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The appropriate sampling of training data out of a potentially imbalanced data set is of critical
importance for the development of robust and accurate machine learning models. A challenge that
underpins this task is the partitioning of the data into groups of similar instances, and the analysis
of the group populations. In molecular data sets, different groups of molecules may be hard to
identify. However, if the distribution of a given data set is ignored then some of these groups may
remain under-represented and the sampling biased, even if the size of data is large. In this study,
we use the example of the Harvard Clean Energy Project (CEP) data set to assess the challenges
posed by imbalanced data and the impact that accounting for different groups during the selection of
training data has on the quality of the resulting machine learning models. We employ a partitioning
criterion based on the underlying rules for the CEP molecular library generation to identify groups
of structurally similar compounds. First, we evaluate the performance of regression models that are
trained globally (i.e., by randomly sampling the entire data set for training data). This traditional
approach serves as the benchmark reference. We compare its results with those of models that are
trained locally, i.e., within each of the identified molecular domains. We demonstrate that local
models outperform the best reported global models by considerable margins and are more efficient
in their training data needs. We propose a strategy to redesign training sets for the development
of improved global models. While the resulting uniform training sets can successfully yield robust
global models, we identify the distribution mismatch between feature representations of different
molecular domains as a critical limitation for any further improvement. We take advantage of
the discovered distribution shift and propose an ensemble of classification and regression models
to achieve a generalized and reliable model that outperforms the state-of-the-art model, trained
on the CEP data set. Moreover, this study provides a benchmark for the development of future
methodologies concerned with imbalanced chemical data.

I. INTRODUCTION

Machine learning (ML) is in the process of revolution-
izing several aspects of chemical (and materials) research.
ML approaches illuminate underlying patterns in chemi-
cal data, they facilitate efficient predictions in the char-
acterization and behavior of chemical systems, and they
augment conventional processes of decision making in
chemical research [1, 2]. One application of ML is the
creation of data-derived surrogate models that acceler-
ate the intensive process of molecular discovery, design,
and development by orders of magnitude [3, 4]. The ap-
plication of ML on the results of virtual high-throughput
screening (HTPS) studies has been one of the earliest and
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most successful approaches for the large-scale exploration
of molecular space [5–8].

A majority of methodological advancements for ML in
the chemical domain have so far focused on improving the
performance of data-derived prediction models for desir-
able materials properties. Research on other pertinent
questions of chemical data mining and modeling has re-
ceived less attention. Examples of these issues are: (i)
diversity/sparsity of the molecular structures, (ii) appli-
cability domains of trained ML models, and (iii) learning
from imbalanced data. While these issues require exper-
tise from domain sciences [9], they are ultimately inter-
connected and share common solutions across disciplines.
In this work, we address these challenges on a well-known
molecular data set.

A data set is imbalanced if it can be partitioned into
groups of similar instances (e.g., molecules), but the
count of instances per group differs significantly [10]. By
that means, even if the data set is large, some groups
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may remain under-represented (i.e., minority groups).
Typically, ML approaches fail to capture the characteris-
tics of the minority groups because they are less exposed
to the instances they contain. In the case where little is
known about the unique or even rigorous criteria to dis-
cover the distribution of an unknown molecular library,
chemical intuition or a direct mapping between struc-
tural features and groups (e.g., via clustering, i.e., an
unsupervised ML approach) can mitigate this limitation.
The current trend in chemical and materials studies is

around developing models that are as general as possible,
thus they are transferable to a broader molecular space
[11]. However, there are also studies that argue against
the pursuit of universal prediction models. For instance,
a study by Goldsmith et al. proposed the method of sub-
group discovery to cluster the crystal structures of semi-
conductors [12]. The results of their work show that local
models – trained on subgroups of the entire compound
data – can significantly outperform a global model that
is trained on the natural distribution of the overall data
set. More recently, Kailkhura et al. introduced an ML
framework that successfully addresses the skewed distri-
bution of materials by partitioning the range of target
properties [13]. While this approach has similar objec-
tives to our work, we discuss the imbalance in data as
a consequence of the sparse structural features than tar-
get properties. Thereby, it needs to be addressed as an
unsupervised ML approach.
To exemplify, visualize, and address the challenge of

