective spin–orbit coupling of

the molecules, we look at HC of the gold–molecule–gold junction and compare it with the

Hamiltonian matrix H of the isolated helical molecule (see Figure 7). The proximity of the

electrodes induces a massive increase of Im(HC) as well as of Re(H↑↓C )/Re(H↓↑C ) and leads to

less block-diagonal shape of the matrix. This implies spin–orbit coupling becoming less local

due to the vicinity of the electrodes. The spin–orbit coupling in our calculations, therefore, is

partially inherited from the gold electrodes in our model systems, similar to known proximity

effects in graphene on gold50,51 (also compare Ref.52).
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Figure 7: a): Re(H(C)) (upper part) and Im(H(C)) (lower part) for the carbon atoms of
the right-handed helical cumulene only. On the left–hand side the matrices are depicted
for the isolated molecule, on the right-hand side they are depicted for the gold-molecule-
gold junction. The gold electrodes induces a massive increase of Im(HC), Re(H↑↓C ) and
Re(H↓↑C )within the helix. b): Schematic overview of the structure of the Hamiltonian matrix.
While the main diagonal (marked in blue) arises from the interaction of the closest carbon
atoms within a convolution, the off-diagonals arise from the interaction of carbon atoms of
different convolutions.

The apparent proximity effect in our calculations contrasts with experimental results on

photoemission of chiral molecules on aluminium and copper surfaces,11,14 which demonstrate

that substrate SOC is not required for CISS in that type of experiment. Therefore, further

work will be necessary to decide whether our computationally observed proximity effect is

a general feature of realistic molecules in metal junctions, or whether it is particular to the

simplified carbon structure and the way it is studied here, both from the theoretical and
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the experimental side. In particular, it might be instructive to replace gold electrodes (as

employed in Ref.12) by copper ones in single-molecule transport experiments: It cannot be

excluded that the proven independence of CISS on substrate SOC in photoemission is not

directly transferable to electron transport, since in the former case unbound and in the latter

(quasi-)bound single-particle states are involved.

4 Lessons from a barrier model

A related insight connecting spin–orbit coupling and imaginary quantities has also recently

been gained in the context of barrier scattering. A barrier model neglects all aspects of

electron correlation. Despite this drastic simplification, substantial physical insight can be

obtained from this simple system: In a recent publication Varela et al. have carried out a

detailed study of a tunneling process including spin–orbit coupling.53 The remarkable fact,

which had been completely ignored in the literature, is that the inclusion of SOC translates

into an imaginary component of the k-vector in the barrier region, thereby strongly modifying

the length dependence of tunneling-mediated electron transfer. A highly consistent scenario

arises where two concomitant mechanisms for spin selection arise through spin precession and

differential spin amplitude decay. High spin filtering can take place at the cost of reduced

amplitude transmission, while angular momentum conservation is preserved.53 This finding

is important because it immediately relates to our own results that it is the imaginary part

of the effective single-particle Hamiltonian matrix, in turn determined by SOC, that allows

non-vanishing spin polarization.
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5 Connection between spin polarization in barrier scat-

tering and transmission

The description of the CISS effect within a barrier model can be recast in a way that the

connection with transmission is made apparent. We discuss this connection for the coherent

case where thermal and inelastic scattering are not explicitly included. The starting point

is the connection between the density matrix of a system ρ and the spin polarization,18

Pµ =
Tr [σµρ]

Tr[ρ]
. (17)

µ denotes a single spacial component of the polarization (x, y and z) and σµ denotes the

corresponding Pauli spin matrix. We are interested in the polarization of the outcoming

electrons (electrons which were scattered through the barrier). The density matrix of the

outcoming electrons ρout is connected to the density matrix of the incoming electrons ρout

as54

ρout = f †ρinf (18)

where f is the scattering matrix. Using Equation (17) the polarization of the outcoming

electrons can be written as

P out
µ =

Tr
(
σµf

†ρinf
)

Tr (f †ρinf)
. (19)

In connection to the calculations done in this work, we are interested in Pz (which we have

simply referred to as P above) for unpolarized incoming electrons with a density matrix

