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Abstract 

Optimizing the solubility of small molecules is important in a wide variety of contexts, including 

in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral 

bioavailability. In such a context, solubility optimization cannot be successfully pursued by 

indiscriminate increases in polarity, which would likely reduce permeability and potency. 

Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes 

the solid-state form. Here we present a novel physics-based approach to predict the solubility of 

small molecules, that takes into account three-dimensional solid-state characteristics in addition to 

polarity. The calculated solubilities are in good agreement with experimental solubilities taken 

both from the literature as well as from several active pharmaceutical discovery projects. This 

computational approach enables strategies to optimize solubility by disrupting the three-

dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal 

chemistry campaign. 

 

I. Introduction 

  

Solubility is an important characteristic of a compound for various applications, including 

pharmaceutical, environmental, and industrial uses. For example, adequate aqueous solubility is 

required for pharmaceutical compounds to be orally bioavailable – it has been estimated that 

almost 40% of new chemical entities are practically insoluble (1) and many drug discovery 

programs fail to reach the market due to low solubility. Low solubility has also been associated 

with stability issues and often leads to difficulties in the development of acceptable formulations 

for toxicology studies. (2) Therefore, improving solubility can become a focal point of lead 

optimization in drug discovery with the goal of designing compounds that would move 

predominantly insoluble series into more soluble regimes.  

The most common approach to modeling solubility has been empirical, via fitting to 

datasets of experimentally measured solubility using different regression methods including 

machine learning techniques. (3–6) Some of these efforts have shown correlations with descriptors 

such as logP and polar surface area. (5) However, solubility cannot be universally improved simply 

by adding polar groups, particularly when the polar moiety happens to stabilize the solid state, 



 

 
 
 
 

increasing the melting point (m.p.), and thereby counteracting increased favorable interactions 

with water. This has been elegantly demonstrated for benzodiazepine molecules where different 

substitutions, sometimes increasing logP, disturbed solid-state interactions leading to lower m.p. 

and increased solubility (7). Moreover, in a drug discovery context, solubility needs to be balanced 

with other ADME properties, for example permeability, as well as potency of the chemical entity, 

which can deteriorate with indiscriminate increases in polarity. In addition, approaches utilizing 

machine learning or other empirical methods trained to an experimental dataset are inherently 

limited by the chemical space in the training sets. While these methods interpolate very well, they 

tend to extrapolate poorly to novel chemotypes – a situation typical for chemical matter to be the 

subject of a lead optimization campaign. Therefore, empirical methods trained on public datasets, 

where the observed changes in solubility are often driven primarily by changes in hydrophobicity 

and aromaticity, often have limitations in predicting solubility of novel chemical matter while 

aligning other drug-like properties. To address such cases in a more satisfactory fashion, we expect 

consideration of the behavior chemical matter in both aqueous and solid states will be required. 

Physics-based incorporate the three-dimensional characteristics of molecules and the 

environment with which the molecule interacts. Such methods may be able to model effects  

involving disrupting of solid state packing, as well as provide a more accurate estimation of the 

solvation energy. It is expected such methods should provide a more complete picture of aqueous 

solubility, and facilitate the balancing of solubility with potency and other ADME properties for 

novel chemical matter. Further, an atomistic and physically rigorous solubility prediction method 

might also provide a structural explanation for the observed solubility of a compound, which may 

facilitate the generation of hypotheses to improve solubility. A physics-based method could also 

be extended to work for additional solvents other than water. This is particularly relevant in late-

stage pharmaceutical development when hundreds of different solvents may be considered in order 

to maximize synthetic ease and yield. Lastly, we expect atomistic solubility prediction methods 

are likely to better generalize to novel co-solvents and unusual small molecules, such as 

macrocycles, than the more commonly used empirical ligand-based techniques.    