imbalanced data in a molecular system, we focus on the
Harvard Clean Energy Project (CEP) data set [14]. CEP
is one of the prominent HTPS efforts to find organic pho-
tovoltaics for their application in solar cells. This data
set has been widely used in several modeling and method
development projects [15–18], mainly to recover the rigor-
ous and deterministic quantum chemical mapping from
the structure/topology of a molecule to its properties.
However, the resulting ML models are only trained on
the natural distribution of the data, and ignore the spar-
sity of the data set. Taking advantage of the imposed
constraints in the combinatorial exploration of molecu-
lar space, we investigate the imbalance in the CEP data
set. We show that the results of our pattern recogni-
tion efforts lead to reliable prediction across the range
of data, and thus enhance the applicability domain of
trained models. In a broader perspective, the applied
approaches attempt to emphasize the issue, and estab-
lish efficient practices to develop generalized predictive
models on organic molecular data sets.

II. BACKGROUND, METHODS, AND

COMPUTATIONAL DETAILS

A. Motivation

As described by Hachmann et al. [19], the CEP molec-
ular library is generated using 26 distinct building blocks

FIG. 1: Examples of fused, linked, and hybrid molecules
initiated from two building blocks (i.e., benzene and

pyrrole) with two reaction sites (‘R’s represent chemical
handles) per each. The product of reaction also has two
chemical handles to participate in the next reactions
and create larger molecules. A hybrid molecule is a

product of linking a building block to a fused molecule,
or vice versa.

that react with each other and create new fragments
based on two types of reactions (i.e., linking or fusion).
The maximum number of building blocks per molecule
is limited to five. Although all the 26 building blocks
are prevalent substructures for the photovoltaic applica-
tions, the type of reaction between them results in very
different molecular moieties that might not be feasible to
synthesis. The motivation for this work is based on the
feedback from experimental collaborators regarding the
ease of synthesis for molecules that are only a product
of linking reactions. The synthesis condition for fused
fragments are often harsh and may negatively result in a
ring expansion or contraction [20].
Thus, the initial goal of this study is to interpret the

generation of each molecule in the CEP library based
on the combination rules and types of building blocks.
Note that the reaction scheme has not been captured
initially along with the original CEP library generation.
One immediate solution to this problem is to search for all
possible combinations of building blocks in the molecules.
However, this is an intractable approach due to the large
number of possible combinations. Therefore, we develop
an algorithm to divide CEP molecules to three groups
of fused, linked, or hybrid. As it is illustrated in Fig. 1,
a hybrid molecule is a result of both linking and fusion
reaction between constituent building blocks. The details
of the algorithm will be discussed in Sec. II B.
After extracting the substructure information, our mo-

tivation for the rest of the study is two-fold. First, we
investigate the distribution of top candidates in the sub-
groups of the molecules. We train ML regression models
on each subgroup separately (i.e., develop local models)
and compare their performance with the model that is
trained on a random sample of the entire CEP data set
(i.e., a global model). Second, we utilize the extra in-
formation regarding the distribution of clusters in the
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data set to improve the performance of the global model.
For this purpose, we oversample under-represented sub-
groups and create a uniform distribution of clusters in
the training set. We observe that the main challenge
for any further improvements in the global model is the
shift in the distribution of the feature representation for
each class of molecules. Therefore, we apply classifica-
tion and feature transformation methods to demonstrate
the impact of the distribution mismatch in the training
sets. This approach leads us to an ensemble of classifi-
cation and regression models to avoid bias towards ma-
jority subgroups. Thus, the central claim of this study is
to provide the most accurate and generalized ML model
for predicting photovoltaic properties of the molecules in
the CEP data set. In summary, the contribution of this
paper is as follows:

• We propose an algorithm to exploit the structure of
the CEP data set. This approach is based on the re-
action scheme that molecules have undertaken dur-
ing the library generation.

• When the reaction scheme is identified, we partition
the entire CEP data set based on the synthesis fea-
sibility, thereby, we achieve benchmark data with
identified subgroups to assess the underrepresenta-
tion of similar molecular structures.

• We next investigate the effect of the imbalanced
classes on the performance of ML models that are
developed using pure random sampling of the entire
data set. Subsequently, we achieve computationally
efficient ML models that outperform the state-of-
the-art predictive models for the CEP data set.

