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Generative machine learning models sample drug-like molecules from chemical space 
without the need for explicit design rules. A deep learning framework for customized 
compound library generation is presented, aiming to enrich and expand the 
pharmacologically relevant chemical space with new molecular entities ‘on demand’. 
This de novo design approach was used to generate molecules that combine features 
from bioactive synthetic compounds and natural products, which are a primary source of 
inspiration for drug discovery. The results show that the data-driven machine 
intelligence acquires implicit chemical knowledge and generates novel molecules with 
bespoke properties and structural diversity. The method is available as an open-access 
tool for medicinal and bioorganic chemistry.  
 
Innovative molecular design methods are needed to support medicinal chemistry by efficient 

sampling of untapped drug-like chemical space1,2,3. Recently, the field of drug design has 

adopted so-called generative deep learning models to construct new molecules with desired 

properties4,5,6,7,8. Deep learning methods represent a class of machine learning algorithms that 

learn directly from the input data and do not necessarily depend on rules coded by humans9,10. 

Some of these methods implement a language modeling approach11, where an artificial neural 

network aims to learn the probability of a ‘token’ (e.g., a word or a character) to appear in a 

sequence based on the distributions all previous tokens in a sequence12. Through this process, 

deep neural networks can learn the features of sequential data. Once trained, these models can 

generate novel sequences based on the sampled feature distributions.  
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The language modeling approach for de novo drug design uses the Simplified Molecular 

Input Line Entry Systems (SMILES) representation of molecules, which encodes molecular 

structure as a sequence of tokens13. Recent prospective applications have experimentally 

verified the potential of SMILES string-based generative de novo design of small molecules with 

the desired bioactivity14,15. An essential element of these prospective applications is transfer 

learning16,17, which is the process of transferring knowledge acquired to solve one task to 

another related task. In the first step (pretraining), the “chemical language” of bioactive 

molecules is learned by training a model on a large set of SMILES data with known bioactivities. 

In the second step, this general model is focused on a certain pharmacological target by 

performing transfer learning with small sets of molecules possessing the desired bioactivity.  

Here, we present an open-access generative deep learning framework for creating 

virtual libraries of structurally novel and diverse molecules for project-tailored applications in 

drug discovery and related areas. The computational framework consists of an optimized 

chemical language model for designing new molecules that populate designated target areas in 

chemical space. We analyzed the suitability of chemical language models of both synthetic 

molecules and natural products to enrich libraries with desired characteristics (physicochemical 

properties, structural diversity and novelty) similar to those of screening compound libraries18. 

The results demonstrate the ability of this computational approach to generate innovative 

molecules that are focused on a specific target area of the chemical space, e.g., by targeting a 

specific bioactivity or by enriching sets of structurally diverse de novo generated molecules with 

natural product characteristics.  

 

 

Results and Discussion 

Generating molecules with a chemical language model 
To develop a language model of the chemical constitution of biologically active molecules, a 

training dataset was compiled from ChEMBL2419. Bioactive compounds with annotated 

bioactivities (IC50, EC50, Kd, Ki) <1 µM were extracted from this chemical database and 

standardized, resulting in a set of ~365k molecules. Each training molecule was presented to 

the chemical language model as a one-hot vector encoding, i.e., a computer readable format 

derived from the respective SMILES string (Fig. 1a). In the one-hot encoding format, each token 

of the SMILES string vocabulary has a unique mathematical vector representation of a 

predefined length (equal to 71 in this study). During model training, the chemical language 
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model learns the conditional probability distribution of a token with respect to all the preceding 

tokens in the SMILES string (Fig. 1b). To optimize the applicability of the chemical language 

model to small training data sets, two different strategies were investigated, namely, data 

augmentation and temperature sampling. 

 
Data augmentation  

The amount and quality of the training data are key ingredients to successful language 

modeling20. Using multiple representations of the same entity (data augmentation) is one of the 

strategies for deep learning to work in a small data regime and obtain generalizing models, i.e., 

to have a chemically meaningful understanding of the training data21,22. To apply data 

augmentation, we leveraged the nonunivocal property of SMILES string; multiple valid SMILES 

strings representing the same molecular graph can be obtained by starting the string from any 

nonhydrogen atom in a molecule23 (Fig. 2a). We compared the effect of model training with two 

augmentation levels (10-fold and 20-fold) on the generated SMILES strings in terms of (1) 

validity, i.e., percentages of SMILES strings that can be translated back to molecular graphs; (2) 

uniqueness, which is the percentage of nonduplicated SMILES strings; and (3) novelty 

calculated as percentage of SMILES strings not present in the training set. High validity 

indicates that the model has learned the necessary features to generate chemically meaningful 

SMILES strings. High uniqueness indicates that the SMILES strings generation is 

nonredundant. A high degree of novelty suggests that the model is suitable for de novo 

molecule design.  

