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Abstract

Biomolecular crowding affects the biophysical and biochemical behavior of macro-

molecules when compared to the dilute environment present in experiments made with

isolated proteins. Computational modeling and simulation are useful tools to study how

crowding affects the structural dynamics and biological properties of macromolecules.

As computational power increased, modeling and simulating large scale all-atom ex-

plicit solvent models of the prokaryote cytoplasm become possible. In this work, we

build an atomistic model of the cytoplasm of Escherichia coli composed of 1.5 million

atoms and submit it to a total of 3 µs of molecular dynamics simulations. The proper-

ties of biomolecules under crowding conditions are compared to those from simulations

of the individual compounds under dilute conditions. The simulation model is found

to be consistent with experimental data about the diffusion coefficient and stability

of macromolecules under crowded conditions. In order to stimulate further work we

provide a Python script and a set of files that enables other researchers to build their

own E. coli cytoplasm models to address questions related to crowding.

2



Introduction

The intracellular environment is markedly different from the in vitro model systems from

which most of our knowledge about the biochemical and biophysical behavior of macro-

molecules has been derived.1 The in vivo microenvironment is heterogeneous with high con-

centrations of many different compounds, leading to spatial constrains that directly affects

biological activities2. This effect, called macromolecular crowding, influences the stability of

many macromolecules because the equilibrium is shifted towards a stable native structure as

a result of the entropic component given by the excluded volume effect.3 At the same time,

an effective destabilization due to the enthalpic component of the Gibbs energy has been ob-

served, due to replacing interactions with water by weaker interactions with the crowders.4–6

Additionally, crowding affects the structure and dynamics of water around proteins, which

has a significant effect on their biological activities.7,8 While the structure and dynamics of

biomolecules is well characterized in vitro, the understanding of the influences of crowded

environments in vivo are still evolving. Techniques such as nuclear magnetic resonance9,10

and fluorescence spectroscopy11–13 are among the most relevant to the field due to their

ability to probe cells in a non destructive way.

A powerful class of methods is computational modeling and simulation. As the available

computational power increases, models become increasingly complex and are better represen-

tations of reality. The most simple class of computational models apply Brownian Dynamics

calculations to probe macromolecules immersed in a solution of crowders that are treated

as hard spheres with varying radii to represent different types of molecules.14 These models

usually use an implicit representation of the solvent.15 More recently, all-atom explicit sol-

vent molecular dynamics simulations have been employed on crowded systems composed of

several copies of one or a few macromolecules.16 However, these models do not reflect the

true heterogeneity of biologically relevant crowded environments such as the cytoplasm. This

was addressed by the development of a detailed model for the cytoplasm of the bacterium

Mycoplasma genitalium containing 103 million atoms.17 This model, as well as a smaller
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version with 13 million atoms, was submitted to molecular dynamics simulations.18 Due to

the size of these systems, the simulation times were very short, 20 ns for the complete model

and 140 ns for a smaller version, precluding an accurate characterization of dynamical effects

that can take place in such a large scale. It was estimated, by extrapolating the advances

in computational power in the last decades to the future, that the atomistic simulation of

an entire Escherichia coli bacterium (about 1011 atoms) for 1 ns will be possible around the

year 2034.19 This prediction may be too pessimistic, seeing that “only” a factor of 50 is

lacking between the simulations by Feig and co-workers17 (from 2015) and the target of a

whole bacterium for 1 ns. It was noted already some years ago, however, that even microsec-

ond simulations may be too short to probe the dynamics of large complexes like viruses20,21

since dynamics is slower in larger systems in general. Although a meaningful simulation of a

bacterium at the atomistic level does not seem to be within reach in the foreseeable future,

simulations of parts of a cell may still be useful to adress biological questions.

In this work, we report on an all-atom model of part of the cytoplasm of Escherichia

coli, built to reflect the real biological system, in particular as regards a realistic composition

of this “soup”. We discuss the difficulties that arise when building such a system and

provide a set of Python scripts and files that can be used to build crowded systems with

custom parameters and compounds. Additionally, we performed long molecular dynamics

simulations of our cytoplasm model, reaching 3 µs of total simulation time. To the best of our

knowledge, this work is the first to explore the structural dynamics of an all-atom explicit

solvent cytoplasm model with microsecond scale molecular dynamics simulations.

Materials and Methods

Initial structures

The protein and tRNA structures were downloaded from the Protein Data Bank (PDB).22

Proteins structures that were either from E. coli or its closest homologues (Table 1) were
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selected for this work. In case of PDB IDs 1U22 (MetE protein) and 2EIP (Ppa protein),

we used a loop-closure modeling tool based on the Random Coordinate Descent (RCD)

method23 to model missing residues. The four metabolites were parametrized using the

General Amber Force Field (GAFF)24 and Antechamber25 using RESP charges26 that were

derived from electron density calculated at the HF/6-31G* theory level with Gaussian16.