ρin =
1

2

1 0

0 1

 . (20)
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Inserting Equation (20) and the definition of σz

σz =

1 0

0 −1

 (21)

into Equation (19), we obtain

P out
z =

Tr

σzf †
1 0

0 1

 f


Tr

f †

1 0

0 1

 f


=

Tr
(
σzf

†t
)

Tr (t†t)
(22)

for the polarization in z-direction. For simplicity, we now define an auxiliary matrix

Φ = f †f =

Φ↑↑ Φ↑↓

Φ↓↑ Φ↓↓

 (23)

where we only define the diagonal blocks, because later only the trace of this matrix is

needed, as18

Φ↑↑ = (
m

2πh̄2
)2
(
|t↑↑|2 + |t↓↑|2

)
(24)

Φ↓↓ = (
m

2πh̄2
)2
(
|t↓↓|2 + |t↑↓|2

)
. (25)

These diagonal elements are spin-depended blocks of the t-matrix and correspond physically

to the total transmission associated with each spin channel for spin-1/2 particles. If we insert
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Equation (24) into Equation (19) we get

P out
z =

Tr(σzΦ)

Tr(Φ)
=

Tr

 Φ↑↑ Φ↑↓

−Φ↓↑ −Φ↓↓


Tr

 Φ↑↑ Φ↑↓

Φ↓↑ Φ↓↓


=

(Φ↑↑ − Φ↓↓)

(Φ↑↑ + Φ↓↓)
(26)

which we can also write as

P out
z =

(
|t↑↑|2 + |t↓↑|2 − |t↓↓|2 − |t↑↓|2

)(
|t↑↑|2 + |t↓↑|2 + |t↓↓|2 + |t↑↓|2

) (27)

which is proportional to the polarization defined above in a transmission language. This

suggests that the findings on spin–orbit coupling leading to imaginary k vectors and reduced

decay under the barrier described in Section 4 and on spin–orbit coupling leading to imag-

inary parts in the Hamiltonian matrix studied in the first parts of this manuscript may be

related.

6 Conclusion and Outlook

Chiral-induced spin selectivity is an intriguing phenomenon, observed in a variety of helical

light-atom molecules. So far, it has been well established that spin–orbit coupling is essential

for CISS, but the observed magnitudes of the effect remain puzzling. To provide insight into

what is missing in present-day theoretical descriptions, we analyze analytically how the

imaginary parts of the effective single-particle Hamiltonian matrix HC induced by spin–

orbit coupling, combined with the symmetric imaginary self-energies, lead to nonsymmetric

Green’s functions and how this can result in spin polarization.

Based on first-principles Kohn–Sham DFT calculations, we show how these imaginary

parts change sign upon changing the helix sense, thus providing a direct link with the helicity-

25



dependent spin polarization of transmitted electrons in helical structures. Importantly, the

presence of imaginary parts in HC alone does not automatically lead to polarization, as

exemplified by the fact that also the linear carbon chain has imaginary elements in HC .

However, when comparing the “hopping-type” elements in and against transport direction

for the helix of a given helix sense, we find that the imaginary elements which change sign in

the helix are the ones which are zero in the linear chain. Conversely, when all imaginary terms

are deleted in the Hamiltonian of a helical structure, zero polarization results, reinforcing

the importance of these terms for CISS.

We show that the imaginary part of HC (and thus polarization) is strongly increased by

the presence of gold atoms to which the carbon helix couples, similar to the known proximity

effect in graphene. This could indicate that in contrast to photoemission experiments, where

CISS has been observed on substrates with weak spin–orbit coupling, in electron transport

measurements the substrate spin–orbit coupling does play an important role. This would be

an interesting direction for experiment, e.g. by repeating the single-molecule break junction

experiments discussed in Ref.12 with copper rather than gold electrodes. On the other hand,

our calculations point out the need for further studies on such proximity effects and their

actual relevance for a first-principles description of CISS. Such work is currently under way

in our laboratories. More generally, the consequences of chirality for the molecule–metal

interface may have to be taken into account more explicitly in first-principles simulations,

as suggested by recent theoretical26 and experimental work1,55.