For each augmentation level, the chemical language model was trained for 10 epochs, 

with an epoch meaning one pass over all of the training data (Fig. 1c). We observed that 

augmenting the training data was beneficial in terms of all indices compared to the non-

augmented scenario (Table 1). However, 20-fold augmentation did not further improve the 

results obtained with 10-fold augmentation (Table 1).  

 

Temperature sampling  

In an attempt to further assess the model’s potential to generate valid, unique and novel 

SMILES strings, we investigated the effect of the so-called sampling temperature T (Eq. 1). The 

sampling temperature (T >0) governs the randomness of the chosen token at each step of 

sequence generation. For T→0, the most likely token according to the estimated probability 

distribution is selected; with increasing values of T, the chances of selecting the most likely 
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token decrease, so the model generates more diverse sequences (Fig. 2b). In the extreme case 

of T→∞, tokens will be selected with equal probabilities. We investigated the influence of four 

temperatures with respect to the probability distribution learned by the model: two conservative 

values (T = 0.2 and T = 0.7), one unbiased value (T = 1.0), and one more permissive value (T = 

1.2). The highest levels of valid, unique and novel SMILES strings were obtained at a sampling 

temperature of T = 0.7 (Table 1). Combining both data augmentation and temperature sampling 

led to an optimized chemical language model as indicated by the increased levels of validity, 

uniqueness and novelty of sampled molecules (Table 1). In subsequent experiments, the model 

trained with 10-fold data augmentation and T = 0.7 was used for generating application-focused 

libraries. 

 

Generating compound libraries with transfer learning 

Building on the general optimization results of the chemical language model, we investigated 

the potential of transfer learning to create novel and diverse virtual compound libraries for drug 

discovery. To enrich sets of generated molecules with features relevant for drug discovery24, we 

applied transfer learning to navigate between two spaces: a synthetic compound space (“source 

space”) of bioactive molecules compiled from ChEMBL24 and a chemical space of natural 

products (“target space”) defined by natural products from the manually curated natural product 

screening library MEGx (Analyticon Discovery GmbH, Potsdam, Germany).  
 

Generating application-focused compound libraries 
As an example of building an application-focused compound library by transfer learning, we 

selected five structurally similar molecules from the MEGx collection of natural product 

screening compounds (compounds 1–5, Fig. 3a) according to their Jaccard-Tanimoto 

similarity25 computed on Morgan fingerprints26 (similarity higher than 0.78). These five natural 

products were used for transfer learning.  

To estimate the coverage of the chemical space during transfer learning, we computed 

the Fréchet ChemNet Distance (FCD), a distance metric to evaluate the similarity between two 

populations of molecules based on chemical structure and bioactivity27. An FCD value of 0 

indicates that the compared molecular spaces are identical, while higher values indicate greater 

dissimilarity. The FCD curves evolved continuously as a function of the number of training 

epochs (Fig. 3b). This observation indicates that chemical language models are able to sample 
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the chemical space between a source and a target space in a continuous fashion although 

molecules are discrete entities. 
During the initial epochs of transfer learning (epochs one to six) the distances of the 

generated molecules to the target space (MEGx) and the source space (ChEMBL24) decreased 

before increasing. The lower FCD to the source space during the initial epochs can be 

explained by the initial effect of transfer learning. The model focused on features that are 

common between the source space and the target molecules possibly because ChEMBL24 

contains natural products, and many synthetic molecules are natural product-inspired 

compounds28. The increasing distance to the natural product target space during transfer 

learning might seem initially counterintuitive. A likely explanation for this increasing distance to 

the natural product target space is the limited size and diversity of the set of five natural 

products used for transfer learning compared to the whole natural product space. 

To highlight the changes of physicochemical properties during transfer learning, we 

selected the fraction of sp3-hybridized carbon atoms (Fsp3) as an illustrative example since 

Fsp3 values typically differ between synthetic and natural compounds29. During transfer 

learning, the Fsp3 distribution approximated the transfer learning set distribution (Fig. 3c). This 

finding confirms that transfer learning from a small set of structurally similar compounds enables 

the model to implicitly capture relevant physicochemical properties.  