• Finally, we automatize the entire approach by re-
designing the ML training sets and training a clas-
sification model to alleviate the problem of distri-
bution shift for regression models.

B. CEP Data Set and Molecular Characterization

The CEP data set contains more than 2.3 million
organic photovoltaic molecules that are candidates for
donor materials in solar cells. The target property in
this data set is the power conversion efficiency (PCE)
that is a measure of the performance of solar cells. PCE
values are approximated using Scharber model [21] and
electronic properties of donor molecules (i.e., molecules
in the CEP data set). The electronic properties are calcu-
lated at BP86/def2-SVP [22–24] level of the Kohn-Sham
density functional theory [25, 26]. All the molecules are
represented using SMILES strings, which provide 2D in-
formation of the molecular structures, that is, atom type
and connectivity.
We propose an algorithm based on the molecular

graphs to characterize the unique combination scheme
that has been undertaken for the generation of each

molecule in the CEP library. The algorithm is specific
to the CEP data set and takes advantage of the hetero-
cyclic structure of the building blocks. In the following
we describe the overall pseudo-algorithm:

1. represent each molecule as a graph of nodes and
edges and keep track of their corresponding chem-
ical labels (i.e., atom and bond types).

2. identify all the cycles in the molecular graphs with
size less than 6. They correspond to the 5- and 6-
membered molecular rings in the structure of build-
ing blocks.

3. look for nodes that are shared between the rings.
These types of nodes represent the fusion reaction
between rings.

4. look for edges that are not involved in any of the
rings. These types of edges form the linking con-
nection between rings.

5. discover type of building blocks and their connec-
tions based on atom and bond types and the unique
combination of rings in building blocks.

The second step of the algorithm requires an efficient
code for finding exact length of paths between two atoms
in a closed loop. The available algorithms for this step,
e.g., Johnson’s algorithm [27], are computationally ex-
pensive. We use the built-in function available in the
OpenBable [28], which can efficiently perform the first
two steps of the algorithm. The final result of this sub-
structure analysis represents the exact type, order, and
symmetry of building blocks based on the position of re-
action sites in each molecule. The obtained substructure
information could be further utilized to focus on a group
of molecular moieties that may be of higher importance
for the rational design of materials.
Note that we use the term cluster to distinguish fused,

linked, and hybrid molecules in the CEP data set. The
choice of this terminology is not entirely arbitrary; it
tends to differentiate this task from the supervised clas-
sification approach. More importantly, it has an anal-
ogy with unsupervised clustering approach that will be
discussed in our following publications as an automated
and generalized fashion to distinguish organic molecules.
Thus in this study, we undertake a clustering approach
based on the chemical intuitions from and only for CEP
data set.

C. Machine Learning Details

The ML task in this study is a supervised learning type
due to the availability of the labeled data. A supervised
learning approach can be considered as a function that
maps the input features to the target outputs [29]. If the
output labels are numerical (and continuous), the super-
vised learning task is a regression problem, and if the la-
bels are categorical, the problem is classification. In this
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study, we train a regression model to predict the scalar
PCE values. We also train a classification model to label
each molecule as a fused, linked, or hybrid type. The
classification problem is carried out to evaluate the dis-
tribution shift in the input features of the three clusters.
We also apply principal component analysis to reduce the
dimension of the feature space for the visualization of the
distribution shift.

We use deep neural networks (DNN) for both of the re-
gression and classification tasks [30, 31]. The DNN con-
sists of neurons that behave as a simple feature trans-
formation unit. Originally, each neuron sends out the
result of an activation function acting on the total sum
of the weighted inputs that receives from all connected
neurons. The neurons are organized in consecutive lay-
ers and may be partially connected. Thus, the entire
DNN model is able to transform the input features to
the latent space, where the mapping to the target output
becomes linear. The only difference between our classi-
fication and regression models is the choice of activation
function for the last layer, which is the Softmax function
for classification instead of a linear function for regres-
sion. We train a fully-connected standard architecture
of DNN with three hidden layers in this work. We opti-
mize other hyper-parameters (e.g., activation functions,
regularization parameter, learning rate, etc.) using the
10-fold cross-validation approach on the 90% of the data
as the training set. The remaining 10% are held out for
the final evaluation of the model. We use our implemen-
tation of genetic algorithm to efficiently search and opti-
mize the hyper-parameter space [32]. In addition to the
cross-validation, we carry out two additional approaches
to avoid over-fitting: (1) the regularization term to penal-
ize the parameters that are biased to the noise [33], and
(2) the early stopping approach, which stops training it-
erations when the model improvement is negligible. Both
of these methods avoid unnecessary model complexity.