Properties of compounds modeled using the GAFF have been evaluated in a number of

papers27–31 and strengths and weaknesses are well understood. Here, GAFF is used for

compatibility with the Amber99SB-ws force field32 used for the biomolecules.

General simulation setup

The cytoplasm model was built at a 30% biomolecular mass fraction and a physiological

salt concentration of 0.15 mol/L KCl. Dropplets containing each component of the model

surronded by water and counter-ions were inserted in an empty box in random positions

and orientations. Since the volume of this box was initially bigger than what was strictly

necessary to accomodate all components, the system was allowed to shrink in a short sim-

ulation. Details about how the simulation box was built and optimized are in the results

section. All simulations were performed with the GROMACS 2018 package33,34 using the

Amber99SB-ws force field,32 a modified version of the Amber99SB force field, in combination

with the TIP4P/2005 water model35 and improved K+ parameters36 to avoid the formation

of KCl crystals that is observed when using the default parameters of the Amber99SB force

field.37 All interactions were calculated explicitly inside a 1 nm radius and long range elec-

trostatic interactions were treated using the particle mesh Ewald algorithm.38 Corrections

due to long range effects of dispersion interactions were made to both energy and pressure.39

All chemical bonds were constrained at their equilibrium length using the parallel LINCS

algorithm40,41 allowing an integration time step of 2 fs. Temperature was kept at 310 K

by the v-rescale thermostat42 with a coupling constant of 0.5 ps. Pressure was kept at 1

bar using the Berendsen barostat43 with the coupling constant of 10.0 ps during thermaliza-
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tion steps and by the Parrinello-Rahman barostat44 with the same coupling constant during

production steps.

All systems were initially submitted to energy minimization with the steepest descent

algorithm until convergence to machine (single) precision. For the cytoplasm model, a short

shrinking step of 500 ps was performed in order to allow the box volume to adjust to its

optimal value. For all systems, initial velocities were sampled from a Maxwell-Boltzmann

distribution at 310 K and we ran a 1 ns NVT thermalization step followed by 10 ns of NPT

equilibration. Production runs for the dilute systems, in which each crowder is simulated

alone in a water box, had a- length of 200 ns. The cytoplasm model was run for 1 µs. All

systems were simulated in three replicas. While the replicas for the diluted systems were

generated by different initial velocities, each replica of the cytoplasm model is a completely

different box in which the components of the model are in different positions and orientations.

Analyses

For statistics, the average and standard error of the three trajectories are reported. For

values that are specific to each chain, we used the average over the individual chains in each

trajectory of the replicas. Additionally, since there is more than one copy of some crowders

in the cytoplasm models, average values and standard errors are calculated considering each

copy of each replica. As in the dilute system, separate chains of each copy of the crowders

were considered as independent samples when running analyses that focus on one single

chain. The first half of all simulations was discarded as equilibration time and analyses used

only the second half.

Analyses were done using GROMACS tools after removing artifacts generated by periodic

boundary conditions from the trajectories. A Mean Square Displacement (MSD) analysis

was performed to calculate the translational diffusion coefficient, which were extracted by a

linear fit to MSD by averaging blocks with a length of 10ns for dilute systems and 100ns

for cytoplasm system.39 In principle, diffusion coefficient needs to be corrected for finite
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size effects.45,46 Due to relatively large simulation boxes this correction is negligible. Root

Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) calculations

considered the Cα atoms only for analysis in each trajectory. The chain interface area of a

given oligomer in a given frame was calculated as the difference between the solvent exposed

surface area (SASA) of the oligomer in that frame and the sum of the SASAs of each of its

chains independently in that same frame. Other analyses, such as box volume and Radial

Distribution Function (RDF), followed standard procedures.

Results

Cytoplasm model

In this section we describe the rationale behind the composition of our model, which consists

of five fractions: protein, RNA, metabolites, water and ions. It should be noted that we did

not add lipids and DNA to our model because we consider only elements that are free to

diffuse through the cytosol. We gathered data from several sources in order to build a

computational model that is representative of the cytoplasm of Escheria coli.15,47–49

Protein fraction

Eight different proteins were selected that together account for 50% of the non-ribosomal

proteins in the cytoplasm of Escherichia coli.49 The two most abundant proteins, TufA and

MetE, account for about 20% and 12% of the total protein abundance in E. coli, respectively,

while the other six proteins contribute with less than 5% each (Table 1). The least abundant

protein was present with 1 copy and the amount of each of the other proteins was taken to

be an integer number of oligomers. This was done because the original oligomeric state for

each protein was kept as reported in their crystallographic structure (Table 1).
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Table 1: Protein, PDB ID, number N of proteins in the simulation. Fraction of the total abundance
of non-ribosomal proteins in the cytosol of E. coli K12 and oligomeric state of each protein that
was selected to compose our cytoplasm model.