In an attempt to visualize the relative location of the computer-generated molecules in 

chemical space30, UMAP (Uniform Manifold Approximation and Projection31) plots were 

generated. UMAP creates a two-dimensional representation of high-dimensional data 

distributions (here: molecules represented as Morgan fingerprints), in which the similarity 

relations between data points in the original high-dimensional space are largely preserved31,32. 

In this visualization, the molecules sampled from the pretrained chemical language model (light 

blue) are close to the training data (dark blue), and the molecules are shifted toward the location 

of the transfer learning set after transfer learning (epoch 40) (Fig. 3d). This graphical analysis 

corroborates the effectiveness of transfer learning for navigating in chemical space from the 

source to the target. 

We further assessed the coverage of chemical space and the diversity of the generated 

molecules by analyzing their atom scaffolds (Bemis-Murcko scaffolds)33. We examined the five 

most frequent scaffolds of sampled molecules before, i.e., using the pretrained chemical 

language model, and during transfer learning (Fig. 4). As a measure of scaffold diversity, we 

determined the Shannon entropy scaled by the number of investigated scaffolds34 (scaled 

Shannon entropy, SSE, Eq. 2). SSE quantitatively reflects the structural diversity of a given set 
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of scaffolds. Here, SSE = 1 indicates maximum diversity, whereas SSE = 0 indicates full 

conservation of a single molecular scaffold. During the transfer learning process, the number of 

molecules containing one of the five most frequent scaffolds increased, whereas their diversity 

decreased in terms of SSE. When assessing the whole population, the number of unique 

scaffolds decreased by approximately 50% during transfer learning. The fraction of singletons, 

i.e., scaffolds occurring only once in a population, also decreased (Table 2, Supporting 

Information). This result shows that transfer learning with the structurally conserved natural 

products 1–5 (Fig. 3a) led to the de novo design of a structurally focused compound collection 

that predominantly contains the chemical scaffold of the transfer learning set.  

We then examined the novelty of the generated molecules and their corresponding 

scaffolds. The total number of novel molecules with respect to the training and transfer learning 

set was reduced by 60% at the end of the transfer learning process, whereas the number of 

novel scaffolds only decreased marginally (Table 2, Supporting Information). Compared to the 

Enamine compound set (700M drug-like compounds) as an example of a screening compound 

collection, almost all generated molecules (>99%) were new, and the proportion of new 

scaffolds among the generated molecules increased from 75% to over 95% during transfer 

learning (Table 2, Supporting Information).  

 

Generating virtual libraries by expanding chemical space  
Having demonstrated the ability of the chemical language model to generate scaffold-focused 

de novo sets, we explored the application of transfer learning to expand the sampled chemical 

space from the training space to the target space. Here, the transfer learning set contained 

molecule 1 and four dissimilar natural products (6–9, Fig. 5a) to increase the diversity of the 

fine-tuning set and observe its effect on the structure of the generated molecules. We observed 

that both FCD curves evolved continuously as a function of the number of epochs (Fig. 5b). 

While the distance to the target space (MEGx) continuously decreased with the number of 

epochs, the distance to the source space (ChEMBL24) remained initially stable but increased 

after the fifth epoch. The Fsp3 distribution of the sampled molecules (Fig. 5c) after the last 

transfer learning epoch (epoch 40) reflects the distributions of both the transfer learning set and 

the whole MEGx collection. This result suggests that pronounced structural diversity of the 

transfer learning set permits sampling of molecules with structural characteristics covering a 

representative portion of the target space (Fig. 5b,c). In contrast, transfer learning with five 

similar molecules resulted in the generation of molecules exclusively with characteristics of the 

transfer learning set (Fig. 3b, c). UMAP visualization indicates that many molecules were 
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sampled from areas in the vicinity of the natural products 6–9. Overall, the compound 

distribution at epoch 40 corroborates extended coverage of chemical space with de novo 

generated molecules. 

The five most frequent scaffolds represented only a small fraction of all generated 

molecules compared to the analysis with five similar natural products. The diversity (SSE) of the 

five most frequent scaffolds decreased during transfer learning. The fractions of scaffolds and 

singletons were high and slightly increased throughout the transfer learning process (Table 2). 

