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The appropriate sampling of training data out of a potentially imbalanced data set is of critical
importance for the development of robust and accurate machine learning models. A challenge that
underpins this task is the partitioning of the data into groups of similar instances, and the analysis
of the group populations. In molecular data sets, different groups of molecules may be hard to
identify. However, if the distribution of a given data set is ignored then some of these groups may
remain under-represented and the sampling biased, even if the size of data is large. In this study,
we use the example of the Harvard Clean Energy Project (CEP) data set to assess the challenges
posed by imbalanced data and the impact that accounting for different groups during the selection of
training data has on the quality of the resulting machine learning models. We employ a partitioning
criterion based on the underlying rules for the CEP molecular library generation to identify groups
of structurally similar compounds. First, we evaluate the performance of regression models that are
trained globally (i.e., by randomly sampling the entire data set for training data). This traditional
approach serves as the benchmark reference. We compare its results with those of models that are
trained locally, i.e., within each of the identified molecular domains. We demonstrate that local
models outperform even the best global models by considerable margins and are more efficient in
their training data needs. We propose a strategy to redesign training sets for the development of
improved global models. While the resulting uniform training sets can successfully yield robust
global models, we identify the distribution mismatch between feature representations of different
molecular domains as a critical limitation for any further improvement. We take advantage of the
discovered distribution shift and propose an ensemble of classification and regression models to
achieve generalized and reliable models across the CEP data set. This study provides a benchmark
for the development of future methodologies concerned with imbalanced chemical data.

I. INTRODUCTION

Machine learning (ML) is in the process of revolution-
izing several aspects of chemical (and materials) research.
ML approaches illuminate underlying patterns in chemi-
cal data, they facilitate efficient predictions in the char-
acterization and behavior of chemical systems, and they
augment conventional processes of decision making in
chemical research [1, 2]. One application of ML is the
creation of data-derived surrogate models that acceler-
ate the intensive process of molecular discovery, design,
and development by orders of magnitude [3, 4]. The ap-
plication of ML on the results of virtual high-throughput
screening (HTPS) studies has been one of the earliest and
most successful approaches for the large-scale exploration
of molecular space [5–8].
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A majority of methodological advancements for ML in
the chemical domain have so far focused on improving the
performance of data-derived prediction models for desir-
able materials properties. Research on other pertinent
questions of chemical data mining and modeling has re-
ceived less attention. Examples of these issues are: (i)
diversity/sparsity of the molecular structures, (ii) appli-
cability domains of trained ML models, and (iii) learning
from imbalanced data. While these issues require exper-
tise from domain sciences [9], they are ultimately inter-
connected and share common solutions across disciplines.
In this work, we address these challenges on a well-known
molecular data set.

A data set is imbalanced if it can be partitioned into
groups of similar instances (e.g., molecules), but the
count of instances per group differs significantly [10]. By
that means, even if the data set is large, some groups
of may remain underrepresented (i.e., minority groups).
Typically, ML approaches fail to capture the character-
istics of the minority groups because they are less ex-
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posed to the instances they contain. The primary chal-
lenge in many molecular data sets is the lack of unique
or even rigorous criteria to discover the underlying popu-
lation manifold. Prior knowledge, chemical intuition, or
a direct mapping between structural features and groups
(e.g., via clustering, i.e., an unsupervised ML approach)
can achieve this task, but the distribution may also re-
main unknown.

The trend in chemical and materials studies goes to-
wards developing models that are as general as possible
and that can thus cover the entire molecular space. How-
ever, there are also studies that argue against the pursuit
of universal prediction models. For instance, a study by
Goldsmith et al. proposed the method of subgroup dis-
covery to cluster the crystal structures of semiconductors
[11]. The results of their work show that local models –
trained on subgroups of the entire compound data – can
significantly outperform a global model that is trained
on the natural distribution of the overall data set. More
recently, Kailkhura et al. introduced an ML framework
that successfully addresses the skewed distribution of ma-
terials by partitioning their target property space [12].
While this approach has similar objectives to our work,
we believe that the imbalance in data is more due to
structural features rather than their properties. The ex-
ploration of molecular space using ML models is subject
to the applicability domain of those models, which is re-
stricted by the sparsity of the initial training data. We
thus believe that taking the locality of data into account
can have tremendous benefits, e.g., in the context of
HTPS results [13, 14].