We perform this ML workflow using ChemML [34, 35],
our program package for machine learning and informat-
ics in chemical and materials research. In this work,
ChemML employs the Keras library [36] with Tensorflow
as backend [37] to develop the DNN models. The scikit-
learn library provides tools for data preprocessing and
model evaluation [38]. To plot learning curves, we select
five different subset sizes spaced uniformly over the range
of the training set size. We next repeat training and eval-
uation five times for each of the subset sizes and plot the
average performance. The main evaluation metric for re-
gression models is the mean absolute error (MAE). MAE
represents the absolute deviation of the predicted values
from the target properties. For classification models, we
use the ratio of correct predictions to evaluate the accu-
racy of our classifiers.

D. Feature Representation

In the cheminformatics and materials informatics, the
input features to an ML model are called descriptors
[39]. Descriptors provide a numerical representation of
the molecules and are the most important aspect of the
ML models. Recent studies emphasize that substructure-
based descriptors provide essential representation to pre-
dict several properties of molecules [40–42]. This type
of descriptors, which are also known as the molecular
fingerprint (FP), indicate the presence or absence of par-
ticular substructures in the molecule. In this study, we
use 2048-bit, radius 3 Morgan FP [43, 44], from RDKit
cheminformatics library [45], as previously recommended
in similar studies (concerning the structure and property
of molecules) [15].
In addition to Morgan FP, we employ neural finger-

print (NFP) as the state-of-the-art neural network ar-
chitecture, i.e., graph convolutional networks, originally
developed and tested on the CEP data set [16]. Previous
research has established that NFP provides a more com-
prehensive representation of the structural makeups than
Morgan FP. The NFP takes advantage of the embedded
atom features in a molecular graph. It can be considered
as a stand-alone ML model by addition of fully connected
layers. Therefore, for the purpose of comparison, we add
the same standard neural network that was described in
Sec. II C to complete the NFP model. Various versions of
similar deep learning architectures have been developed
recently [18, 46, 47]. Given the better computational
scaling of the NFP, it is a sufficiently complex and accu-
rate model to serve as the state-of-the-art technique in
this study. However, these models are computationally
more demanding than the standard DNN by two orders
of magnitude in terms of minute calculation on the same
computation resource. We ultimately consider this point
in all aspects of our conclusions.

III. RESULTS AND DISCUSSION

A. Statistical Analysis of the Clusters

The probability distribution of PCE values in the CEP
data set, and separately in each of the clusters is pre-
sented in Fig. 2. The heavier tails of the distribution
for linked molecules praise the idea that their structural
makeup is more favorable for the photovoltaic applica-
tions. A closer look to the molecules with PCE>8%
(the inset violin plot) reveals the prevalence of linked
molecules among top candidates, specificaly those with
PCE>10%. This is an important finding, which strength-
ens our initial motivation for the study of molecules based
on their synthetic feasibility. Thereby, a focus on the
linked molecules not only makes the synthesis easier but
potentially leads towards more important candidates in
photovoltaic materials. Note that the negative PCE is
the artifact of the Scharber model and does not present
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any physical meaning. However, we keep the entire range
of the PCE values for the purpose of the training and do
not change them to zero. This way we preserve the con-
tinuity of the values, which allows us to learn the actual
Scharber model.

Table. I summarizes the statistical analysis of the three
discovered clusters in the CEP data set.The analysis of
positive PCE values among each cluster clearly shows
that linked molecules with average of 3.24% have the
highest PCE compared to the other two clusters. In re-
gard to the population of each group, we find that the
three clusters are not uniformly distributed. The fused
and linked molecules only occupy 3% and 23% of the en-
tire data set, respectively. Based on the ML literature,
these two clusters are known to be under-represented in
comparison with the hybrid cluster with 74% of the to-
tal data [48]. Therefore, a global ML model trained on
a random sample of the CEP data should be mostly bi-
ased to the hybrid molecules. The other point is that
distinguishing the three clusters from each other based
on their PCE is not possible since their distributions ap-
proximately overlap (see Fig. 2 again). This point em-
phasizes that sometimes molecular structures are indis-
tinguishable based on their target properties and thus,
other criteria are required to partition them.