The generated sets comprised a large fraction of molecules with a novel scaffold compared to 

the source and target spaces (Table 2). After transfer learning, the majority of the generated 

molecules and scaffolds (>99%) were not contained in the Enamine collection (Table 3). 

We conclude that transfer learning with a structurally diverse transfer learning set allows 

to generate structurally diverse molecules, comprising a broad range of scaffolds and 

possessing properties of the target space, e.g., an enriched fraction of sp3 hybridized carbon 

atoms. This approach could help enrich screening compound collections with innovative 

compounds and scaffolds for virtual and real high-throughput screening. 

 
 

Conclusions 

Generative deep learning proved applicable to computer-based compound library design for use 

in medicinal chemistry. The results demonstrate that chemical language models combined with 

transfer learning support the discovery of new molecular architecture for drug design. Chemical 

language models proved able to navigate through chemical space using the SMILES molecular 

representation. By relying on the chemical similarity principle35,36 and natural products as 

starting points for drug design, this computational approach successfully generated novel and 

chemically diverse molecular entities. This pretrained chemical language model is publicly 

accessible to enable experimentation along with the analysis framework and an interactive map 

to encourage researchers to apply transfer learning on custom sets of molecules for own 

chemical space exploration. It should be noted that this computational framework does not 

explicitly assess the synthesizability of molecules, and further compound ranking and 

prioritization may be required. Keeping these constraints in mind, only broad prospective 

application of this machine learning model will reveal if the underlying data-driven approach has 

the potential to accelerate the identification of novel bioactive compounds for early-stage drug 

discovery.  
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Methods 

Training compounds and data processing. Compounds with an annotated activity values 

(IC50, EC50, Kd, Ki) <1 µM (pActivity ≥6) were retrieved from ChEMBL24 to cover the chemical 

space of biologically active compounds. Molecular structures were encoded as canonical 

SMILES strings37 with the RDKit package (v2018.03, www.rdkit.org), and only SMILES strings 

with a length of up to 140 tokens (characters) were retained. SMILES strings of were 

standardized in Python (v3.6.5, www.python.org) by removing stereochemical information, salts 

and duplicates. This data preparation resulted in a set of 365,063 bioactive molecules encoded 

as unique SMILES strings (referred to as “ChEMBL24”). 

 

Transfer learning sets. Molecules for transfer learning were retrieved from the natural product 

collection MEGx (release date 01.09.2018, Analyticon Discovery GmbH, Potsdam, Germany). 

To focus on structural features of the central scaffolds of these natural products, all existing 

carbohydrate moieties were removed by substructure filtering using DataWarrior software 

(www.openmolecules.org/datawarrior/, 5.0.0)38; 2931 molecules were retained. To assess 

pairwise similarities, all molecules were represented as bit vectors according to the Morgan 

fingerprint algorithm26. Morgan fingerprints numerically encode the presence of radial molecular 

fragments (length = 2048, radius = 2) as implemented in RDKit (version 2018.03). Molecule 1 

was randomly selected from the dataset. The four most similar molecules according to their 

Tanimoto similarity (Tanimoto coefficient, TC) to molecule 1 were chosen from MEGx (TC 0.78 

to 0.82). Based on molecule 1, the MaxMinPick algorithm, as implemented in RDKit 

(LazyBitVectorPick), was used to select a subset of four dissimilar natural products (TC = 0.04 to 

TC = 0.10).  

 

Chemical language model implementation. All software programs were implemented in 

Python (v3.6.5) using Keras (v2.2.0, https://keras.io/) with the TensorFlow GPU backend 

(v1.9.0, www.tensorflow.org). The chemical language model was implemented as a recurrent 

neural network with long short-term memory cells (LSTM)39. The neural network was composed 

of four layers having a total of 5,820,515 parameters (layer 1: BatchNormalization, layer 2: 

LSTM with 1024 units, layer 3: LSTM with 256 units, layer 4: BatchNormalization) and was 

trained with SMILES strings encoded as one-hot vectors. The Adam optimizer40 with a learning 

rate of 0.001 was used for training the chemical language model training (10 epochs, where one 
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epoch is defined as one pass over all the training data, took ~21 hours on the processed 

ChEMBL24 data with a 10-fold data augmentation on a single Nvidia GTX 1080 GPU with 256 

GB of memory). Each training run was repeated ten times, and 5000 SMILES strings were 

sampled after each epoch for a total of 10 epochs. Transfer learning was performed by keeping 

the parameters of the first model layer constant and training the second layer with a smaller 

learning rate (10-4). Each transfer learning experiment was repeated ten times, and 10000 

molecules were sampled after each second epoch for a total of 40 epochs.  