To exemplify, visualize, and address the challenge of
imbalanced data in a molecular system, we focus on the
Harvard Clean Energy Project (CEP) data set [15]. CEP
is one of the prominent HTPS efforts to find organic pho-
tovoltaics for their application in solar cells. This data
set has been widely used in several modeling and method
development projects [16–19], mainly to recover the rigor-
ous and deterministic quantum chemical mapping from
the structure/topology of a molecule to its properties.
However, all of these ML approaches focus on the nat-
ural distribution of the data and lead to global models
that ignore the adverse impacts of the imbalanced chem-
ical structures in the data set. In this study, we take
advantage of the imposed initialization and constraints
in the combinatorial exploration of molecular space (e.g.,
by HTPS approaches) to improve the data-driven predic-
tive performance further. We show this extra pattern-
recognized information leads to reliable prediction across
the data population, and thus enhances the applicability
domain of ML models and enables us to better under-
stand the structure-property relationships. In a broader
perspective, the proposed approaches attempt to asset
and establish efficient practices to develop generalized
predictive models for organic molecular data sets.

FIG. 1: Examples of fused, linked, and hybrid molecules
initiated from two building blocks (i.e., benzene and

pyrrole) with two reaction sites (‘R’s represent chemical
handles) per each. The product of reaction also has two
chemical handles to participate in the next reactions
and create larger molecules. A hybrid molecule is a

product of linking a building block to a fused molecule,
or vice versa.

II. BACKGROUND, METHODS, AND

COMPUTATIONAL DETAILS

A. Motivation

As described by Hachmann et al. [20], the CEP molec-
ular library is generated using 26 distinct building blocks
that react with each other and create new fragments
based on two types of reactions (i.e., linking or fusion).
The maximum number of building blocks per molecule
is limited to five. Although all the 26 building blocks
are prevalent substructures for the photovoltaic applica-
tions, the type of reaction between them results in very
different molecular moieties that might not be feasible to
synthesis. The motivation for this work is based on the
feedback from experimental collaborators regarding the
ease of synthesis for molecules that are only a product
of linking reactions. The synthesis condition for fused
fragments are often harsh and may negatively result in a
ring expansion or contraction.

Thus, the initial goal of this study is to interpret the
generation of each molecule in the CEP library based
on the applied combination rules and types of building
blocks. We divide molecules in the CEP data set to three
groups of fused, linked, or hybrid. As it is illustrated
in Fig. 1, a hybrid molecule is a result of both linking
and fusion reaction between constituent building blocks.
Note that the reaction scheme has not been captured
initially along with the original CEP library generation.
One immediate solution to this problem is to search for all
possible combinations of building blocks in the molecules.
However, this is an intractable approach due to the large
number of possible combinations. Therefore, we develop
an algorithm to perform this task and will discuss details
in Sec. II B.
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After extracting the substructure information, our mo-
tivation for the rest of the study is two-fold. First, we
investigate the distribution of top candidates in the sub-
groups of the molecules. We train ML regression mod-
els on each subgroup separately (i.e., build local models)
and compare their performance with the model that is
trained on a random sample of the entire CEP data set
(i.e., a global model). Second, we utilize the extra in-
formation regarding the distribution of clusters in the
data set to improve the performance of the global model.
For this purpose, we oversample under-represented sub-
groups and create a uniform distribution of clusters in
the training set. We observe that the main challenge
for any further improvements in the global model is the
shift in the distribution of the feature representation for
each class of molecules. Therefore, we apply classification
and feature transformation methods to demonstrate the
impact of the distribution mismatch in the training sets.
This extra approach leads us towards an ensemble of clas-
sification and regression models to generalize well from
minority subgroups without compensation from the ma-
jority subgroups. Thus, the central claim of this study is
to provide the most accurate and generalized ML model
for predicting photovoltaic properties of the molecules in
the CEP data set. In summary, the contribution of this
paper is as follows:

• We propose an algorithm to exploit the structure of
the CEP data set. This approach is based on the re-
action scheme that molecules have undertaken dur-
ing the library generation.