In this work we introduce an atomistic free energy method to estimate the aqueous 

solubility of neutral drug-like small molecules in an amorphous form, which does not require the 

small molecule crystal structure to be prespecified or predicted prior to calculating the solubility 



 

 
 
 
 

estimate. This is an important consideration for informing design and synthesis efforts for a typical 

drug discovery program, because the crystal structure data (or related physical properties like 

melting point used in the general solubility equation(8)) are unavailable prior to synthesis. We 

have here employed the commonly used thermodynamic cycle(9) for aqueous solubility depicted 

in Figure 1, whereby the solubility is decomposed into a sublimation process and a solvation 

process--i.e. first, transferring a ligand from the solid aggregate into vacuum (sublimation), and 

then transferring the ligand it from vacuum into the solvent. The key insight leading to the present 

work was the hypothesis that the average free energy of sublimation of particles decoupled from 

the surface of amorphous material in a neat water box would be highly correlated with the implied 

sublimation free energies of solid materials commonly subjected to solubility measurements in 

medicinal chemistry campaigns. Moreover, when alchemically computing the sublimation free 

energy of the particles, a fast diffusing liquid is used to alleviate the artifacts arising from the long 

time scales of crystal healing, and to make convergent simulations feasible within the design and 

modeling cycles of a typical drug discovery program. We have developed and tested this novel 

approach within the state of the art FEP+ framework providing an easy to run streamlined protocol 

using sampling enhancements (10), absolute free energy perturbation (11, 12), and the latest 

generation OPLS3e forcefield (13). We have found solubilities calculated utilizing this approach 

to be in good agreement with experimental solubilities taken both from the literature as well as 

from several active pharmaceutical discovery projects. 

 

 

II. Methods 

The solubility free energy ΔGsolubility can be computed as the sum of the solvation free 

energy ΔGsolv and the sublimation free energy ΔGsublimation (see Figure 1) 

ΔGsolubility = ΔGsolv + ΔGsublimation  

The solvation free energy of a single molecule is computed using commonly employed 

alchemical techniques(11, 12) and the latest version of the OPLS forcefield.(11–13) ΔGsublimation is 

computed in several steps, as follows. First, a dense amorphous solid is constructed with 64 

molecules packed with Monte Carlo simulations using periodic boundary conditions. The 

amorphous solid is inserted into a neat water box and further equilibrated with Molecular 



 

 
 
 
 

Dynamics simulations, using periodic boundary conditions. If the amorphous solid is observed to 

spontaneously dissolve as determined by ligands flaking off the aggregate, the solubility is 

estimated to be very high (>>200 µM), and the workflow is terminated (see Supporting 

Information for the list of very highly soluble compounds tested). At this level of solubility, a 

quantitative measure of solubility is not required for guiding drug discovery project decision 

making. Such high solubility values would be beyond the upper threshold of typical kinetic 

solubility assays used for screening in many drug discovery programs. If the amorphous solid is 

stable and does not dissolve under the simulation conditions, 5 molecules of the amorphous solid 

are selected for sublimation at the aggregate--water interface for free energy calculation methods. 

The 5 molecules to be sublimated are chosen such that at least 20% of the heavy atoms of the 

chosen molecules are solvent exposed in terms of Solvent Accessible Surface Area (SASA). These 

five molecules at the water/solid interface are alchemically decoupled in five independent free 

energy calculations, and a median sublimation free energy is estimated from these five 

computational sublimations. The reason multiple independent ligands are alchemically decoupled 

is due to the heterogeneity of the amorphous material, so that a median sublimation free energy 

can be estimated for the aggregate as a whole. The solubility of ‘intermediate’ and ‘low’ solubility 

compounds is then quantitatively estimated from the difference in the computed solvation free 

energy and the average sublimation free energy for the evaluated compounds. Although water is 

used in all calculations reported here, we emphasize that other “fast diffusing” solvents could be 

used so as to rapidly fill the spaces created by the molecule annihilated in the sublimation step. 

This can be achieved by choosing a solvent with a relaxation time much faster than the time scale 

of the simulation, which allows one to avoid the long-time scale rearrangement of the aggregate 

that would be required to re-equilibrate after the alchemical annihilation of the molecule. Please 

see Supporting Information for further methodological details, including simulation lengths and 

convergence. 