 

Sampling of new SMILES strings. Sampling of SMILES string characters was performed with 

the softmax function parameterized by the sampling temperature. The probability of the i-th 

token to be sampled from chemical language model predictions was computed as (Eq. 1): 

𝑞" 	=
%&'()*/,)

∑ %&'()//,)		
/

 , (1) 

where 𝑧" is the chemical language model prediction for token 𝑖, 𝑇 is the temperature, and 

𝑞" is the sampling probability of token 𝑖 given by the chemical language model.  

 

Data augmentation. Data augmentation was performed with RDKit (v2018.03.3.0) using 

multiple SMILES string representations of the same molecule. We defined two augmentation 

levels (10-fold and 20-fold), where a 10-fold augmentation is defined as the SMILES string 

canonicalized version with 10 alternative representations. 

 

Fréchet ChemNet distance. The Fréchet ChemNet Distance (FCD) was computed by 

comparing the Fréchet distance41 between molecules from the training set and generated 

molecules. The FCD was calculated following the implementation provided by Preuer et al. 

(https://github.com/bioinf-jku/FCD)27. In total, 5000 molecules were randomly selected from 

each compound set for FCD calculation when possible. A minimum of 2931 molecules was 

used to compute the FCD to MEGx (i.e., the number of compounds available from MEGx after 

initial data processing). 

 
Normalized Shannon entropy. We used the following equation to compute the Normalized 

Shannon entropy (SSE)34: 
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where the numerator is the Shannon entropy, 𝑛 is the number of unique scaffolds 

considered, 𝑐" is the number of compounds containing the i-th scaffold, and 𝑃 is the total 

number of compounds among the considered 𝑛 scaffolds. The denominator bounds the values 

to the interval [0,1]. 

 

Code and data availability. The computational framework and the data are available on 
GitHub at URL: https://github.com/ETHmodlab/virtual_libraries 
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Figure 1 (color) 
 
 

 
 
Figure 1. Chemical language model (CLM) training and sampling of new molecules. a, 
Each molecule is translated to its canonical SMILES string notation from its molecular graph. 
Combined with a start token (“G”) and an end token (“E”), SMILES strings are presented as 
input to the chemical language model using one-hot encoding. b, The chemical language model 
learns the feature distribution of the dataset by predicting each token from the preceding 
token(s) in a SMILES string. c, For de novo molecule generation (sampling step), the chemical 
language model repeatedly samples tokens from the learned distribution until the end token is 
sampled, indicating the completion of a new SMILES string. 
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Figure 2 (b/w) 
 
 
 
 

 
 
Figure 2. Data augmentation and temperature sampling. a, Example of 10-fold data 
augmentation. All SMILES strings represent the same molecular graph. b, Effect of the 
sampling temperature T on the conditional probability distribution over the SMILES string 
vocabulary for selected tokens (G, N, C, 1, c, O, E). T = 1 represents the probability distribution 
the chemical language model learned during training. T <1 sharpens the distribution. T >1 
flattens the distribution. 
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Figure 3 (color) 
 
 

 
 

Figure 3. Chemical space navigation by transfer learning with five similar molecules. a, 
The Transfer Learning Set consisted of five structurally similar natural products (1–5) from the 
natural product collection MEGx. b, Fréchet ChemNet Distance (FCD) to ChEMBL24 and 
MEGx, respectively, of generated molecules during chemical space navigation. Mean and 95% 
confidence interval for ten repeats are shown in shaded area. c, Evolution of the fraction of sp3-
hybridized carbon atoms (Fsp3) during chemical space navigation. d, UMAP plot of molecules. 
For each group, 1000 molecules were randomly selected. Dark blue: ChEMBL24. Dark orange: 
MEGx. Light blue: molecules generated from the pretrained model (training epoch 0). Light 
orange: molecules generated at epoch 40. Gray circles: transfer learning set (a). 
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Figure 4 (color) 
 
 

 
 