• When the reaction scheme is identified, we partition
the entire CEP data set based on the synthesis fea-
sibility, thereby, we achieve benchmark data with
identified subgroups to assess the underrepresenta-
tion of similar molecular structures.

• We next investigate the effect of the imbalanced
classes on the performance of ML models that are
developed using pure random sampling of the entire
data set. Subsequently, we achieve computationally
efficient ML models that outperform the state-of-
the-art predictive models for the CEP data set.

• Finally, we automatize the entire approach by re-
designing the ML training sets and training a clas-
sification model to alleviate the side effect of distri-
bution shift for regression models.

B. CEP Data Set and Molecular Characterization

The CEP data set contains more than 2.3 million
organic photovoltaic molecules that are candidates for
donor materials in the solar cells. The target property to
evaluate the performance of those solar cells is the power
conversion efficiency (PCE). The PCE values are approx-
imated using Scharber model and electronic properties of

donor molecules (i.e., molecules in the CEP data set).
The electronic properties are calculated at BP86/def2-
SVP [21–23] level of the Kohn-Sham density functional
theory [24, 25]. All the molecules are represented using
SMILES strings, which provide 2D information of the
molecular structures, that is, atom type and connectiv-
ity.
We propose an algorithm based on the molecular

graphs to characterize the unique combination scheme
that has been undertaken for the generation of each
molecule in the CEP library. The algorithm is specific
to the CEP data set and takes advantage of the hetero-
cyclic structure of the building blocks. In the following
we describe the overall pseudo-algorithm:

1. represent each molecule as a graph of nodes and
edges and keep track of their corresponding chem-
ical labels (i.e., atom and bond types).

2. identify all the cycles in the molecular graphs with
size less than 6. They correspond to the 5- and 6-
membered molecular rings in the structure of build-
ing blocks.

3. look for nodes that are shared between the rings.
These types of nodes represent the fusion reaction
between rings.

4. look for edges that are not involved in any of the
rings. These types of edges form the linking con-
nection between rings.

5. discover type of building blocks and their connec-
tions based on atom and bond types and the unique
combination of rings in building blocks.

The second step of the algorithm requires an efficient
code for finding loops of specific sizes and not bigger than
that. The available algorithms for this step, e.g., John-
ston algorithm, are computationally expensive. We use
the built-in function available in the OpenBable package
[26], which can efficiently perform the first two steps of
the algorithm. The final result of this substructure anal-
ysis represents the exact type, order, and symmetry of
building blocks based on the position of reaction sites in
each molecule. This substructure information could be
further utilized to focus on a group of molecular moieties
that may be of higher importance for the rational design
of materials.
Note that we use the term cluster to distinguish

molecules in the CEP data set that have been gener-
ated using only fusion reaction (i.e., fused cluster), only
linking reaction (i.e., linked cluster), or a combination of
both (i.e., hybrid cluster). The choice of this terminol-
ogy is not entirely arbitrary; it tends to differentiate this
task from the supervised classification approach. More
importantly, it has an analogy with unsupervised clus-
tering approach that will be discussed in our following
publications as an automated and generalized fashion to
distinguish organic molecules. Thus in this study, we
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undertake a clustering approach based on the chemical
intuitions from and only for CEP data set.