Protein PDB N Fraction [%] State
Elongation factor TU (TufA) 1DG150 6 19.7 dimer

Cobalamin-independent methionine synthase (MetE) 1U2251 7 11.6 monomer
Isocitrate dehydrogenase (IcdA) 1P8F52 2 4.7 dimer

Alkyl hydroperoxide reductase subunit C (AhpC) 1YEP53 1 4.1 decamer
Cold-shock protein (CspC) 1MJC54 3 4.0 monomer

Pyrophosphatase (Ppa) 2EIP55 1 2.9 hexamer
Glyceraldehyde 3-phosphate dehydrogenase A (GapA) 1S7C56 1 2.1 tetramer

Enolase (Eno) 1E9I57 1 1.9 dimer
Total 48 51.1

RNA fraction

Transporter RNAs (tRNAs) account for 74% of the dry weight of non-ribosomal RNAs.58

Thus, we chose to model the RNA presence in the cytoplasm with tRNA molecules. Specif-

ically, the tRNA(Phe) molecule as a representative of tRNAs due to the availability of a

recent crystal structure (4YCO59). The protein and RNA content of the total dry weight of

E.coli is 55% and 2.9%, respectively.58 That is, the total RNA weight corresponds to 5% of

the total protein weight. This protein/RNA weight ratio was used to calculate the correct

number of tRNA(Phe) molecules that were added to the cytoplasm model Table 2.

Metabolites fraction

The most abundant molecules of each metabolite class was used to represent the class, i.e.

Glutamate (GLT) for amino acids, ATP for nucleotides, Fructose-2,6-Biphosphate (FBP) for

central carbon intermediates and Glutathione (GSH) redox cofactors.48 The total number of

molecules was calculated considering data showing that the number of metabolite molecules

in the cytoplasm of E. coli is ≈ 43 times higher than the number of proteins.48 The copy num-

ber for each molecule was calculated from the ratios between their experimentally observed

concentration in E. coli.48
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Water fraction

The number of water molecules was calculated according to the desired biomolecular con-

centration, which is a parameter of the cytoplasm model. Macromolecular concentration

ranges from 300 to 400 g/L in biological systems such as E. coli cytoplasm,60 the highest

concentration corresponds to volume occupation as high as 40%.61 In our case, we choose

a biomolecular concentration of 30%, that is, the number of molecules necessary to reach

a ratio of total biomolecular mass to water mass of 30% was inserted into the cytoplasm

model.

Inorganic ions fraction

Finally, Mg2+ was used as counter-ions for tRNA and ATP. K+ and Cl− were added to

neutralize the charges of the simulation box and to reach the ionic strength of 0.150 mol/L

by substitution of randomly selected water molecules.

Table 2: Number of copies for non-protein components of the cytoplasm model built at the
biomolecular fraction of 30%.

Class Name Number
RNA tRNAPhe 5
Metabolite GLT 1436

ATP 144
FBP 225
GSH 255

Solvent Water 306221
Inorganic Ion K+ 4602

Mg2+ 400
Cl− 1320

Building the simulation box

All components can be put in the same simulation box by inserting each of them in random

orientations in a cubic volume of side L that is initially empty. However, that is not a trivial

process. We need to use a box size that is big enough to allow the random insertions to
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succeed without structural overlapping and without creating artificial interactions between

the elements by placing them too close from each other. On the other hand, as the box

gets bigger, it gets harder to equilibrate the system because the empty space between the

components will induce the barostat to reduce the box volume quickly during the simulation.

We devised an iterative process that solves both problems simultaneously. We start with

a box size L that is too small to allow all components to fit in the box by random insertion.

In our case, we start with L = 30 nm. Then, we allow 100 insertion trials for each element. If

all trials fail for any of them, we start the whole process again with an empty cubic box that

is larger by a step size dL of 1 nm. We repeat this process until all insertions succeed. In our

case, all insertions succeeded after increasing L to 35 nm. Additionally, instead of adding

only the protein, tRNA or metabolite molecules in the empty box in each trial, we actually

add a droplet of water and counter ions in which the molecule of interest is embedded.

Such droplets are taken from molecular dynamics simulations in which each component was

previously equilibrated. The benefits of using such droplets are threefold: i. it acts as

natural protecting layer that prevents artificial contacts between the components that could

be created due to the random insertions. ii. it is a natural way to place water molecules and

counter-ions in the simulation box around each component. iii. the components are already

pre-equilibrated, which will help us to perform the equilibration of the whole cytoplasm

model.

In order to do this, the droplets around each component are also constructed iteratively.

The number of water molecules that we must place in the simulation box is known from

the total biomolecular mass of the system and the desired biomolecular fraction, which is a

parameter of the model. However, we don’t know the thickness of the water layer around

each component, l, that accounts for such amount of water molecules a priori. Since l

depends on a series of factors such as the shape, size and abundance of each element, we

define it iteratively. We start by taking a droplet of thickness l = 3 Å around all elements and

counting the number of water molecules that we would add to the box with such droplets.
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If it is smaller than the number we need, l is increased by dl = 1 Å. If it is larger, we reduce

the droplet thickness by dl, reduce dl by 10 times and then increase l with the new smaller

dl. We can carry this process until a user-defined precision cutoff, here 5%, for the number

of waters in the system is satisfied.