The importance of the imaginary part of the Hamiltonian matrix for spin polarization

has an important consequence for modeling CISS with present-day Kohn–Sham DFT: Since

the imaginary part can not only originate from spin–orbit coupling, but also from exact-

exchange admixture in the exchange–correlation functional,47 the choice of this functional

could have an important effect on spin polarization. This will be the subject of follow-up

work.

Dephasing has been discussed as essential for CISS in the context of reduced tight-binding
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models,24,25 and having spin polarization only when adding local leakages is a feature of many

simplified models.56 Our results demonstrate that a first-principles approach allows for spin

polarisation in the absence of such local leakages and dephasing terms. Yet, the relevance

of imaginary terms demonstrated here could reinforce the lesson learned from these simpler

approaches, that dephasing (resulting, e.g., from interactions with vibrational modes or with

the molecule’s environment) or leakage to the environment could enhance spin polarization

and could therefore be important missing building blocks for our first-principles theories

of CISS: When modeling such processes in terms of Büttiker probes,57–62 imaginary terms

arise. In the Landauer approach employed here, these terms are not considered (except for

leakage into the two-terminal electrodes). Including such terms explicitly might lead towards

a first-principles theory able to account for the surprisingly large CISS in helical molecules.

Finally, we draw an analogy between polarization in electron transmission and in barrier

scattering, where it has recently been shown that spin–orbit coupling leads to imaginary k

vectors, reducing the decay of the wave function under the barrier. This could imply that

analyzing the imaginary components involved in helical structures in the presence of spin–

orbit coupling could help understand the effective electron transfer in biological systems over

long distances.
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A Computational methods

The (Constrained) structure optimizations of the hydrogen atoms in our ideal helical and

linear molecules were carried out using Turbomole 7.1.63–66 The exchange–correlation func-

tional introduced by Perdew, Burke and Ernzerhof (PBE)67,68 and the def2-TZVP69,70 basis

set were employed. Grimme’s dispersion correction DFT-D371 including Becke–Johnson

damping72 was used. To speed up the structure optimizations, the resolution-of-the-identity

method73,74 with the corresponding auxiliary basis set75 was applied. The hydrogen atoms

were allowed to relax until the change of energy was below 10−6 a.u. and the gradient was

below 10−4 a.u.. The energy convergence threshold within the self-consistent field algorithm

was set to 10−7 a.u..

The optimized structures were used to build the electrode–molecule–electrode struc-

tures by simply placing the optimized isolated structure between two 10-atomic gold clus-

ters. Based on these electrode–molecule–electrode structures one-component and a two-

component KS-DFT single-point calculations46,76 were carried out using Turbomole 7.1.

If not mentioned otherwise the B3LYP77–79 hybrid functional was used. Scalar-relativistic

effects and spin–orbit coupling were considered within the exact two-component (X2C)

method80,81 using the corresponding x2c-SVPall-2c82 basis set for all atoms. If mentioned, a

modified version of this basis set, removing the polarization functions for the hydrogen and

carbon atoms was used.

Every junction was, at first, calculated using a one-component KS-DFT calculation con-

sidering scalar-relativistic effects only. The converged molecular orbitals were then used as

an initial guess for the subsequent two-component KS-DFT calculation, including spin–orbit

coupling. The Hamiltonian matrix of the scalar-relativistic calculation was then used to

build the electrodes’ self-energies, while the Hamiltonian matrix of the spin–orbit coupling

DFT calculation was used to build the Hamiltonian matrix of the central region.
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To build the helical basis for the detailed matrix analysis (see Figure 3) we removed the

p-orbitals for the hydrogen (remaining basis functions: two s-orbitals) and the d-orbitals for

the carbon atoms (remaining basis functions: three s-orbitals and two p-orbitals). Having

done the DFT calculation we then did a unitary transformation of the Fock- and overlap

matrix corresponding to a transformation of any atom’s local-axis system.83 The local x-axes

were rotated onto the connection line between the two nearest-neighbor atoms (Around the

z-axis). The local y-axis of the resulting local axis system, if necessary, was then transformed

with a mirror operation at the xz-plane, so that the y-axis points into the center of the helix.