C. Machine Learning Details

The ML task in this study is of supervised learning
category due to the availability of the labeled data. A
supervised learning approach can be considered as a func-
tion that maps the input features to the target outputs
[27]. If the output labels have continuous numerical val-
ues, the supervised learning task is a regression problem,
and if the labels are distinct and finite (categorical), the
problem is classification. Thus in this study, we train a
regression model to predict the scalar PCE values and
a classification model to label each molecule as a fused,
linked, or hybrid cluster. We carry out the classification
problem to evaluate the distribution shift in the input
features of the three clusters. This method enables us
to understand the structural diversity of the data based
on the feature representation of the molecules in each of
the clusters. We also apply principal component analy-
sis to reduce the dimension of the feature space for the
visualization of the distribution shift.
We use deep neural networks (DNN) for both of the re-

gression and classification tasks [28, 29]. The DNN con-
sists of neurons that behave as a simple feature trans-
formation unit. Originally, each neuron sends out the
result of an activation function acting on the total sum
of the weighted inputs that receives from all connected
neurons. The neurons are organized in consecutive layers
and may be partially connected. Thus, the entire DNN
model is able to transform the input features to the latent
space, where the mapping to the target output becomes
linear. We train a fully-connected standard architecture
of DNN with three hidden layers in this work. We opti-
mize other hyper-parameters (e.g., activation functions,
regularization parameter, learning rate, etc.) using the
10-fold cross-validation approach on the 90% of the data
as the training set. The remaining 10% are held out
for the final evaluation of the model. We use a genetic
algorithm to efficiently search and optimize the hyper-
parameter space. In addition to the cross-validation, we
carry out two additional approaches to avoid over-fitting:
(1) the regularization term to penalize the parameters
that are learning the noise [30], and (2) the early stop-
ping approach, which stops training iterations when the
model improvement is negligible. Both of these methods
avoid unnecessary model complexity.
We perform this ML workflow using ChemML [1, 31,

32], our program package for machine learning and infor-
matics in chemical and materials research. In this work,
ChemML employs the Keras library [33] with Tensorflow
backend [34] to develop the DNN models. The scikit-
learn library provides tools for data preprocessing and
model evaluation [35]. To plot learning curves, we select
five different subset sizes spaced uniformly over the range
of the training set size. We next average the training and

evaluation of the ML models over five different random
sampling with each of the five subset sizes. The main
evaluation metric for regression models is the mean ab-
solute error (MAE). MAE represents the deviation of the
predicted values from the target properties. For classifi-
cation models, we use the ratio of correct predictions to
evaluate the accuracy of our classifiers.

D. Feature Representation

In the cheminformatics and materials informatics, the
input features for an MLmodel are called descriptors [36].
Descriptors provide a numerical representation of the
molecules and are the most important aspect of the ML
models. A number of studies present that substructure-
based descriptors provide essential representation to pre-
dict several properties of molecules [37]. This type of
descriptors, which are also known as the molecular finger-
print, indicate the presence or absence of particular sub-
structures in the molecule. In this study, we use 2048-bit,
radius 3 Morgan fingerprint (MFP) [38, 39], from RDKit
cheminformatics library [40], as previously recommended
in similar studies (concerning the structure and property
of molecules) [16].
In addition to Morgan fingerprint, we also use neu-

ral fingerprint (NFP) as the state-of-the-art neural net-
work architecture, originally developed and tested on the
CEP data set [17]. Previous research has established that
NFPs are able to provide the most comprehensive rep-
resentation of the structural makeups. The NFP take
advantage of the flexibility in the design of deep learning
architecture. NFPs can be considered as a stand-alone
ML model by addition of fully connected layers. There-
fore, for the purpose of comparison, we add the same
standard neural network that was described in Sec. II C
to complete the NFP model. Various versions of similar
deep learning architectures have been developed recently
[19, 41, 42]. However, the representational limitations
that they try to address are not a source of differentia-
tion in the aforementioned clusters of the CEP molecular
library. Thus, the NFP is a sufficiently complex and ac-
curate model to serve as the state-of-the-art technique
in this study. These models are computationally more
demanding than the standard DNN by a factor of 100
in terms of minute calculation on the same computation
resource.

III. RESULTS AND DISCUSSION

A. Statistical Analysis of the Clusters

Tab. I shows the statistical analysis of all three clusters
in the CEP data set with a focus on the power conversion
efficiency (PCE) of organic solar cells. The distribution of
PCE values among each cluster clearly shows the linked
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molecules are more favorable for the photovoltaic appli-
cations with higher mean positive PCE compared to the
other two clusters.