Since our goal for the rest of the study is to compare
the performance of three local models with respect to the
global model’s accuracy, we randomly select 50k data
from each cluster and the entire data set, making four
samples for training, validation, and final evaluation as
described in the methods section. The resulting four sam-
ples are referred to as fused, linked, hybrid and random
in the rest of the study. The 50k sample size is moti-
vated by the size cap of the smallest cluster (i.e., fused
molecules), and the size of the training data in the recent
ML studies on the CEP data set.

FIG. 2: The histogram showing the distribution of
Scharber power conversion efficiency (PCE) values in
the entire and each cluster of the CEP data set. The
inset violin plot presents the mean, standard deviation

and 25/75th percentile over candidates with
PCE>8.0%.

TABLE I: Statistical analysis for each cluster in the
CEP data set. We obtain the population of each cluster
in the entire set of 2.3 million molecules and in a subset
of the data with positive PCE. We then compute the
average and mean absolute deviation (MAD) for each
subset. The population is in million and the avg and

MAD of PCE are in %.

all PCE > 0
population(m) population(m) avg(%) MAD(%)

fused 0.07 (3%) 0.04 2.18 1.34
linked 0.54 (23%) 0.27 3.24 2.09
hybrid 1.72 (74%) 1.07 2.61 1.60
all 2.33 1.38 2.72 1.70

B. Predicting PCE of Organic Solar Cells

Following the statistical analysis of the clusters, now
we have four samples to serve as our data sets for the
training and testing of our models. Thus, each data set
provides one training and one test set. We train stan-
dard DNN regression models with Morgain FP and NFP
as their input on each of the training sets and evaluate the
model on all the four test sets. The model that is trained
on the random data set serves as our global model be-
cause it can potentially predict the PCE for molecules
from any of the clusters. Fig. 3.a shows the distribu-
tion of absolute errors of each model, evaluated on the
same four out-of-sample test sets. We find that each local
model performs better on the test set from the same cat-
egory of training data. The highest errors belong to the
fused and linked models when they are evaluated on test
sets from each other’s test sets. The poor performance of
the local models on other clusters, although they share
same building blocks, is highly surprising. All three local
models outperform the random model for prediction on
their own type of molecules. The closest performance to
the random model belongs to the hybrid model since hy-
brid molecules are over-represented in the random sam-
ple. For a similar reason, the performance of the random
model on the linked and fused test sets are approximately
2 and 5 times worse than their local models.

In regard to the structural similarities, we find that
the fused model performs better on the hybrid test set
compared to the linked model. This point can also be
confirmed based on the comparison between the perfor-
mance of the hybrid model on the fused and linked test
sets. These results determine that hybrid molecules have
more in common with fused molecules rather than linked,
which is expected based on the reaction scheme that
is used for the generation of CEP data [49]. Although
more than 70% of the random sample consists of hybrid
molecules, the random model still performs slightly worse
than the model that is trained on 100% hybrid molecules
(i.e., hybrid model). This point clearly highlights the
impact of the imbalance in the data on the training of
the ML models.
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FIG. 3: The performance of deep neural network (DNN) regression models for the prediction of power conversion
efficiency values in each data set. (a) The box plot showing the distribution of the absolute error of predicted PCE
values in terms of median, 25/75th percentile and confidence interval. The inset plot highlights all the box plots
that lie in the range from 0 to 1%. (b) The learning curves show the dependency of developed models to the

training set size. The blue curves belong to the standard deep neural network trained on Morgan fingerprint (FP)
representation. The red curves belong to the neural fingerprint (NFP) model. The mean absolute error is calculated

based on the evaluation of each model on the test set from the same sample.