The resulting px- and py-orbitals (named in the local axis system) remain in the global xy-

plane while the local z-axes remain oriented along the helix axis.

B Spin–orbit coupling operator and matrix elements

Spin–orbit coupling as an origin of imaginary parts in the Hamiltonian matrix can be shown

by formulating the p–p matrix elements of a single electron spin–orbit coupling operator as84

〈pi|ĤSOC|pj〉 = ξk 〈pi |̂l · ŝ|pj〉 , (28)

where ξk is a single electron spin–orbit coupling constant. The angular-momentum operator

l̂ is a vector

(
l̂x, l̂y, l̂z

)
as well as the spin-momentum operator ŝ

(
ŝx, ŝy, ŝz

)
. Taking a

closer look at l̂, its y and x components are typically written using the shift operators l̂+

and l̂−
84

l̂y =
−i

2

(
l̂+ − l̂−

)
(29)

l̂x =
1

2

(
l̂+ + l̂−

)
(30)

These operators act on orbitals/wave functions defined by the quantum number l (angular

momentum) and mj (angular-momentum projected along the z axis). These orbitals/wave
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function are then often written as |l,ml〉. The action of the operators on those functions are

defined as84

l̂z |l,ml〉 = ml |l,ml〉 (31)

l̂+ |l,ml〉 =
√

(l +ml + 1)(l −ml) |l,ml + 1〉 (32)

l̂− |l,ml〉 =
√

(l −ml + 1)(l +ml) |l,ml − 1〉 . (33)

The typically used p orbitals (px, py, pz) are superpositions of such functions85 and can be

defined as

|pz〉 = |p0〉 (34)

|py〉 =
i√
2

(|p−1〉+ |p+1〉) (35)

|px〉 =
1√
2

(|p−1〉 − |p+1〉) , (36)

where |p0〉 is the p orbital with ml = 0, |p+1〉 the p orbital with ml = 1, and |p−1〉 the p

orbital with ml = −1. The effect of the L̂ operator on the pz orbital therefore is

l̂z |pz〉 = 0 (37)

l̂y |pz〉 =
−i
√

2

2
(|p+1〉 − |p−1〉) = i |px〉 (38)

l̂x |pz〉 =

√
2

2
(|p+1〉+ |p−1〉) = −i |py〉 , (39)
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thus rotating the pz orbital onto the py/px orbital, depending on which part of the vector is

considered. The effect on the py orbital

l̂z |py〉 =
i√
2

(|p+1〉 − |p−1〉) = −i |px〉 (40)

l̂y |py〉 = 0 (41)

l̂x |py〉 =
−i
2

(|p0〉+ |p0〉) = i |pz〉 (42)

and the px orbital

l̂z |px〉 =
1√
2

(− |p−1〉 − |p+1〉) = i |py〉 (43)

l̂y |px〉 =
i

2
(|p0〉+ |p0〉) = −i |pz〉 (44)

l̂x |px〉 = 0 (45)

give a similar relation, by rotating the p orbitals along a specific axis onto another p orbital.

In addition to the L̂ operator the ŝ has to be considered, looking at SOC. Again the y and

x components are typically written using the shift operators ŝ+ and ŝ−
84

ŝy =
−i

2
(ŝ+ − ŝ−) (46)

ŝx =
1

2
(ŝ+ + ŝ−) . (47)

The orbitals/wave function on which these operator act on are typically defined by the

quantum number S (total spin) and MS (projection of the spin onto the z axis) and are

written as |s,ms〉. The components of the ŝ operator are acting on the orbital/wave function
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as84

ŝz |s,ms〉 = ms |s,ms〉 (48)

ŝ+ |s,ms〉 =
√

(s+ms + 1)(s−ms) |s,ms + 1〉 (49)

ŝ− |s,ms〉 =
√

(s−ms + 1)(s+ms) |s,ms − 1〉 . (50)

If we now again look at the p orbitals (pz as an example) with a spin quantum number