After all droplets are successfully inserted in a simulation box by the iterative process

described above, we proceed to add ions to neutralize the net charge of the system and

to reach the desired ionic strength. Then, we perform energy minimization and a short

simulation of 500ps in which all molecules of the box are free to move. In this step the box

shrinks to its optimum size. In our case, the simulation box shrank from the initial box size

of 35 nm to 22.9 nm, which corresponds to a volume change from 42875 nm3 to 12009 nm3.

From this point, the system is ready to be submitted to the default simulation steps such as

thermalization and production run (please check the materials section for details about the

parameters used).

Figure 1: A) The initial simulation box with L = 35.0 nm and the box after the shrinking
step, L = 22.9 nm. B) The evolution of the volume of the simulation box during the shrinking
simulations. Each replica is shown in different colors.

Effects of macromolecular crowding

In order to investigate the effects of crowding in the E. coli cytoplasm model on the struc-

tural integrity and dynamics of its elements, we constructed three completely independent

cytoplasm models that have different orientations for each of its elements. We submitted

these systems, each composed of more than 1.5 million atoms, to molecular dynamics simu-
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lations of 1 µs. We also performed 200 ns molecular dynamics simulations for each isolated

element (proteins and tRNA) in order to represent the non-crowded, i.e. dilute environment

(please check the materials section for details about the parameters).

Translational diffusion

Under crowded conditions, molecules are confined to a smaller effective volume by the other

components of the environment. The extent of this effect is evident when we compare the

translational diffusion constant of each component in the cytoplasm model, Dcyto, and in a

dilute system, Ddil (Fig. 2A). The ratio of these quantities is independent of the protein size

and is always close to 0.13 (Fig. 2B). However, the effect of crowding on the translational

diffusion of tRNA is two times larger. Its Dcyto/Ddil is 0.07, indicating that its movement is

especially constrained in the crowded environment (Fig. 2B, crowder with 25 kDa), however,

see below.
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Figure 2: A) Diffusion coefficient of crowders from simulations under diluted conditions (blue
bars) and cytoplasm simulations (orange bars). B) The ratio between diffusion coefficient obtained
from simulations under both conditions. The crowders are sorted according to their sizes on the
x-axis.

tRNA is aggregating

After inspecting the trajectories of the cytoplasm models, we found that the reason why the

translational diffusion constant for tRNA was reduced to a greater extent than for the other
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components of the cytoplasm model is that it was forming aggregates with Mg2+, ATP and

FBP (Fig. 3). Thus, we will omit the tRNA molecules in the analyses about the structural

integrity of the crowders. In the next sections we will further investigate such aggregation

and we will show a way to prevent it.
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Figure 3: Radial distribution function showing the probability of finding metabolites or Magne-
sium cations around tRNA molecules in the cytoplasm model. Note that ATP and FBP are much
more concentrated around tRNA than the other metabolites, GSH and GLT.

Structural integrity

The structure of the individual chains of the crowders that were used in our cytoplasm model

were not affected to a great extent by the crowded environment. The values of their root

mean square deviation considering only their Cα in the cytoplasm model increased by less

than 11% when compared to the dilute condition, except for TufA, MetE and IcdA, which

have RMSD values 105, 25 and 33% higher in the crowded environment than in the dilute

condition (Fig. 4A). Visual inspection of the final frames of the simulations of these crowders

in the cytoplasm model and in dilute condition revealed that, for TufA, the conformational

differences are on the β-hairpin around residues 40-62. This region is called Switch I and

is known to be flexible and to display conformational changes due to interactions with the

ribosome or other partners.50 For MetE, there are differences in the conformation of the loop

around residues 450-460 and in the C-terminal α-helices. This loop is known to be flexible

and was not modeled in the crystallographic structure due to such flexibility.51 For IcdA,
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the differences are located at the N-terminal coil formed by residues 1-8.

The effect of crowded environment on the structural integrity of oligomers can be eval-

uated by their chain interface area as well. This quantity is the solvent accessible surface

area that is removed from access to the solvent by oligomerization. Our results show that

oligomers are not significantly disturbed in the cytoplasm model when compared to the

diluted condition. Similarly to what can be seem by the RMSD values, which reflect the

structural integrity of individual chains, the oligomers that undergo the most change is TufA

(Fig. 4B).
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Figure 4: A) RMSD for all protein crowders from simulations under diluted conditions (blue bars)
and in the cytoplasm model (orange bars). This value reflects the structural integrity of individual
chains of each crowder. B) Chain interface area for oligomers under diluted conditions (blue bars)
and in the cytoplasm model (orange bars). This value reflects the structural integrity of oligomers
of the crowders.