In addition, Fig. 3b presents the learning curves that
are trained and evaluated on the same data set sepa-
rately. The dependency of the models to the size of the
training set is generally accepted in any ML efforts, and
here we see the same trend for all the four samples, as
well. The performance of the local models also follows
a similar relative trend on the entire range of the train-
ing set size. we also note that, in case of Morgan FP,
even 30% of the fused (or linked) data can train a better
model than 90% of the random data for the prediction of
PCE for fused (or linked) molecules. The comparison of
the learning curves for two types of models (Morgan FP
and NFP) on the random sample shows more than 20%
improvement in the prediction accuracy of NFP model
across the random test set. This is the main reason that
graph convolutional networks have truly increased the ex-
citement in this field. However, this does not mean that
the state-of-the-art models can handle the imbalanced
data. We still see the same trend as Morgan FP mod-
els in terms of the performance of local and global NFP
models with respect to each other. The random sample
is by far the worse model and after that we have hy-
brid, linked, and fused models. The underlying point for
the current research is that the significantly more com-
plex models sound ineffective for the prediction of the
properties of linked molecules. The graph convolutional
networks require higher computational complexity than
standard DNN models, which is ultimately not tenable
for large training data. However, we show that a good
clustering approach can significantly mitigate the com-
putational cost and also improve the prediction quality.

All these results confirm that training a model on a
random sample is mostly in favor of hybrid molecules

that are over-represented in the data set. Note that a
better performance of the local models compared to the
random model is generally expected. It is well known
that ML models intrinsically have better performance for
the interpolation tasks rather than extrapolation. There-
fore, developing a local model on the portion of data that
are of similar characteristics, results in a better perfor-
mance. However, this point is subject to the clustering
approach that lend confidence to the similar characteris-
tics of the subgroups of the molecules. In other words,
an arbitrary clustering of a data set that does not em-
phasize compelling characteristics of the structures may
not reproduce the same results.
Furthermore, we show the distribution of the predic-

tion errors across the range of PCE values for each of
the test sets, when they are evaluated on their own mod-
els (see Fig. 4). The quality of the predictions for the
linked and fused models are evenly distributed over the
range of the PCE values. This is another advantage of
the suggested clustering scheme that leads to molecular
candidates, which are: (i) feasible to synthesis, (ii) more
desirable with respect to the target property, (iii) homo-
geneously represented and thus are easier to model, and
(iv) approximately equally representative of the remoter
but more desirable range of PCE values.

C. Uniform Oversampling of the Training Data

One immediate solution to address the issue with im-
balanced data is oversampling of the under-represented
clusters. Since enough training data is available in each
of the data sets, we simply stack their training data to
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FIG. 4: The distribution of the regression model
prediction errors with respect to the PCE values for

each of the four samples. The negative PCE values are
artifact of the Scharber model, and thus, are faded out.

create three times bigger set, but with a uniform dis-
tribution of clusters. We develop a Morgan FP model
on the uniform training set and evaluate it on the same
out-of-sample test sets as before. The result is illus-
trated in Fig. 3a as the uniform training sample. We
observe that the model performs better on all test sets
compared to the random sample, except for the hybrid
test set. However, the performance of the uniform model
is not better than the models purely trained on each of
the samples. We can explain this point better with the
concept of the distribution shift in the feature represen-
tation of the data. For doing so, we first transform the
high-dimensional representation (i.e., 2,048 FP vector)
to two reduced features by applying principal component
analysis (PCA) on 3,000 randomly selected instances of
the uniform training set. The scatter plot of the data
points with their color-coded clusters is shown in Fig. 5.
The population of the data for each cluster clearly illus-
trates the distribution shift between them. The results
show that the linked and fused clusters are very differ-
ent in terms of the fingerprint representation. Moreover,
the distribution of the fused and hybrid principal compo-
nents has a more significant overlap than the linked and
hybrid distributions. All these outcomes are along with
our discussions in Sec. III B as well.

A focus on the performance of the models on the hybrid
test set suggests that combination of the clusters do not
help our model (i.e., the standard DNN) with respect to
the choice of descriptor (i.e., the Morgan FP). This point
was also observed by comparing the performance of ran-
dom and hybrid models on the hybrid test set. We also
note that creating three times bigger training set should
result in a better performance for the model. However,
the performance of our models on the hybrid test set de-
creases from the hybrid model (trained on 100% hybrid

FIG. 5: The scatter plot shows the first and second
principal components of a uniform distribution of three
clusters specified with color codes. The distribution of
first principal component is also plotted accordingly for
each cluster. The density of the probabilities are on the

right y-axis.

data) to random model (trained on 70% hybrid data),
and finally to the uniform model (trained on 33% hybrid
data). In totality, the uniform model outperforms the
random model, and particularly on the fused and linked
test sets. Because a focus on the linked molecules is the
primary goal of this work, providing a global model that
performs better on the linked cluster is a successful out-
come.