(S = 1
2
, ms = 1

2
(↑) and ms = −1

2
(↓)) the effect on the |p↑z〉 is

ŝz |p↑z〉 =
1

2
|p↑z〉 (51)

ŝy |p↑z〉 =
i

2
|p↓z〉 (52)

ŝx |p↑z〉 =
1

2
|p↓z〉 (53)

and on the |p↓z〉

ŝz |p↓z〉 = −1

2
|p↓z〉 (54)

ŝy |p↓z〉 = − i
2
|p↑z〉 (55)

ŝx |p↓z〉 =
1

2
|p↑z〉 (56)

leading to a spin-conserving effect of the ŝz operator and spin-flip effect of the ŝy and ŝx

operators. If both the l̂ and ŝ operator are combined

λ
(̂
l · ŝ
)

= λ
(
l̂xŝx + l̂yŝy + l̂z ŝz

)
(57)
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the non-zero spin–orbit coupling elements between the p orbitals are

〈p↑y|l̂xŝx|p↓z〉 = 〈p↓y|l̂xŝx|p↑z〉 = −〈p↓z|l̂xŝx|p↑z〉 = −〈p↑z|l̂xŝx|p↓y〉 =
−i
2

(58)

〈p↑x|l̂yŝy|p↓z〉 = −〈p↓x|l̂yŝy|p↑z〉 = 〈p↓z|l̂yŝy|p↑x〉 = −〈p↑z|l̂yŝy|p↓z〉 =
1

2
(59)

〈p↑x|l̂z ŝz|p↑y〉 = −〈p↓x|l̂z ŝz|p↓y〉 = 〈p↓y|l̂z ŝz|p↓x〉 = −〈p↑y|l̂z ŝz|p↑x〉 =
−i
2

(60)

since 〈pσi |pσ
′
j 〉 is zero if i 6= j and σ 6= σ′ when both orbitals are located on the same atom.

C Details on the calculation of the transmission func-

tion

We calculate the spin-dependent transmission functions as38

T ↑↑RL =Tr
[
Γ↑↑L G↑↑Γ↑↑R (G↑↑)†

]
(61)

T ↓↑RL =Tr
[
Γ↑↑L G↓↑Γ↓↓R (G↓↑)†

]
(62)

T ↑↓RL =Tr
[
Γ↓↓L G↑↓Γ↑↑R (G↑↓)†

]
(63)

T ↓↓RL =Tr
[
Γ↓↓L G↓↓Γ↓↓R (G↓↓)†

]
. (64)

All quantities needed for the transmission function are calculated as in Artaios.41 The

Green’s function G is calculated as

G =
1

(ES−HC −ΣL −ΣR)
(65)

and the coupling matrices ΓX as

ΓX = −2Im(ΣX). (66)
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The self energies ΣX can be calculated using the overlap and Hamiltonian matrix elements

between the central region and the electrode X as

ΣX = (ESXC −HXC)† gX (ESXC −HXC) (67)

where gX is the Green’s function of the electrode X. The Green’s function is approximated

within the wide-band limit, assuming a constant local density of states LDOSconst

(gX)ij = −iπLDOSconstδij. (68)

The value for the constant LDOS was set to 0.036 eV−1 as calculated by DFT for the 6s

band of gold.86 This leads to purely imaginary self-energies. Nevertheless, our results are

transferable to general self-energies, since if necessary their real part could be incorporated

in the central-region Hamiltonian as a shift of effective single-particle energies caused by the

interactions with the electrodes.

The matrices SXC and HXC originate from a scalar-relativistic calculation without spin–

orbit coupling which enforces a collinear spin orientation on the electrodes to achieve a clear

definition of spin polarization in the transmission (see above). Therefore, while HC has the

form

HC =

H↑↑C H↑↓C

H↓↑C H↓↓C

 . (69)

due to the spin–orbit coupling the ”spin-flip” blocks of the self-energies (X=L,R) are zero,

ΣX =

Σ↑↑X 0

0 Σ↓↓X .

 (70)
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The used matrices therefore are extracted from the results of different DFT calculations:

HC from a calculation including spin–orbit coupling, SXC and HXC from a scalar-relativistic

calculation.