Structural dynamics

Root mean square fluctuation (RMSF) calculations show that, overall, the shape of residue-

wise flexibility profile of the proteins is not affected by crowding, which is in agreement

with our results showing that their structural integrity does not change significantly in the

cytoplasm model in most cases (Fig. 5). Accordingly, we can see significant changes in the

shape of the flexibility profile for regions that undergo conformational changes, such as the

Switch I β-hairpin of TufA around residues 40-62 and the flexible loop of MetE around

residues 450-460 (Fig. 5).
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In most cases (TufA, MetE, AhpC, CspC and Ppa), the residue-wise RMSF values are

higher in the cytoplasm model than under diluted conditions, which indicates that proteins

are more flexible in the cytoplasm model (Fig. 5). This is in agreement with computa-

tional and experimental data showing that nonspecific interactions with crowders can lead

to destabilization of proteins.4–6
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Figure 5: Root mean squared fluctuations (RMSF) from simulations under diluted conditions
(blue bars) and in the cytoplasm model (orange bars). The x-axis shows the residues for each chain
of proteins.

Aggregation can be avoided by protonating the metabolites

The initial detection of aggregation in the cytoplasm model was due to the outlier behav-

ior of the translational diffusion constant of tRNA when compared to the other crowders.

However, tRNA was not the cause of this phenomenon. Instead, it was triggered by the ex-

aggerated interactions between the phosphate-containing metabolites, ATP and FBP, with

Mg2+ (Fig. 6A). tRNA gets involved in the aggregates because Mg2+ is present in the box

only as counter-ion for ATP and tRNA, and so tRNA is one of the few “sources” of Mg2+

in the whole system. We looked for ways of avoid aggregation by using simulations of small

systems composed of these metabolites in high concentration, Mg2+ and water (please check
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the methods section for details).

We found that completely protonating the phosphate groups of ATP and FBP is enough

to prevent their aggregation with Mg2+. While RDFs show that ATP3− and FBP4− aggregate

around Mg2+ (Fig. 6A), this is not observed for ATPH3 and FBPH4(Fig. 6B-C).
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Figure 6: RDFs centered around Mg2+ showing the probability of finding A) metabolites in the
cytoplasm model, B) ATP3− and ATPH3 or C) FBP4− and FBPH4 in small independent systems
(please see the methods section for details).

Discussion

The main difference in behavior of the macromolecules that compose our model between the

crowded system and the dilute condition is their translational diffusion coefficient, which

drops by around 85% for the proteins and 93% for the tRNA (Fig. 2A). The slope of the

line generated by fitting a linear regression model to values of Dcyto/Ddil is close to zero

(slope = 0.00028), showing that the drop in diffusion coefficient is independent of the size

of the macromolecules. We found that the aggregation of ATP3− and FBP4− around Mg2+,

which was used as counter-ion for tRNA, leads to an exaggerated confinement of the tRNA

molecules. Therefore, tRNA is considered an outlier in the duffusion calculations. In fact,

the slope of the linear regression line fitted to Dcyto/Ddil is reduced by by 50% and even

closer to zero (slope = 0.00014) after removing the diffusion coefficient of tRNA from the

data. These data are in agreement with experimental results showing that the translational
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diffusion coefficient of Green Fluorescent Protein (GFP) in E. coli, as measured by fluo-

rescence recovery after photo-bleaching (FRAP), decreased 90% when compared to in vitro

measurements.62,63

It has been demonstrated that the force fields that are most widely used to perform molec-

ular dynamics simulations of macromolecules yield different results for highly concentrated

amino acid solutions.64 Moreover, it has been reported that simulations of a highly concen-

trated environment leads to aggregation when additive force fields are used65–67 and several

approaches have been proposed to eliminate this problem.32,68,69 Apart from protein-water

interactions, the London-dispersion coefficients in the force fields have been investigated as

well but their effect on protein-protein interactions seems to be minor.69–71 A comparison

at the amino acid level shows that none of the Amber family of force fields combined with

different water model can simultaneously produce high accuracy Gibbs energies of hydration

and amino acid side chain mobility.72 Of the different combinations tested in that work the

Amber99sb-ws32 in conjunction with the TIP4P/2005 water model35 was deemed the best

compromise.72 Nevertheless, in a related paper we find signs that the increased interaction

between protein and water may be slightly too strong as it leads to partial unfolding of a

protein.73

Previous all-atom simulations of large scale cytoplasm models used parameters from the

CHARMM family of force fields.18 In this work we use a modified version of the AMBER

FF99SB force field in which the solvent-solute interactions are 10% stronger32 to study

crowding effects on a cytoplasm model. This force field was chosen because it was corrected

to reproduce experimental data when there are many proteins in the same simulation box.