In addition to the analysis of the PCE values, we note
that the three clusters are not uniformly distributed. The
fused and linked molecules occupy less than 4% and 24%
of the entire data set, respectively. In the ML literature,
these two clusters are known to be under-represented in
comparison with the hybrid cluster with close to 74% of
the total data [43]. Therefore, a global ML model trained
on a random selection of the CEP data is mostly biased
to the hybrid molecules. Since our goal for the rest of
the study is to compare the performance of different ML
models trained on the three clusters with respect to the
global model, we fix the training set size to 50,000 for
all training sets. This number fulfills both the minimum
number of data points in a cluster and the size of the
training data in the recent ML studies on the CEP data
set.

TABLE I: Statistical analysis for each cluster in the
CEP data set. We obtain the population of each cluster
in the entire set of 2.3 million molecules and in a subset
of the data with positive PCE. We then compute the
average and mean absolute deviation (MAD) for each
subset. The population is in million and the avg and

MAD of PCE are in %.

all PCE > 0
population(m) population(m) avg(%) MAD(%)

fused 0.07 (3%) 0.04 2.18 1.34
linked 0.54 (23%) 0.27 3.24 2.09
hybrid 1.72 (74%) 1.07 2.61 1.60
all 2.33 1.38 2.72 1.70

Furthermore, Fig. 2 shows the distribution of PCE in
the entire CEP data set and also in each of the clus-
ters. The inset violin plot also shows the distribution
of the molecules with PCE>8% and reveals the preva-
lence of linked molecules among top candidates, specif-
icaly those with PCE>10%. Thereby, a focus on the
linked molecules not only improves the synthesis feasibil-
ity of molecules but potentially leads towards more useful
candidates in photovoltaic materials. Note that the neg-
ative PCE is the artifact of the Scharber model and does
not present any physical meaning. However, we keep the
entire range of the PCE values for the purpose of the
training and do not change them to zero. This way we
preserve the continuity of the values, which enables the
ML model to recover the actual Scharber model.

The other point to attention is that distinguishing the
three clusters from each other based on the PCE values is
not possible since their distributions approximately over-
lap. This point implies the fact that sometimes molecu-
lar structures are indistinguishable based on their target
properties and thus, other criteria are required to cate-
gorize them.

FIG. 2: The histogram showing the distribution of
Scharber power conversion efficiency (PCE) values in
the entire and each cluster of the CEP data set. The
inset violin plot presents the mean, standard deviation

and 25/75th percentile over candidates with
PCE>8.0%.

B. Predicting PCE of Organic Solar Cells

Following the statistical analysis of the clusters and
based on the size cap of the smallest subgroup (i.e., fused
molecules), we randomly select 50,000 data points from
each of the clusters and one from the entire CEP data
set. The resulting four subsets are referred to as fused,
linked, hybrid and random samples. These four samples
serve as our data sets for the training and testing of our
models in the rest of the study. We next train one stan-
dard DNN regression model on each of the training sets
and evaluate the model on all the four test sets. We refer
to the fused, linked, and hybrid models as local models.
Same way, the model for the random sample is called a
global model because it can potentially predict the PCE
for molecules from any of the clusters. Fig. 3.a shows the
absolute deviation of the ML predicted PCE values from
Scharber model estimates. As expected, the plot shows
that each local model performs better on the test set from
the same category of training data. The highest errors
belong to the fused and linked models when they are eval-
uated on test sets from each other’s test sets. However,
the fused model performs better on the hybrid test set
compared to the linked model. This point can also be
confirmed based on the comparison between the perfor-
mance of the hybrid model on the fused and linked test
sets. These results determine that hybrid molecules have
more in common with fused molecules rather than linked
ones. More interestingly, all three local models outper-
form the random model for prediction on their own type
of molecules. The closest performance to the random
model belongs to the hybrid model since hybrid molecules
are over-represented in the random sample. For a simi-
lar reason, the performance of the random model on the
fused and linked test sets are significantly worse than
their local models. Although more than 70% of the ran-
dom sample consists of hybrid molecules, the random
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FIG. 3: The performance of standard deep neural network (DNN) regression models for the prediction of power
conversion efficiency values in each of the samples. (a) The box plot showing the distribution of the absolute error
of predicted PCE values in terms of median, 25/75th percentile and confidence interval. The inset plot highlights all
the box plots that present less than 1% absolute error. (b) The learning curves show the dependency of developed
models to the training set size. The blue curves belong to the standard deep neural network trained on Morgan

fingerprint (FP) representation. The red curves belong to the neural fingerprint (NFP) model. The mean absolute
error is calculated based on the evaluation of each model on the test set from the same sample.