D Derivation of the absence of polarization for closed-

shell molecules in the Landauer approach without

considering spin–orbit coupling

Without spin–orbit coupling, HC for a closed-shell system is symmetric,87 the spin-up and

spin-down blocks are the same, and the off-diagonal blocks are zero,

HC =HT
C (71)

H↑↑C =H↓↓C (72)

H↑↓C =H↓↑C = 0 (73)

Since the overlap matrix87 and self-energies are also symmetric, the Green’s function must

be symmetric as well,

G = (ES−HC −ΣL −ΣR)−1 =
(
EST −HT

C −ΣL
T −ΣR

T
)−1

= GT . (74)

By using the symmetry of the Green’s function and the fact that for a closed-shell systems

Γ↑↑ = Γ↓↓ and G↑↑ = G↓↓, it can be shown that

T ↑↑RL = T ↑↑LR = T ↓↓LR = T ↓↓RL. (75)

Therefore, no spin-dependent transmission and thus no spin polarization can occur without

spin–orbit coupling in our approach. This relations can be proven by reformulating the
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transmission function as the transpose of the matrix which is traced to calculate the spin-

dependent transmission functions. The trace of a matrix and the trace of its transpose are

the same, therefore we can write

T ↑↑RL =Tr

[(
Γ↑↑L G↑↑Γ↑↑R (G↑↑)†

)T]
(76)

T ↓↓RL =Tr

[(
Γ↓↓L G↓↓Γ↓↓R (G↓↓)†

)T]
. (77)

This can be rewritten as

T ↑↑RL =Tr
[
((Γ↑↑L )T ((G↑↑)†)T (Γ↑↑R )T (G↑↑)T

]
(78)

T ↓↓RL =Tr
[
(Γ↓↓L )T ((G↓↓)†)T (Γ↓↓R )T (G↓↓)T

]
(79)

(where it has been exploited that (AB)T = BTAT and that the order of matrices can be

exchanged cyclically within a trace). We can now use the relation G = GT as well as the

fact that ΓX is symmetric to get

T ↑↑RL =Tr
[
Γ↑↑L (G↑↑)†Γ↑↑R G↑↑

]
= T ↑↑LR (80)

T ↓↓RL =Tr
[
Γ↓↓L (G↓↓)†Γ↓↓R G↓↓

]
= T ↓↓LR. (81)

Since we are interested in closed-shell systems we can also assume that G↑↑ = G↓↓ and

Γ↑↑X = Γ↓↓X we arrive at Equation (75).
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E Derivation of the possibility of polarization for closed-

shell molecules in the Landauer approach by consid-

ering spin–orbit coupling

To derive spin–orbit coupling as responsible for polarization within the Landauer approach

for closed-shell molecules, we follow the same procedure as in the previous section. This

derivation shows how spin polarization is induced by spin–orbit coupling, but does not

discuss the magnitude of the effect.

Due to time-reversal symmetry, the blocks of HC are related as76

HC =H†C (82)

H↑↑C =
(
HC

↓↓)∗ (83)

H↑↓C =−
(
H↓↑C

)∗
. (84)

Using Equation (82), Equations (83) and (84) can be reformulated as

H↑↑C =
(
H↓↓C

)∗
=
([

H↓↓C

]∗)†
=
(
H↓↓C

)T
(85)

H↑↓C =−
(
H↓↑C

)∗
= −

([
H↑↓C

]∗)†
= −

(
H↑↓C

)T
. (86)

Upon combining HC with ΣL and ΣR the relation H↑↑C =
(
H↓↓C

)T
remains,

H↑↑C −Σ↑↑ = Re(H↑↑C ) + Im(H↑↑C )− Im(Σ↑↑)

= Re(H↓↓C )T + Im(H↓↓C )T − Im(Σ↓↓)T = (H↓↓C −Σ↓↓)T ,

(87)
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while the relation H↑↑C =
(
H↓↓C

)∗
does not,

H↑↑C −Σ↑↑ = Re(H↑↑C ) + Im(H↑↑C )− Im(Σ↑↑) (88)

