Rh(III)-catalyzed direct access to 2,3-substituted β -*N*-glycosyl indoles through C-H activation/annulation coupling of β -*N*-aryl glycosides with substituted internal alkynes

Guangkuan Zhao,^a Mingxiang Zhu,^a Olivier Provot,^a Mouad Alami,^a and Samir Messaoudi^{a*}

^a BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France

 β -*N*-glycosyl indoles are of high importance in medicinal chemistry and commonly found in many compounds of practical importance, ranging from natural compounds to pharmaceutical agents¹ (Figure 1). While these derivatives clearly hold a great potential in medicinal chemistry, relatively little attention has been devoted to their syntheses (Figure 1-B), since the stereoselective induction of a nitrogen indole scaffold at the anomeric position remains as a particularly difficult task. From a synthetic point-ofview, 2,3-substituted β -*N*-glycosyl indoles 3 (Figure 1) were prepared through multi-steps syntheses by treating indoline derivatives with sugars lactols^{ii,2} followed by (*i*) oxidation of the indoline into indole and (ii) functionalization of the C-2 and C-3 positions (Figure 2, Path A). The synthesis of 2,3-substituted β -*N*-glycosyl indoles is also possible *via* a β-glycosylation of indoles through a SN₂ Mitsunobu reaction^{1k, 1l, 3} followed by the functionalization of the indole nucleus (Figure 2, Path B). However, the reaction necessitate the use of a well-defined α -sugar lactols which are difficult to synthesize through multisteps sequences.4 Moreover, a mixture of α - and β -anomers was obtained in most cases. Another way to prepare stereoselectively β -Nglycosyl indoles is the use of Danishefsky α -1,2-anhydro sugars (Figure 2, Path C).⁵ While this method is efficient, beside the necessary of C2- and C3 functionalization,

Figure 1. Heteroaryl *N*-glycoside-based bioactive molecules

access to α -1,2-anhydrosugars (epoxides) remain no trivial. Indeed, their synthesis from epoxidation of the corresponding glycals is inherently relies on the use of the Murray's reagent⁶ (DMDO) which is an instable volatile peroxide not easy to prepare and manipulate. Despite these advances, the absence of a general and predictable

Figure 2 Strategies to access to 2,3-substituted β -*N*-glycosyl indoles

method for the direct synthesis of 2,3-substituted β -*N*-glycosyl indoles with a minimum of steps remains a major gap in glycochemistry preventing greater investigation of the biology and applications of these compounds.

Recently, our group reported an efficient protocol for the synthesis of β -*N*-aryl glycosides *via* a copper-catalyzed Chan-Lam-Evans N-arylation of aryl boronic acids.7 As part of our continued efforts to functionalize sugars under transition-metal catalysis to access complex glycosides,⁸ we envisioned whether β -*N*-aryl glycosides could be utilized as building blocks in the synthesis of β -*N*-glycosyl indoles through a transition-metal-catalyzed activation/annulation reaction in the presence of various alkynes (Figure 1-C). This modular strategy is conceptually attractive in terms of diversifying the N-glycosyl indoles frameworks with the aim to identify novel scaffolds of biological interest. In this work, we showed for the first time, that β -*N*-aryl glycosides and alkynes were successfuly joined together through a C-H activation/annulation process9 to afford in a single step stereoselectively, a variety of substituted β -N-glycosyl indoles (Figure 1-C).

To achieve successfully our goal, initial investigations focused on identifying optimal conditions for the coupling of β -*N*-phenyl glucopyranoside **1a** with 1,2-diphenylethyne **2a** as models study (Table 1). In preliminary experiments, the C–H activation/annulation reaction was examined under various conditions in the presence of different catalysts such as Ru,¹⁰ Rh,¹¹ Ni,¹² and Pd,¹³ but unfortunately, β -*N*-glycosyl indole **3a** was not detected under these conditions.

Further, inspired by the recent work described by Zhu^{14a} and Fan^{14b} whose reported the cyclization of *N*nitrosoanilines under Rh(III)-catalysis, we evaluated the influence of a nitroso-substituent on the phenyl glucopyranoside nitrogen atom (compound **1b**). When we used β -*N*-nitrosophenyl glucopyranoside **1b** with [(Cp*RhCl₂)₂] (5 mol%), AgSbF₆ (20 mol%), and diphenylacetylene (**2a**, 2

Table 1 Survey of reaction conditions for the C-H activation/annulation of 1a,b with $2a^a$