model still performs slightly worse than the model that
is trained on 100% hybrid molecules (i.e., hybrid model).
In addition, Fig. 3b presents the learning curves that

are trained and evaluated on each of the samples individ-
ually. The dependency of the models to the size of the
training set is generally accepted in any ML efforts, and
here we see the same trend for all the four samples, as
well. The performance of the local models also follows a
similar relative trend on the entire range of the training
set size. We also note that the risk of bias can be assessed
for the fused model once it is trained on 90% of the fused
sample. The reason is that the fused cluster is the small-
est cluster in the data and the choice of 50,000 random
sample almost covers the entire category. Thus, the ML
model has an easy task to predict the properties of out-
of-sample molecules because it has been exposed to the
majority of them from the entire distribution. However,
the learning curve for the fused model shows that even
30% of the fused sample can train a better model than
90% of the random sample for the prediction of PCE for
fused molecules.
All these results confirm that training a model on a

random sample is mostly in favor of hybrid molecules
that are over-represented in the data set. Note that a
better performance of the local models compared to the
random model is generally expected. It is well known
that ML models intrinsically have better performance for
the interpolation tasks rather than extrapolation. There-
fore, developing a local model on the portion of data that
are of similar characteristics, results in a better perfor-
mance. However, this point is subject to the clustering
approach that lend confidence to the similar characteris-
tics of the subgroups of the molecules. In other words,

an arbitrary clustering of a data set that does not em-
phasize more compelling characteristics of the structures
may not reproduce the same results.
We also plot the distribution of the predictions errors

across the range of PCE values for each of the test sam-
ples. As it is illustrated in Fig. 4, the quality of the
predictions for the linked and fused models are evenly
distributed over the range of the PCE values. This is an-
other advantage of the suggested clustering scheme that
leads to molecular candidates, which are: (i) feasible to
synthesis, (ii) more desirable with respect to the target
property, (iii) homogeneously represented and thus are
easier to model, and (iv) approximately equally represen-
tative of the remoter but more desirable range of PCE
values.

C. The Impact of Clusters on the State-of-the-art

Models

In this section, we use NFP to benchmark the results
of the standard DNN models with the state-of-the-art
neural network architecture. The learning curve for the
NFP model is presented in Fig. 5. The figure is gen-
erated based on the same method as described in the
previous section. We also merge it with Fig. 3b for an
easier comparison. We first confirm that all the train-
ing curves are showing a lower MAE by increasing the
training set size. The comparison of the learning curves
for two fingerprint models on the random sample clearly
shows the reason why we call these models as state-of-
the-art. More than 20% improvement in the prediction
accuracy across the random training set is the main rea-
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FIG. 4: The distribution of the regression model
prediction errors with respect to the PCE values for

each of the four samples. The negative PCE values are
artifact of the Scharber model, and thus, are faded out.

son that these models have truly increased the excite-
ment in the field. Similar behavior can also be observed
for the hybrid sample. However, the linked and fused
samples do not exhibit a big difference for the training
of the two fingerprint models. The key observation is
that for the local models the NFP becomes saturated
by adding more training data and stops showing the ex-
pected improvement. One reason for such behavior is
the structural diversity in the four samples of the data.
The random and hybrid molecules not only contain a di-
verse set of molecules based on the applied reaction rules
between building blocks but also are a small portion of
many molecules available in their category. The underly-
ing point for the current research is that the significantly
more expensive complex models sound ineffective for the
prediction of the properties of linked molecules. This
point can be counted as the advantage of our clustering
approach.