Figure 4. The five most frequent scaffolds from different training epochs during chemical 
space navigation to de novo generated focused compound libraries. Percentage indicates 
the fraction of molecules containing the respective scaffold. The scaffold diversity of the five 
most frequent scaffolds was quantified by Scaled Shannon Entropy (SSE, values from [0,1]) 
(Eq. 2). A greater SSE value indicates greater diversity. In total, 7% of all sampled molecules at 
epoch 1, 25% at epoch 20 and 35% at epoch 40 were represented by the five most frequent 
scaffolds.  
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Figure 5 (color) 
 
 

 
 

Figure 5. Chemical space navigation by transfer learning with five dissimilar molecules. 
a, Five dissimilar natural products (1, 6–9) from the MEGx collection. b, Fréchet ChemNet 
Distance (FCD) to ChEMBL24 and MEGx of generated molecules. The mean value and 95% 
confidence interval (shaded area) for ten repeats are shown. c, Evolution of the fraction of sp3-
hybridized carbon atoms (Fsp3) during transfer learning. d, UMAP plots of molecule 
distributions. In total, 1000 molecules were randomly selected from each set. Dark blue: 
ChEMBL24. Dark orange: MEGx. Light blue: molecules generated with the pretrained model 
(epoch = 0). Light orange: molecules generated at epoch 40. Gray circles: transfer learning set 
(a).  
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Figure 6 (color) 
 
 

 
 

Figure 6. The five most frequent scaffolds from different training epochs during chemical 
space navigation. Percentage indicates the fraction of molecules containing the scaffold 
(epoch 0: sampled from the pretrained model.) The diversity of the five most frequent scaffolds 
is expressed in terms of the Scaled Shannon Entropy (SSE). Here, 1% of all sampled molecules 
at epoch 1, 6% at epoch 20, and 7% at epoch 40 contained one of the five most frequent 
scaffolds. 
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Tables 

 
 
Table 1. Validity, uniqueness and novelty of molecules depending on data augmentation 
and sampling temperature. Each experiment was run for 10 epochs and repeated 10 times. 
After each epoch, 5000 molecules were sampled. The “best epoch” was defined as the one 
yielding the highest average novelty value. Percentages are reported with respect to the total 
number of molecules sampled. 
 

Data 
augmentation 

Sampling 
temperature 

Best 
epoch 

Valid % Unique %  Novel % 

None 1.0 10 84.4 ± 1.9 84.3 ± 1.8 82.3 ± 1.3 

10-fold 1.0 7 93.5 ± 0.8 93.5 ± 0.8 92.3 ± 0.6 

20-fold 1.0 6 94.2 ± 0.4 94.2 ± 0.4 92.6 ± 0.4 

10-fold 
 

10-fold 
 

10-fold 

0.2 7 85.8 ± 6.3 54.9 ± 6.4 52.0 ± 7.2 

0.7 4 97.4 ± 0.8 97.3 ± 0.8 93.8 ± 1.0 

1.2 4 84.8 ± 3.4 84.8 ± 3.4 84.4 ± 3.3 
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Table 2. Scaffold analysis during the transfer learning with five similar and five dissimilar 
natural products. Scaffolds (N) were extracted from chemically valid, unique, novel molecules 
(M). Epoch 0 indicates molecules sampled from the pretrained model (before transfer learning). 
Singleton scaffolds (Ns) represent scaffolds with a frequency of one. The fraction of novel 
scaffolds was calculated by comparing with scaffolds contained in the training data set 
(ChEMBL24) and the natural product set (MEGx).  
 

Source Novel 
Molecules 

(M) 

Scaffolds 
(N) 

Singleton 
Scaffolds 

(Ns) 

Pscaffolds 

N/M 
Psingletons 

Ns/N 
Novel % 

(ChEMBL24 | 
MEGx) 

General base model without transfer learning 

Epoch 0 9567 8296 7844 0.87 0.95 99 | 99 

Transfer learning with five similar compounds 

Epoch 1 9035 6622 5983 0.73 0.90 83 | 98 

Epoch 20 6543 2522 1998 0.39 0.79 79 | 92 

Epoch 40 3373 891 660 0.26 0.74 75 | 85 

Transfer learning with five dissimilar compounds 

Epoch 1 9459 8187 7573 0.87 0.93 86 | 99 

Epoch 20 8702 7581 7288 0.87 0.96 92 | 97 

Epoch 40 8184 7140 6917 0.87 0.97 94 | 97 

MEGx 2931 1159 797 0.40 0.69 n.a. 