D. Ensemble Learning by Combining Regression

and Classification Models

As we discussed in the previous section, even linear
PCA is able to capture the main structural difference
between the three clusters. Thereby, our choice of fea-
ture representation can linearly distinguish the three sug-
gested categories of molecules. Thus, for developing a
global model that has similar performance with our best
local models, we propose an ensemble method by merging
the classification and regression models. In this section,
we train a classifier on the same uniform sample that
was created in Sec. III C. The classifier should be able
to label an unseen molecule as fused, linked, or hybrid
category. We then use our best local regression models
accordingly to predict the PCE that corresponds to that
molecule.
We optimize a standard DNN model to classify the

three clusters. The uniform training set is used for de-
veloping the model because it is a fairly balanced data
set. We also change the training set size to assess the per-
formance of the classifiers on the very small portions of
the data (e.g., 0.001 ratio that corresponds to 135 data
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points). All the models are evaluated on the same test
sets of the initial four samples, and the resulting learning
curves are shown in Fig. 6. The figure shows that even
with less than 2,000 uniform sample of the CEP data, we
can get a model with 98% accuracy to classify three clus-
ters of molecules. The performance of the model on the
test sets deteriorates in the order of linked, fused, and
then hybrid test sets. These results are also compatible
with Fig. 5, because the feature representation of hybrid
molecules is distributed between two other clusters and
has a more considerable overlap with fused molecules.
The underlying point is that the linked cluster is highly
distinctive from the other two clusters. Thus, the accu-
racy of classification model is also a measure of distribu-
tion shift between feature representation of clusters.
We further extend the work by merging the classifica-

tion model and our best local regression models to de-
velop a global predictive model for the CEP data set.
The green curve in Fig. 7 presents the learning curve for
the ensemble model, evaluated on the random test set.
The MAE for ensemble model is lower than both of the
Morgan and NFP models across the training set ratio.
Table. II summarizes the lowest MAE for the three mod-
els. The deep ensemble learning approach presents 31%
and 15% improvement compared to the Morgan finger-
print and NFP, respectively. It should be noted that the
accuracy of classification model for the linked molecules
is close to 100% and thus, the performance of the en-
semble model for the linked cluster is very similar to the
linked models.

TABLE II: The prediction error of three regression
models in terms of mean absolute error (MAE) ±
standard deviation. The table summarizes Fig. 7 at

90% training set ratio.

MAE(%)
Morgan FP NFP Ensemble

linked 0.288± 0.003 0.288± 0.002 -
random 0.423± 0.004 0.340± 0.004 0.290± 0.005

IV. CONCLUSIONS

In the work presented here, we introduced a structure-
based partitioning scheme for molecular data sets that al-
lows us to identify different domains in compound space.
We showed the benefits of creating local ML models that
take advantage of the distinct nature of these domains
compared to a single global model that does not account
for their differences. The improvements in performance
and efficiency are considerable, and even standard ML
models outperform the most advanced (and correspond-
ingly demanding), state-of-the-art ML approaches. An-
other attractive feature of our study revealed that local
models exhibit a more uniform performance across the
spectrum of target property values, including the desir-

FIG. 6: We develop a model to classify three clusters of
the molecules based on the training on the uniform
sample of the data. The learning curves show the

prediction accuracy of the classifier on four test sets
separately. The inset plots focus on the turning point of

the learning curves.
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FIG. 7: The learning curves show the decay in mean
absolute error of three machine learning (ML) models
by increasing the training set size. The blue and red
curves belong to the standard neural network and

neural fingerprint (NFP) models that are trained on
random sample, respectively. The green learning curve
presents the proposed ensemble method by merging

classification and regression models that are trained and
evaluated on three local samples.

able extremes, for which global models tend to degrade.
However, the principal bottleneck for developing local
models is the size cap of the minority domains.