This force field or similarly adjusted one were also used for studying crowding effect on

simpler systems of high concentration of proteins.67,73,74 All-atom explicit solvent molecular

dynamics simulations have been reported for large-scale cytoplasm models of Mycoplasma

genitalium composed of 103- and 12-million atoms that were simulated for 20 and 60 ns,

respectively.18 The cytoplasm model described in this work has 1.5 million atoms and was

17



simulated for the total of 3 µs, an unprecedented time scale to study crowding effects on a

heterogeneous cytoplasm model in atomic detail.

Three crowders (TufA, MetE and IcdA) displayed greater deviation from their crystal-

lographic structure in the cytoplasm model when compared to the dilute condition, indicat-

ing that there was some degree of local unfolding (Fig. 4A). Interestingly, oligomers were

marginally less stable in the cytoplasm model than in the dilute condition. (Fig. 4B) and

the flexibility profiles calculated considering the Cα for each chain of the elements of our

cytoplasm model show that, in the crowded condition, most of the proteins (TufA, MetE,

AhpC, CspC and Ppa) are more flexible than in the dilute condition (Fig. 5). This is in

agreement with previous simulations4 and experiment5,6 showing that crowders can destabi-

lize the native structure of proteins due to the numerous unspecific short-lived interactions

that are formed between them in a crowded environment. A study of protein properties at

increasing concentration showed only few interactions between proteins of the same type.73

The only specific interaction we antecipate between the components of our cytoplasm model

is between TufA and tRNA (PDB ID 1TTT is an example of such complex).75 The TufA-

tRNA complex is not present in our simulation boxes even after 1 µs of simulation starting

from random orientations.

Magnesium cations were added to our cytoplasm model as counter-ions for tRNA and

ATP. However, as the simulation progressed, FBP and ATP aggregated around Mg2+ and,

by consequence, around tRNA After identifying this problem, we used simulations of small

systems containing only the metabolites, Mg2+ and water to test different strategies to pre-

vent aggregation in future studies using long simulations of cytoplasm models. We found

that protonating the phosphate-containing metabolites is enough to reach this goal (Fig. 6).

Even though ATPH3 and FBPH4 are not the biologically relevant forms of these molecules in

physiological pH, using their protonated forms may be an acceptable compromise between

parametrization complexity and practical results. The biggest impact of this approach is

on long range interactions of these metabolites with other molecules due to the neutraliza-
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tion of their net charge. However, molecules in a crowded environment are restrained to

smaller volumes and shorter inter molecular distances, which mitigates the effect of charge

neutralization. It has been suggested that charged species should employ scaled charges in

order to be compatible with the empirical water models.76,77 Due to the high local density

of negative charges in FBP and ATP this might indeed be an alternative solution, barring

use of polarizable models.78–81

To the best of our knowledge, there is only one published study on large scale cytoplasm

models that included metabolites with all-atom explicit solvent molecular dynamics.18 Al-

though these authors did not report aggregation, they mention that the translational dif-

fusion of highly charged phosphate-containing metabolites is “much slower” than expected

in their system. They attributed this observation to non-specific interactions between such

metabolites and proteins. Maybe aggregation also contributed to their slower diffusion but

it was not evident during their 140 ns simulation.

In this work we built an all-atom explicit solvent cytoplasm model composed of proteins,

tRNA, metabolites, inorganic ions and water for a total of 1.5 million atoms (Table 2). The

identity and amount of each component of the model was chosen based on experimental data

about the composition of the cytoplasm of E. coli .15,47–49

We submitted this model to a total of 3 µs of molecular dynamics simulations using a

modified AMBER FF99SB force field that was tuned to reproduce experimental data of

systems composed of several macromolecules.32 The model was validated by comparing to

experimental data about the reduction of the translational diffusion coefficient of proteins in

the cytoplasm of E. coli when compared to the dilute condition (Figure 2).62,63 Additionally,

our data is in agreement with recent simulation work and experimental data that show that

the unspecific interactions between macromolecules in a crowded environment can destabilize

them.4–6 Specifically, we can see that, despite the overall stability of our cytoplasm model

even in the µs timescale, the proteins are slightly less stable in the cytoplasm model than in

dilute condition (Figures 4 and 5).
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As part of this work we are providing Python scripts with a set of structure and topology

files that any researcher can use to build their own E. coli cytoplasm models. Such models

can be used to investigate research questions about the effects of crowding on specific systems

of interest or about crowding itself. With the files we are providing it is possible, for example,

to add a probe protein to investigate the effect of crowding on it, to add new macromolec-

ular or small crowders, evaluate the effects of temperatures and change the biomolecular

concentration to increase or decrease the intensity of the crowding effect. We highlight that,

since we have already validated it, researchers can take advantage from building their own

cytoplasm models even if they do not have access to the infrastructure that is necessary

to perform long molecular dynamics simulations. With modest computatioanal power it is

possible, for example, to build many independent snapshots of the cytoplasm of E. coli. All

files are publicly available at http://github.com/dspoel/soup facilitating contributions to the

scripts and data files from other workers in the field.
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(34) Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.;

Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS

4.5: a high-throughput and highly parallel open source molecular simulation toolkit.