 

III. Results and Discussion  

 

To facilitate testing of this approach with public data (Figure 2), it  was tested against the 

experimental data reported for a series of 19 neutral benzodiazepines reported by Svensson and 



 

 
 
 
 

co-workers (14) distributed over 3 log orders of solubility, including examples of matched pairs 

of molecules where decreasing logP does not improve solubility. The solubility calculation method 

reported here was found to have a mean unsigned error of 0.4 log units (0.6 kcal/mol) and an R2 

value of 0.7 compared to the experimental data. The calculations were further compared for the 14 

neutral compounds measured in a publication from Taylor and co-workers,(15) leaving out the 

charged iopanoic acid compound. These comprise a group of complex and diverse molecules that 

are of pharmaceutical interest. The solubility calculations here were found to have a mean unsigned 

error of 0.8 log units (1.1 kcal/mol) and an R2 value of 0.5 compared to the experimental data. 

Overall, for the 33 public compounds taken together (Figure 2), the calculated solubility was in 

good agreement with the reported experimental solubility, with a mean unsigned error of 0.6 log 

units and an R2 value of 0.54.   

Beyond quantifying the prediction accuracy, we sought to investigate if the calculations 

could elucidate molecular features underlying lower or higher observed solubility in molecular 

matched pairs. Determination of such features may lead to hypotheses for improving solubility 

and ideation of new molecules, even though the synthesis decisions should ideally be guided by 

actual calculations taking into account the complete energetics, rather than such qualitative 

analysis. The trajectories for the benzodiazepines explain why the more polar uncapped amides do 

not actually improve solubility, with the uncapped NH stabilizing the solid-state aggregate via H-

bonding with the carbonyl of adjacent molecules (Figure 3A) thus nullifying any solubility 

enhancement from the increased polarity.  To take another example, -logS for nifedipine is 4.9 

experimentally and 4.8 by FEP+ solubility, which is only sparingly soluble and only modestly 

improved over the insoluble felodipine which has a -logS of 6.0 experimentally and 5.4 by FEP+ 

solubility despite the introduction of the nitro group. As detailed in Table 1, the calculations 

reported herein indeed do recapitulate the introduction of the highly polar nitro-group leading to a 

substantially more favorable solvation free energy by several kcal/mol; however, the calculations 

also show the nitro-group leading to tight interactions within the solid form leading to a highly 

unfavorable sublimation free energy (ΔGsub). The balance of these two competing terms leads to 

the introduction of the nitro-group only modestly increasing the solubility of the core. Evidence of 

the interactions formed by the nitro-groups in the amorphous solid used for the sublimation free 

energy calculations is readily apparent in the trajectories (Figure 3A). The interplay between ligand 



 

 
 
 
 

polarity and stabilization of the solid form, is further illustrated with the molecular matched pairs 

of 2-hydroxybiphenyl, 4-hydroxybiphenyl, and 4,4'-dihydroxybiphenyl where there is a ligand 

crystal structure available. Counterintuitively, the addition of an extra hydroxyl in 4,4'-

dihydroxybiphenyl results in a loss of solubility, whereas a gain of solubility would have been 

expected from a simple consideration of the increased polarity. The amorphous solubility 

computed by FEP+ correlates with the solubility observed experimentally for these matched pairs 

(Table 2), with the lower solubility of 4,4'-dihydroxybiphenyl arising from a substantially higher 

stabilization of the aggregate form (ΔGsub) compared to that for 2-hydroxybiphenyl or 4-

hydroxybiphenyl. Thus, the increase in polarity is more than offset via the additional H-bonding 

stabilization of the aggregate from the two hydroxyl groups, adding to the π-π stacking stabilization 

from the biphenyl moiety (Figure 3C). The positioning of the hydroxyl also impacts solubility, 

e.g., the experimental solubility of 4-hydroxybiphenyl is lower than that of 2-hydroxybiphenyl, 

with a -logS of 3.5 vs 2.4 despite the two molecules having similar polarity. It appears from an 

analysis of the trajectories that the 4-hydroxyl molecule is able to form stabilizing interactions in 

the solid via ordered intermolecular H-bonds and π-π stacking interactions that are apparently not 

possible in the 2-hydroxyl molecule. These three molecules serve as good examples of the complex 

interplay between molecule/water interactions in solvent and molecule/molecule interactions in 

the solid, which would be very difficult for a purely ligand-based method to resolve. 