We also advanced the use of a classification model and
the idea of ensemble learning to achieve the performance
of local models but for global predictions. Our statistical
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analysis of the data set and its imbalance suggests that
the latter should be tackled by focusing on the choice of
the feature representation, as the sparsity in a feature
space can adversely affect a regression task. We pro-
pose to resolve this issue by breaking down the imposed
sparseness using clustering or classification techniques.
Beyond to cluster-aware regression approach presented
in this paper, we are currently pursuing an automated
process that includes the utilization of unsupervised ML
techniques, along with the incorporation (or extraction)
of physical priors.

SUPPLEMENTARY MATERIAL

Electronic supplementary material accompanies this
paper and is available through the journal website free
of charge. It provides statistical analysis of all data sets
that are used in this study (Table S1), and tuned hyper-
parameter values for trained models (Table S2). We also
give a link to the repository that data sets are deployed.
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S. Atahan-Evrenk, Süleyman Er, Supriya Shrestha, Ra-
jib Mondal, Anatoliy Sokolov, Zhenan Bao, and Alán
Aspuru-Guzik, “Lead candidates for high-performance
organic photovoltaics from high-throughput quantum
chemistry-the Harvard Clean Energy Project,” Energy
and Environmental Science 7, 698–704 (2014).

[20] Matthias D’hooghe and Hyun-Joon Ha, eds., Synthe-

sis of 4- to 7-membered Heterocycles by Ring Expansion

(Springer International Publishing, 2016) p. 367.
[21] Markus C. Scharber, David Mühlbacher, Markus Koppe,
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delion, Monga Rajat, Moore Sherry, Murray Derek, Olah
Chris, Schuster Mike, Shlens Jonathon, Steiner Benoit,
Sutskever Ilya, Talwar Kunal, Tucker Paul, Vanhoucke



11

Vincent, Vasudevan Vijay, Viégas Fernanda, Vinyals
Oriol, Warden Pete, Wattenberg Martin, Wicke Mar-
tin, Yu Yuan, and Zheng Xiaoqiang, “{TensorFlow}:
Large-Scale Machine Learning on Heterogeneous Sys-
tems, available at https://www.tensorflow.org,” (2015).

[38] F Pedregosa, G Varoquaux, A Gramfort, V Michel,
B Thirion, O Grisel, M Blondel, P Prettenhofer, R Weiss,
V Dubourg, J Vanderplas, A Passos, D Cournapeau,
M Brucher, M Perrot, and E Duchesnay, “Scikit-learn:
Machine Learning in Python,” Journal of Machine Learn-
ing Research 12, 2825–2830 (2011).

[39] O. Anatole Von Lilienfeld, “Quantum machine learning
in chemical compound space,” Angewandte Chemie In-
ternational Edition 57, 4164–4169 (2018).

[40] Rampi Ramprasad, Rohit Batra, Ghanshyam Pilania,
Arun Mannodi-Kanakkithodi, and Chiho Kim, “Ma-
chine learning in materials informatics: recent applica-
tions and prospects,” npj Computational Materials 3, 54
(2017).

[41] Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg,
Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl
Leswing, and Vijay Pande, “MoleculeNet: A bench-
mark for molecular machine learning,” Chemical Science
9, 513–530 (2018).

[42] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley,
Philipp Eiden, Hua Gao, Angel Guzman-Perez, Timothy
Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer,
Volker Settels, Tommi Jaakkola, Klavs Jensen, and
Regina Barzilay, “Analyzing Learned Molecular Repre-
sentations for Property Prediction,” Journal of Chemical
Information and Modeling 59, 3370–3388 (2019).

[43] Harry L Morgan, “The Generation of a Unique Machine
Description for Chemical Structures-A Technique Devel-
oped at Chemical Abstracts Service.” Journal of Chemi-
cal Documentation 5, 107–113 (1965).

[44] David Rogers and Mathew Hahn, “Extended-
Connectivity Fingerprints,” Journal of Chemical
Information and Modeling 50, 742–754 (2010).

[45] Gregory Landrum, “RDKit: Open-source cheminformat-
ics, avaialble at http://www.rdkit.org,” (2006).

[46] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl, “Neural Message

Passing for Quantum Chemistry,” in Proceeding of 34th

International Conference on Machine Learning, Vol. 70
(JMLR.org, 2017) pp. 1263–1272.
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