6= Re(H↓↓C )− Im(H↓↓C ) + Im(Σ↓↓) = (H↓↓C −Σ↓↓)∗. (89)

Therefore, the blocks of G are only related as

G↑↑ =
(
G↓↓

)T
, (90)

G↑↓ = −
(
G↑↓

)T
. (91)

We follow the same procedure as for the transmission function without spin–orbit cou-

pling, reformulating the transmission function as

T ↑↑RL =Tr
[
(Γ↑↑L )T ((G↑↑)†)T (Γ↑↑R )T (G↑↑)T

]
(92)

T ↓↑RL =Tr
[
(Γ↑↑L )T ((G↓↑)†)T (Γ↓↓R )T (G↓↑)T

]
(93)

T ↑↓RL =Tr
[
(Γ↓↓L )T ((G↑↓)†)T (Γ↑↑R )T (G↑↓)T

]
(94)

T ↓↓RL =Tr
[
(Γ↓↓L )T ((G↓↓)†)T (Γ↓↓R )T (G↓↓)T

]
. (95)

Making use of the symmetries in Equation (93) and (95) as well as of the relation Γ↑↑X = Γ↓↓X ,

we get

T ↑↑RL =Tr
[
Γ↓↓L (G↓↓)†Γ↓↓R G↓↓

]
= T ↓↓LR (96)

T ↓↑RL =Tr
[
Γ↓↓L (G↓↑)†Γ↑↑R G↓↑

]
= T ↓↑LR (97)

T ↑↓RL =Tr
[
Γ↑↑L (G↑↓)†Γ↓↓R G↑↓

]
= T ↑↓LR (98)

T ↓↓RL =Tr
[
Γ↑↑L (G↑↑)†Γ↑↑R G↑↑

]
= T ↑↑LR. (99)

Since as shown in Equation (16), the symmetry of G is broken due to the self energies, we
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generally have to assume that

T σσ
′

RL 6= T σσ
′

LR . (100)

Therefore, we can only state the relations stated in Eqs. (96) through (99). which opens up

the possibility for spin polarization withing the Landauer transport regime.

F Manual for reading the matrices

I

VBD

J

H
G
F

E
D

B

 

H↑↓ 

 

HB

HD

HE

HF

HG

HH

HI

HJ

VBE VBF VBG VBH VBI VBJ

VDE VDF VDG VDH VDI VDJ

VED VEF VEG VEH VEI VEJ

VDB

 VFE VFG VFH VFI VFJVFD

VEB

VFB

  VGE VGH VGI VGJVGDVGB VGF

  VHE VHG VHI VHJVHDVHB VHF

  VIE VIG VIH VIJVIDVIB VIF

  VJE VJG VJH VJIVJDVJB VJF

H↑↑

H↓↑ H↓↓

Figure 8: Structure of the matrices of the cumulene molecules, analyzed in this work. The
effective single-particle Hamiltonian matrix consists of four spin-dependent blocks Hσσ′

and
we are focused on the H↑↑ block during this work. H↑↑ consists of diagonal-blocks (HI)
describing the spin-conserving coupling of the atomic orbitals located on atom I, and of off-
diagonal blocks (V I,J) describing the coupling of all atomic orbitals located on atom I with
all atomic orbitals located on atom J . The diagonal blocks are sorted along the helix-path.
To get a better understanding of the origin of the spin-polarization of transmitted electrons
we focus on a single pair of nearest-neighbour couplings (V I,(I+1)/V (I+1),I). Those elements
can be interpreted as transitions amplitudes along and against transport direction.

The matrices are structured as follows: The matrices consist of a diagonal and off-diagonal

blocks. Each diagonal block HI can be attributed to an atom I containing the couplings

of between the atomic orbitals located on atom I. The off-diagonal blocks V I,J can be
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attributed to the coupling of atom I with atom J , containing the coupling of all orbitals

located on atom I with all orbitals located in atom J . The blocks are sorted in ascending

direction.

Each spin-dependent block Hσσ′
consists of such a block matrix. We are focused on a a

single pair of nearest-neighbour coupling blocks V I,(I+1)/V (I+1),I of Hσσ′
(see Figure 8).
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