 We next report expanded testing of the methodology. A larger set of 103 compounds were 

submitted to the standard solubility FEP+ protocol as described in the methods. The calculations 

were performed internally and independently at Janssen R&D. The compounds originated from 

recent late lead optimization programs and cover diverse chemical scaffolds and range of 

physicochemical properties: MW 254 to 654, ClogP -1.1 to 6.0, number of rotatable bonds from 0 

to 12. A consistent experimental approach was used to measure the thermodynamic solubility of 

each. In brief, 2.5 mg of compound in 500µl of solvent was submitted to 24h shaking, filtered, and 

diluted. Filtrate samples were quantified by LC/UV. X-ray diffraction data was measured up front 

to categorize samples as either crystalline, amorphous or mixed. The set of compounds was limited 

to those predicted to be neutral at pH 7.4 based on calculated pKa and results for the whole set are 

shown in Figure 4A. The FEP+ solubility showed good correlation with the experimental data (R2 

0.57). For the compound samples that were known to be in either an amorphous or mixed 



 

 
 
 
 

crystalline/amorphous state, analogous to the amorphous system prepared in silico, the correlation 

was stronger with an observed R2 value of 0.72 (Figure 4B).  

 This level of accuracy makes solubility FEP+ modeling suitable for medicinal chemistry 

programs faced with insoluble chemical matter where solubility improvements must be carefully 

balanced to achieve alignment of ADMET and potency properties. The application of FEP+ 

solubility within a typical medicinal chemistry effort is illustrated for a program which was carried 

out as part of a closely integrated partnership between Schrödinger and Nimbus Therapeutics 

(Figure 5A). For the Nimbus program, solubility FEP+ modeling was applied in conjunction with 

prospective FEP+ modeling for potency and selectivity to accelerate early stage discovery efforts. 

Within the priority series for this program, most of the analogs proved to be highly insoluble (<2 

µM), which could be recapitulated by the FEP+ solubility model in retrospective testing. As a 

result, the program team designed several ideas centered around the established concept of 

disrupting planarity of the scaffolds with the goal of decreasing crystal packing energies (16).  The 

majority of these ideas were predicted to be insoluble, but the FEP+ solubility model did identify 

an analog that with a predicted solubility of ~10 µM.  The increased solubility of this analog was 

confirmed experimentally and represented a substantial improvement from the typical “brick dust” 

compounds identified earlier in the Nimbus program. The solubility FEP+ model also identified a 

number of analogs with more significantly improved aqueous solubility, but these compounds 

were also predicted to lose potency in ligand FEP+ modeling and, therefore, were not pursued as 

targets. Gratifyingly, the solubility FEP+ model identified a side chain modification that was 

predicted to improve solubility while maintaining the potency and selectivity of the original 

analogs. This compound was synthesized and experimentally confirmed to possess a >90x 

improvement in aqueous solubility relative to the initial analogs while preserving the potency and 

kinase selectivity of the series. By using this iterative design process enabled by the solubility 

FEP+ modeling, it was possible to quickly identify analogs with improved solubility which lead 

to compounds with improved pharmacokinetic profiles. 

 A specific use case for this approach is illustrated for a congeneric series (Figure 5B) within 

a Nimbus program that was optimized by FEP+ solubility modeling from inception.  For this series, 

aqueous kinetic solubility was routinely obtained for all compounds and a few key analogs were 

also selected for thermodynamic solubility measurement in SIF and SGF media. The prospective 



 

 
 
 
 

performance displayed a MUE of 0.6 in logS (0.8 kcal/mol) for FEP+ solubility vs kinetic aqueous 

solubility. Overall, 42 of the 52 compounds synthesized based on promising FEP+ solubility 

predictions, displayed High (>50 µM) or Medium (between 10 and 50 µM) aqueous solubility.  A 

small number of compounds (10) were made with Low (<10 µM) predicted solubility as key 

negative controls or to explore modification of other ADME properties. The overall classification 

accuracy for the congeneric series is presented in Table 3. The first compound prepared in the 

series (1, Figure 5B) possessed modest kinetic solubility (24 µM).  As might be expected, FEP+ 

solubility predicted a boost in aqueous solubility for analog 2 in Fig. 5B driven by reduced logP 

and removal of a symmetry element in the pyrazole side chain. Strikingly, however, FEP+ 

solubility predicted a substantial boost in solubility for analog 3 in Fig. 5B that incorporates a 1,4-

oxazepanyl side chain. This compound was synthesized and confirmed to have a high solubility 

experimentally. The thermodynamic solubility of analog 3 in SIF was also measured and 

confirmed to be high as well (~300 µM), making it one of the most soluble analogs prepared within 

the series. Counterintuitively, FEP+ solubility had also predicted low solubility for a matched pair 

analog (4 in Fig. 5B), which incorporated an azepanyl side chain containing a polar diol moiety. 