D. Uniform Oversampling of the Training Data

One immediate solution to address the issue with im-
balanced data is oversampling of the underrepresented
clusters. Since enough training data is available for each
of the clusters, we simply stack their training sets from
the samples as mentioned earlier. Thus, compared to
the previous section, a three times bigger training set is
now available to train a standard DNN, but with a uni-
form distribution of clusters. The model will be further
evaluated on the same test sets from the four samples.
The result is illustrated in Fig. 3a as the uniform train-
ing sample. We observe that the model performs better
on all the test sets compared to the random sample, ex-
cept for the hybrid test set. However, the performance of

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Training Set Ratio

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
Ab

so
lu

te
 E

rro
r

Model
Morgan FP
NFP
Ensemble

FIG. 5: The learning curves show the decay in mean
absolute error of three machine learning (ML) models
by increasing the training set size. The blue and red
curves belong to the standard neural network and

neural fingerprint (NFP) models that are trained on
random sample, respectively. The green learning curve
presents the proposed ensemble method by merging

classification and regression models that are trained and
evaluated on three local samples.

the uniform model is not better than the models purely
trained on each of the samples. A focus on the perfor-
mance of the models on the hybrid test set suggests that
combination of the clusters do not help our model (i.e.,
the standard DNN) with respect to the choice of descrip-
tor (i.e., the Morgan fingerprint). This point was also
observed by comparing the performance of random and
hybrid models on the hybrid test set. We also note that
creating three times bigger training set should result in
a better performance for the model. However, the per-
formance of our models on the hybrid test set decreases
from the hybrid model (trained on 100% hybrid data) to
random model (trained on 70% hybrid data), and finally
to the uniform model (trained on 33% hybrid data). All
in all, the uniform model outperforms the random model
generally, and particularly on the fused and linked test
sets. Because a focus on the linked molecules is the pri-
mary goal of this work, providing a global model that
performs better on the linked cluster and globally is con-
sidered as a successful outcome.

Based on these results, we discuss that addition of
the data from different clusters confuses the model from
learning/distinguishing the characteristics of a single
cluster. We can explain this point better with the con-
cept of the distribution shift in the feature representa-
tion of the data. For doing so, we first transform the
high-dimensional representation (i.e., 2,048 fingerprint
vector) to two reduced features by applying principal
component analysis (PCA) on 3,000 randomly selected
instances of the uniform training set. The scatter plot
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FIG. 6: The scatter plot shows the first and second
principal components of a uniform distribution of three
clusters specified with color codes. The distribution of
first principal component is also plotted accordingly for
each cluster. The density of the probabilities are on the

right y-axis.

of the data points with their color-coded cluster labels is
shown in Fig. 6. The distribution of the data from each
cluster clearly illustrates the distribution shift between
the clusters. The results show that the linked and fused
clusters are very different in terms of the fingerprint rep-
resentation. Moreover, the distribution of the fused and
hybrid principal components has a more significant over-
lap than the linked and hybrid distributions. All these
outcomes are along with our discussions in Sec. III B as
well.

E. Ensemble Learning by Combining Regression

and Classification Models

As we discussed in the previous section, a simple lin-
ear PCA is able to capture the main structural differ-
ence between the three clusters. Thereby, our choice of
feature representation can linearly distinguish the three
suggested categories of molecules. We also should note
that all these molecules share the same building blocks in
their structures. However, distinguishing the three clus-
ters based on their connections is an entirely different
task from the prediction of target properties (i.e., PCE
values). In fact, a clustering approach only removes the
extra degree of freedom (i.e., the connection between
building blocks), and let the local regression models fo-
cus on the most distinguishing structural makeups of the
molecules. Thus, for developing a global model that has
similar performance with our best local models, we pro-
pose an ensemble method by merging the classification
and regression models.
In this section, we train a classifier on the same uni-