Bioinformatics 2013, 29, 845–854.

(35) Abascal, J. L. F.; Vega, C. A general purpose model for the condensed phases of water:

TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.

(36) Dang, L. X.; Kollman, P. A. Free energy of association of the K+: 18-crown-6 complex

in water: a new molecular dynamics study. J. Phys. Chem. 1995, 99, 55–58.

24



(37) Auffinger, P.; Cheatham, T. E.; Vaiana, A. C. Spontaneous formation of KCl aggregates

in biomolecular simulations: a force field issue? J. Chem. Theory Comp. 2007, 3, 1851–

1859.

(38) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A

Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8592.

(39) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids ; Oxford Science Publi-

cations: Oxford, 1987.

(40) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A Linear

Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472.

(41) Hess, B.; Kutzner, C.; Van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for

Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory

Comput. 2008, 4, 435–447.

(42) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling.

J. Chem. Phys. 2007, 126, 014101.

(43) Berendsen, H. J. C.; Postma, J. P. M.; DiNola, A.; Haak, J. R. Molecular dynamics

with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.

(44) Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molec-

ular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190.

(45) Yeh, I.-C.; Hummer, G. System-size dependence of diffusion coefficients and viscosi-

ties from molecular dynamics simulations with periodic boundary conditions. J. Phys.

Chem. B. 2004, 108, 15873–15879.

(46) Abraham, M. J.; Hess, B.; the GROMACS development team, Gromacs User Manual

version 2016. 2018.

25



(47) Dong, H.; Nilsson, L.; Kurland, C. G. Co-variation of trna abundance and codon usage

inescherichia coliat different growth rates. J. Mol. Biol. 1996, 260, 649–663.

(48) Bennett, B. D.; Kimball, E. H.; Gao, M.; Osterhout, R.; Van Dien, S. J.; Rabi-

nowitz, J. D. Absolute metabolite concentrations and implied enzyme active site occu-

pancy in Escherichia coli. Nat. Chem. Biol. 2009, 5, 593–599.

(49) Link, A. J.; Robison, K.; Church, G. M. Comparing the predicted and observed proper-

ties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 1997,

18, 1259–1313.

(50) Abel, K.; Yoder, M. D.; Hilgenfeld, R.; Jurnak, F. An α to β conformational switch in

EF-Tu. Structure 1996, 4, 1153–1159.

(51) Ferrer, J.-L.; Ravanel, S.; Robert, M.; Dumas, R. Crystal structures of cobalamin-

independent methionine synthase complexed with zinc, homocysteine, and methylte-

trahydrofolate. J. Biol. Chem. 2004, 279, 44235–44238.

(52) Mesecar, A. D.; Koshland Jr, D. E. Structural biology: A new model for protein stere-

ospecificity. Nature 2000, 403, 614–616.

(53) Parsonage, D.; Youngblood, D. S.; Sarma, G. N.; Wood, Z. A.; Karplus, P. A.;

Poole, L. B. Analysis of the link between enzymatic activity and oligomeric state in

AhpC, a bacterial peroxiredoxin. Biochemistry 2005, 44, 10583–10592.

(54) Schindelin, H.; Jiang, W.; Inouye, M.; Heinemann, U. Crystal structure of CspA, the

major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1994, 91,

5119–5123.

(55) Kankare, J.; Salminen, T.; Lahti, R.; Cooperman, B.; Baykov, A.; Goldman, A. Struc-

ture of Escherichia coli inorganic pyrophosphatase at 2.2 A resolution. Acta Crystallogr.

D 1996, 52, 551–563.

26



(56) Shin, D.; Thor, J.; Yokota, H.; Kim, R.; Kim, S. Crystal structure of MES buffer

bound form of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli. To be

published.

(57) Kühnel, K.; Luisi, B. F. Crystal structure of the Escherichia coli RNA degradosome

component enolase. J. Mol. Biol. 2001, 313, 583–592.

(58) Phillips, R.; Theriot, J.; Kondev, J.; Garcia, H. Physical biology of the cell ; Garland

Science, 2012.

(59) Byrne, R. T.; Jenkins, H. T.; Peters, D. T.; Whelan, F.; Stowell, J.; Aziz, N.;

Kasatsky, P.; Rodnina, M. V.; Koonin, E. V.; Konevega, A. L. Major reorientation

of tRNA substrates defines specificity of dihydrouridine synthases. Proc. Natl. Acad.

Sci. U.S.A. 2015, 112, 6033–6037.

(60) Zimmerman, S. B.; Trach, S. O. Estimation of macromolecule concentrations and ex-

cluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 1991, 222,

599–620.

(61) Ellis, R. J.; Minton, A. P. Join the crowd. Nature 2003, 425, 27–28.

(62) Elowitz, M. B.; Surette, M. G.; Wolf, P.-E.; Stock, J. B.; Leibler, S. Protein Mobility

in the Cytoplasm of Escherichia coli. J. Bacteriol. 1999, 181, 197–203.