Compound 4 was synthesized as a negative control and confirmed to have low solubility 

experimentally.  

Critical to improving the probability of success within the multi-parameter optimization 

context of lead optimization, are: 1) access to non-trivial modes of gaining solubility via the solid 

state without degrading cellular permeability which can often occur with increasing polarity, and 

2) combining solubility predictions at scale with modeling of other end-points such as permeability 

and potency. With this domain of applicability and 80% classification accuracy (MUE ~1 

kcal/mol) into High, Medium, and Low solubility categories, a discovery team should be able to 

rapidly improve solubility in 7-9 out of every 10 compounds synthesized. 

The domain of applicability of FEP+ solubility for NCEs will benefit from the extensive 

chemotype coverage and transferability of latest forcefields like OPLS3e.(13) Additionally, the 

accuracy of this method and the domain of applicability will continually improve along with 

refinements in forcefields. FEP+ solubility can be used early in a drug discovery campaign and for 

diverse compounds, because it utilizes absolute free energy calculations and does not require 



 

 
 
 
 

reference experimental data in any related chemical series. This is in contrast to the relative free 

energy calculations utilized for potency predictions. (17)  

A current limitation in the domain of applicability of the current method is that the 

predictions are for the neutral form of the compound, i.e., its intrinsic solubility. As the insoluble 

chemical matter in most drug discovery programs tends to be predominantly neutral compounds, 

predicting the intrinsic solubility should suffice for many lead optimization campaigns where 

solubility is an issue. The solubility of compounds charged at the pH of physiological interest 

includes a solubilizing contribution based on the pKa. In principle, this contribution can be 

estimated using the Henderson-Hasselbach equation, 

    Stotal=Sintrinsic(1+10(pKa – pH)) 

Thus, there is a solubilizing contribution for pKa > pH, such that -logS decreases linearly 

with decreasing pH for, e.g., basic amines. This is supported by some empirical data, c.f. (18)16. 

Combining FEP+ solubility with pKa predictions for charged compounds, would be a natural 

extension of the domain of applicability to charged compounds, especially as accurate pKa 

prediction methods continue to be developed and validated for wider sets of chemotypes (19).  

 

IV. Conclusion 

         We have here presented a method for calculating intrinsic solubility , where the 

sublimation and hydration contributions to the solubility are evaluated with absolute free energy 

calculations. Our approach makes use of a simulated amorphous solid, constructed by successive 

Monte Carlo and Molecular Dynamics calculations, from which we decouple five copies of the 

molecule from the surface and generate an average sublimation energy. The protocol was 

implemented within the FEP+ framework and benefits from the state of the art OPLS3e force field. 

Accurate correlations with the experimental data were observed for challenging test cases, such as 

the benzodiazepine series designed to probe aspects of solid-state limited solubility, which 

provides confidence the method is capturing the essential physics. The approach is also expected 

to benefit from the OPLS3e force field which has a substantial emphasis on drug-like small 

molecules, with extensive parameterization and ease of updating missing torsional terms. This 

provides a greater chance of success and enables incorporating both conformational factors and 

polarity in achieving potency/ ADME balance in lead optimization.  The utility of this solubility 



 

 
 
 
 

FEP+ methodology has also been demonstrated in several medicinal chemistry lead optimization 

efforts where it has been leveraged, in concert with other modeling tools, to rapidly align the 

ADME properties for priority series. 

 

 

  

  



 

 
 
 
 

Figures and Tables 

 

Figure 1. Thermodynamic cycle for modeling solubility and the calculation strategy in FEP+ 

solubility. The solubility is computed via a sublimation and solvation leg. The implied sublimation 

free energy is computed via FEP+ as described in the Methods section, starting from a disordered 

system built using Monte Carlo and stabilized with MD simulations. 