form sample that was created in Sec. IIID. The classi-
fier should be able to label an unseen molecule as fused,
linked, or hybrid category. We then use our best local
regression models accordingly to predict the PCE that
corresponds to that molecule. We optimize a standard
DNN model to classify the three clusters. The only dif-
ference between our classification and regression mod-
els is the choice of activation function for the last layer,
which is the Softmax function here instead of a linear
function for regression. The uniform training set is used
for developing the model because it is a fairly balanced
data set. We also change the training set size to assess
the performance of the classifiers on the tiny portion of
the data (e.g., 0.001 ratio that corresponds to 135 data
points). All the models are evaluated on the same test
sets of the initial four samples, and the resulting learning
curves are shown in Fig. 7. The figure shows that even
with less than 2,000 uniform sample of the CEP data, we
can get a model with 98% accuracy to classify three clus-
ters of molecules. The performance of the model on the
test sets deteriorates in the order of linked, fused, and
then hybrid test sets. These results are also in common
with Fig. 6, because the feature representation of hybrid
molecules is distributed between two other clusters and
has a more considerable overlap with fused molecules.
The underlying point is that the linked cluster is highly
distinguishable from the other two clusters. Thus, we
can also examine the distribution shift in the structural
features of molecules based on the performance of a clas-
sification task. We further extend the work by merg-
ing the classification model and our best local regression
models to develop a global predictive model for the CEP
data set. This approach has been long known as ensem-
ble learning method and boosts the overall performance
of the models that share same hypothesis space. The
green curve in Fig. 5 presents the learning curve for the
ensemble model, evaluated on the random test set. The
MAE for ensemble model is lower than both of the Mor-
gan and NFP models across the training set ratio. Ta. II
summarizes the lowest MAE for the three models. The
deep ensemble learning approach presents 31% and 15%
improvement compared to the Morgan fingerprint and
NFP, respectively. Besides, for the linked molecules, the
performance of the three models are similar and approxi-
mately show similar amount of improvement with respect
to their random models. It should be noted that the ac-
curacy of classification model for the linked molecules is
close to 100% and thus, the performance of the ensemble
model for the linked cluster is very similar to the linked
models.

IV. CONCLUSIONS

In the work presented here, we introduced a structure-
based partitioning scheme for molecular data sets that al-
lows us to identify different domains in compound space.
We showed the benefits of creating local ML models that
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TABLE II: The prediction error of three regression
models in terms of mean absolute error (MAE) ±
standard deviation. The table summarizes Fig. 5 at

90% training set ratio.

MAE(%)
Morgan FP NFP Ensemble

linked 0.288± 0.003 0.288± 0.002 -
random 0.423± 0.004 0.340± 0.004 0.290± 0.005

FIG. 7: We develop a model to classify three clusters of
the molecules based on the training on the uniform
sample of the data. The learning curves showing the

prediction accuracy of the classifier with respect to the
training set size, and evaluation on four test samples.

The inset plot focus on the turning point of the learning
curves.

take advantage of the distinct nature of these domains
compared to a single global model that does not account
for their differences. The improvements in performance
and efficiency are considerable, and even standard ML
models outperform the most advanced (and correspond-
ingly demanding), state-of-the-art ML approaches. An-
other attractive feature our study revealed is that local
models exhibit a more uniform performance across the
spectrum of target property values, including the desir-
able extremes, for which global models tend to degrade.
However, the principal bottleneck for developing local
models is the size cap of the minority domains.
We also advanced the use of a classification model and

the idea of ensemble learning to achieve the performance
of local models but for global predictions. Our statistical
analysis of the data set and its imbalance suggests that

the latter should be tackled by focusing on the choice of
the feature representation, as the sparsity in a feature
space can adversely affect a regression task. We pro-
pose to resolve this issue by breaking down the imposed
sparseness using clustering or classification techniques.
Beyond to cluster-aware regression approach presented
in this paper, we are currently pursuing an automated
process that includes the utilization of unsupervised ML
techniques, along with the incorporation (or extraction)
of physical priors.

SUPPLEMENTARY MATERIAL

Electronic supplementary material accompanies this
paper and is available through the journal website free
of charge. It provides statistical analysis of all data sets
that are used in this study (Table S1), and tuned hyper-
parameter values for trained models (Table S2). We also
give a link to the repository that data sets are deployed.
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