ChEMBL24 365,063 135,120 93,174 0.37 0.69 n.a. 

 
n.a., not applicable. 
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Table 3. Novelty comparison of de novo generated molecules with the Enamine REAL database 
(720 million compounds).  
 

Transfer Learning Set Novel Molecules % Novel Scaffolds % 

Five similar compounds   

Epoch 1 99.75 ± 0.05 79.15 ± 0.61 

Epoch 20 99.93 ± 0.04 92.23 ± 0.45 

Epoch 40 99.97 ± 0.03 95.05 ± 1.01 

Five dissimilar compounds   

Epoch 1 99.73 ± 0.04 82.68 ± 0.20 

Epoch 20 99.94 ± 0.02 97.71 ± 0.06 

Epoch 40 99.99 ± 0.01 99.68 ± 0.02 

 
 
 
 
  



Moret et al. 20 

Supplementary Information 

 

 
Figure S1. Chemical space navigation by transfer learning with one molecule. a, Fréchet 
ChemNet Distance (FCD) to ChEMBL24 and MEGx of generated molecules during chemical 
space navigation. Mean and 0.95 confidence interval for ten repeats are shown in shaded area. 
b, Evolution of the fraction of sp3-hybridized carbon atoms (Fsp3) during the chemical space 
navigation. c, UMAP plot of molecules. For each group, 1k molecules were randomly selected. 
Dark blue: ChEMBL24. Dark orange: MEGx. Light blue: molecules generated from the 
pretrained model (i.e., epoch zero). Light orange: molecules generated at epoch 40. Gray 
circles: transfer learning set. 
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Figure S2. Chemical space navigation by transfer learning with 10 similar molecules. a, 
Fréchet ChemNet Distance (FCD) to ChEMBL24 and MEGx of generated molecules during 
chemical space navigation. Mean and 0.95 confidence interval for ten repeats are shown in 
shaded area. b, Evolution of the fraction of sp3-hybridized carbon atoms (Fsp3) during the 
chemical space navigation. c, UMAP plot of molecules. For each group, 1k molecules were 
randomly selected. Dark blue: ChEMBL24. Dark orange: MEGx. Light blue: molecules 
generated from the pretrained model (i.e., epoch zero). Light orange: molecules generated at 
epoch 40. Gray circles: transfer learning set.  
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Figure S3. Chemical space navigation by transfer learning with 10 dissimilar molecules. 
a, Fréchet ChemNet Distance (FCD) to ChEMBL24 and MEGx of generated molecules during 
chemical space navigation. Mean and 0.95 confidence interval for ten repeats are shown in 
shaded area. b, Evolution of the fraction of sp3-hybridized carbon atoms (Fsp3) during the 
chemical space navigation. c, UMAP plot of molecules. For each group, 1k molecules were 
randomly selected. Dark blue: ChEMBL24. Dark orange: MEGx. Light blue: molecules 
generated from the pretrained model (i.e., epoch zero). Light orange: molecules generated at 
epoch 40. Gray circles: transfer learning set.  
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Figure S4. Chemical space navigation by transfer learning with 50 similar molecules. a, 
Fréchet ChemNet Distance (FCD) to ChEMBL24 and MEGx of generated molecules during 
chemical space navigation. Mean and 0.95 confidence interval for ten repeats are shown in 
shaded area. b, Evolution of the fraction of sp3-hybridized carbon atoms (Fsp3) during the 
chemical space navigation. c, UMAP plot of molecules. For each group, 1k molecules were 
randomly selected. Dark blue: ChEMBL24. Dark orange: MEGx. Light blue: molecules 
generated from the pretrained model (i.e., epoch zero). Light orange: molecules generated at 
epoch 40. Gray circles: transfer learning set.  
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Figure S5. Chemical space navigation by transfer learning with 50 dissimilar molecules. 
a, Fréchet ChemNet Distance (FCD) to ChEMBL24 and MEGx of generated molecules during 
chemical space navigation. Mean and 0.95 confidence interval for ten repeats are shown in 
shaded area. b, Evolution of the fraction of sp3-hybridized carbon atoms (Fsp3) during the 
chemical space navigation. c, UMAP plot of molecules. For each group, 1k molecules were 
randomly selected. Dark blue: ChEMBL24. Dark orange: MEGx. Light blue: molecules 
generated from the pretrained model (i.e., epoch zero). Light orange: molecules generated at 
epoch 40. Gray circles: transfer learning set. 
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