 
 
 
 
 

 
 
 
 
  



 

 
 
 
 

 
Figure 2 Computed solubility is in good agreement with the experimental data obtained from 
public datasets, compared here for two published experimental datasets (14, 15). The overall R2 
between computed and measured logS is 0.5, and mean unsigned error is 0.6 in logS. 
 

 
 
 
 
  



 

 
 
 
 

 
 
Figure 3 Stabilization of the aggregate via H-bonding involving a polar substituent that nullifies 
any solubility enhancement from the polar piece, illustrated by  3D structures of the aggregates. 
(A) A simulation snapshot of a benzodiazepine, showing H-bonding between the uncapped NH of 
the cyclic amide with the carbonyl from adjacent molecules adding to the stabilization from the 
intermolecular pi-stacking. (B) A simulation snapshot of nifedipine aggregate, showing 
stabilization via H-bonding involving the nitro group. (C) X-ray structure of 4,4'-
dihydroxybiphenyl, showing the stabilization from the H-bonding involving the additional 
hydroxyl compared to 2-hydroxybiphenyl. The solid aggregate of 4,4'-dihydroxybiphenyl is 
stabilized via the hydroxyls in addition to the pi-stacking of the biphenyl moiety in the two 
compounds. Thus, the addition of the polar hydroxyl, in fact, results in a loss of solubility rather 
than a gain of solubility as might be expected looking just at the increase in polarity. 
 
 
Figure 3A 
 

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 

 
Figure 3B 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 

 
Figure 3C 
 

 
 
 



 

 
 
 
 

Table 1.  Detailed FEP+ solubility data for felodipine and nifedipine  
 

 
 
 
Table 2. Detailed FEP+ solubility data for 2-hydroxybiphenyl, 4-hydroxybiphenyl, and 4,4'-
dihydroxybiphenyl 

2-hydroxybiphenyl 4-hydroxybiphenyl 4,4'-dihydroxybiphenyl  

ΔGhyd  
kcal/mol 

ΔGsub  
kcal/mol 

ΔGhyd  
kcal/mol  

ΔGsub  
kcal/mol 

ΔGhyd  
kcal/mol 

ΔGsub  
kcal/mol 

-6.3 8.7 -8.1 11.0 -12.6 15.9 

  



 

 
 
 
 

 
 
Figure 4 Performance of FEP+ solubility vs measured thermodynamic solubility in an expanded 
set comprising 103 compounds from recent late lead optimisation programs at Janssen R&D, 
spanning diverse chemotypes and physico-chemical properties, for (A) all 103 compounds, 
irrespective of crystalline or amorphous solid state, and (B) 34 compounds in amorphous or mixed 
amorphous/crystalline forms. 
 
Figure 4A 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 

 
 
 
 

Figure 4B 

 
  



 

 
 
 
 

Figure 5 Illustrative use of FEP+ solubility to help attain an ADME/ potency balance in a program 
pursued collaboratively by Nimbus and Schrödinger. (A) Illustration of the discovery of soluble 
matter against the background of insoluble predicted matter in a lead chemical series, (B) 
Molecular matched pairs in a congeneric chemical series, illustrating the use of FEP+ solubility to 
improve solubility without the need to add significant polarity. 
 
 
Figure 5A  
 

 
 

 

 

 

 

 

 

 

 

 

 



 

 
 
 
 

Table 3. Prospective performance of FEP+ solubility vs measured kinetic aqueous solubility in a 
congeneric chemical series, in a live drug discovery project pursued collaboratively by Nimbus 
and Schrödinger. 
 

 

 MUE in logS = 0.6 

Experimental  

Measurements (Kinetic Solubility) 

 N = 52 

Insoluble  

(< 10 µM) 

Medium  

(10 - 50 µM) 

High 

(>50 µM) 

Prospecti

ve FEP+ 

Predictio

ns 

Insoluble  

(< 10 µM) 
5 3 2 

Medium 

(10 - 50 µM) 
0 8 9 

High 

(>50 µM) 
2 7 16 

 

 

 

 

 

 

 

 



 

 
 
 
 

 

Figure 5B 
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