(63) Konopka, M. C.; Shkel, I. A.; Cayley, S.; Record, M. T.; Weisshaar, J. C. Crowding and

confinement effects on protein diffusion in vivo. J. Bacteriol. 2006, 188, 6115–6123.

(64) Andrews, C. T.; Elcock, A. H. Molecular dynamics simulations of highly crowded amino

acid solutions: comparisons of eight different force field combinations with experiment

and with each other. J. Chem. Theory Comput. 2013, 9, 4585–4602.

(65) Petrov, D.; Zagrovic, B. Are current atomistic force fields accurate enough to study

proteins in crowded environments? PLoS Comput. Biol. 2014, 10, e1003638.

27



(66) Abriata, L. A.; Dal Peraro, M. Assessing the potential of atomistic molecular dynamics

simulations to probe reversible protein-protein recognition and binding. Sci. Rep. 2015,

5, 10549.

(67) Nawrocki, G.; Wang, P.-h.; Yu, I.; Sugita, Y.; Feig, M. Slow-down in diffusion in

crowded protein solutions correlates with transient cluster formation. J. Phys. Chem.

B. 2017, 121, 11072–11084.

(68) Piana, S.; Donchev, A. G.; Robustelli, P.; Shaw, D. E. Water Dispersion Interactions

Strongly Influence Simulated Structural Properties of Disordered Protein States. J.

Phys. Chem. B 2015, 119, 5113–5123.

(69) Bashardanesh, Z.; van der Spoel, D. Impact of Dispersion Coefficient on Simulations of

Proteins and Organic Liquids. J. Phys. Chem. B. 2018, 122, 8018–8027.

(70) Mohebifar, M.; Johnson, E. R.; Rowley, C. N. Evaluating Force-Field London Dispersion

Coefficients Using the Exchange-Hole Dipole Moment Model. J. Chem. Theory Comput.

2017, 13, 6146–6157.

(71) Walters, E.; Mohebifar, M.; Johnson, E. R.; Rowley, C. N. Evaluating the London

Dispersion Coefficients of Protein Force Fields Using the Exchange-Hole Dipole Moment

Model. J. Phys. Chem. B. 2018, 122, 6690–6701.

(72) Zhang, H.; Yin, C.; Jiang, Y.; van der Spoel, D. Force Field Benchmark of Amino acids:

I. Hydration and Diffusion in Different Water Models. J. Chem. Inf. Model. 2018, 58,

1037–1052.

(73) Bashardanesh, Z.; Elf, J.; Zhang, H.; van der Spoel, D. Rotational and translational

diffusion of proteins as a function of concentration. ACS Omega 2019, Submitted.

(74) Nawrocki, G.; Karaboga, A.; Sugita, Y.; Feig, M. Effect of protein–protein interactions

28



and solvent viscosity on the rotational diffusion of proteins in crowded environments.

Phys. Chem. Chem. Phys. 2019, 21, 876–883.

(75) Nissen, P.; Kjeldgaard, M.; Thirup, S.; Polekhina, G.; Reshetnikova, L.; Clark, B. F.;

Nyborg, J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a

GTP analog. Science 1995, 270, 1464–1472.

(76) Leontyev, I.; Stuchebrukhov, A. Electronic continuum model for molecular dynamics

simulations. J. Chem. Phys. 2009, 130, 02B609.

(77) Leontyev, I.; Stuchebrukhov, A. Accounting for electronic polarization in non-

polarizable force fields. Phys. Chem. Chem. Phys. 2011, 13, 2613–2626.

(78) Ponder, J. W.; Wu, C.; Ren, P.; Pande, V. S.; Chodera, J. D.; Schnieders, M. J.;

Haque, I.; Mobley, D. L.; Lambrecht, D. S.; DiStasio Jr., R. A.; Head-Gordon, M.;

Clark, G. N. I.; Johnson, M. E.; Head-Gordon, T. Current Status of the AMOEBA

Polarizable Force Field. J. Phys. Chem. B 2010, 114, 2549–2564.

(79) Lopes, P. E. M.; Huang, J.; Shim, J.; Luo, Y.; Li, H.; Roux, B.; MacKerell, J., Alexan-

der D. Polarizable Force Field for Peptides and Proteins Based on the Classical Drude

Oscillator. J. Chem. Theory Comput 2013, 9, 5430–5449.

(80) Ghahremanpour, M. M.; van Maaren, P. J.; Caleman, C.; Hutchison, G. R.; van der

Spoel, D. Polarizable Drude Model with s-type Gaussian or Slater Charge Density

for General Molecular Mechanics Force Fields. J. Chem. Theory Comput. 2018, 14,

5553–5566.

(81) Walz, M. M.; Ghahremanpour, M. M.; van Maaren, P. J.; van der Spoel, D. Phase-

Transferable Force Field for Alkali Halides. J. Chem. Theory Comput. 2018, 14, 5933–

5948.

29