	AcO AcO R = R =	H N-R OAc H, 1a NO, 1b	Ph Cat. Ph ad Ph ad Cat. = [RuC Cat2. = RuC Cat3. = [Cp+1 Cat4. = Ni(Cl Cat5. = Pd(F	(5 mol%) ditives solvent e (h), T (°C) ³ RhCl ₂ OD ₂ Ph ₃) ₄		Ph Ph POAc 3a	
entry	R	Cat.	additive	solvent	Temp (°C)	Time (h)	yield 3a (%) ^b
1	Н	Cat,	AgNO ₂	t-AmOH	120	12	0
2	Н	Cat	Ag ₃ PO ₄	t-AmOH	120	12	0
3	Н	Catı	MeCO₂Ag	t-AmOH	120	12	0
4	Н	Cat	CF ₃ CO ₂ Ag	t-AmOH	120	12	0
5	Н	Cat ₁	AgSbF ₆	t-AmOH	120	12	0
6	Н	Cat ₁	$AgSbF_6$	dioxane	120	12	0
7	Н	Cat ₁	$AgSbF_6$	DCE	120	12	0
8	Н	Cat ₁	$AgSbF_6$	Acetone	120	12	0
9	Н	Cat ₁	$AgSbF_6$	DMF	120	12	0
10	Н	Catı	$AgSbF_6$	Toluene	120	12	0
11	Н	Cat ₂	$AgSbF_6$	t-AmOH	120	12	0
12	Н	Cat ₃	$AgSbF_6$	t-AmOH	120	12	0
13	Н	Cat ₄	$AgSbF_6$	t-AmOH	120	12	0
14	Н	Cat ₅	$AgSbF_6$	t-AmOH	120	12	0
18	NO	Cat ₃	$AgSbF_6$	DCE	100	3	38
19	NO	Cat ₃	$AgSbF_6$	DCE	120	3	25
20	NO	Cat ₃	$AgSbF_6$	DCE	rt	15	trace
21	NO	Cat ₃	$AgSbF_6$	DCE	60	15	31
22	NO	Cat ₃	AgSbF ₆	DCE	100	5	55 [°]
23	NO	Cat ₃	$AgSbF_6$	DCE	90	5	70
24	NO	Cat ₃		DCE	90	5	0
25	NO		AgSbF ₆	DCE	90	5	0
26	NO	Cat ₃	AgSbF ₆	DCE	90	5	72^d

^{*a*} Reactions were conducted with substrate **1a** or **1b** (0.10 mmol), alkyne (0.2 mmol), catalyst, additive, and solvent (1.0 mL). ^{*b*} Yield of isolated product **3a**. ^{*c*} **1b** was completely consumed. ^{*d*} 0.4 mmol of **2a** were used.

equiv.) in 1,2-dichloroethane (DCE) at 100 °C for 3 h, we obtained *β*-*N*-glucosyl indole **3a** ($J_{i,2}$ = 9.3 Hz) in 38% yield (entry 18). After screening several parameters, we finally found that the C-H annulation between **1b** and **2a** occured smoothly with 70% yield in the presence of [(Cp*RhCl2)2] (5 mol%), AgSbF₆ (20 mol%), in DCE at 90 °C for 5 h without adding any external oxidant (Table 1, entry 23). It should be noted that the Rh-catalyst and AgSbF₆ were necessary to achieve this transformation since no reaction occur when the coupling was conducted in the absence of [(Cp*RhCl₂)₂] or AgSbF₆ (entries 24 and 25).

Motivated by these results, we next explored the scope of the coupling reaction of **1b** with a variety of internal alkynes and we are gratifyingly pleased with the generality of this method. Various internal alkynes reacted smoothly to afford the desired 2,3-disubstituted *N*-glucosyl indoles **3a-i** in satisfactory yields. A variety of symmetric diaryl alkynes were efficiently converted into the corresponding products and electron-donating substituents on the aromatic rings had a positive electronic effect on yield than electronwithdrawing substituents (Table 2, **3a-d**). The coupling reaction with 1,2-di(thiophen-2-yl)ethyne was also efficient to afford **3e** in a moderate yield. Moreover, unsymmetrically substituted alkynes **2f-i** were converted with variable yields and moderate regioselectivities (**3f-i**).

In a further set of experiments, we investigated the scope and generality of the method with respect to β -*N*-aryl glycosides **1j-r**. As depicted in Table 3, the protocol tolerated different β -*N*-aryl glucosides and a multitude of 5- and

Scheme 1 Scope of alkynes coupling with tetraacetyl β -*N*-nitrosophenyl glucopyranoside **1b**

Reaction conditions: reactions were performed in a flame dried re-sealable Schlenk tube using 1b (0.30 mmol), alkynes 2 (2 equiv), [RhCp*Cl2]2 (5 mol%), AgSbF6 (20 mol%), in 1,2-DCE (0.1 M) at 90 °C for 5 h. b Yield of isolated product 3.

6-substituted indoles **3j-o** were readily prepared using this reaction. 5-Substituted β -N-aryl glycosides bearing elec tron-donating or electron-withdrawing groups afforded the corresponding 5-substituted β -N glucosyl indoles 3j**m** in acceptable yields. In addition, meta-substitution was tolerated furnishing 6-disubstituted β -N-glucosyl indoles 3n and 30 in 58% and 37% yields, respectively. Interestingly, this cross-coupling tolerated the presence of C-halogen bonds (e.g., F, Cl, Br) which offers a platform for further metal-catalyzed cross coupling reactions (compounds 3l, 3m and 3n). Moreover, the C-H activation/annulation process is not limited to β -*N*-aryl glucosides but also works successfully with β -*N*-aryl galactosides **1p**,**q** and the peracetylated β-D-disaccharide **1r** derived from D-βcellobiose octaacetate, however only 25% isolated yield of the disaccharide **3r** was obtained probably due to its intrinsic instability of **3r**. Of note, the stereochemistry of the $1 \rightarrow 4$ ' glycosidic bond remained intact. It is noteworthy that the coupling of unprotected β -*N*-nitrosophenyl glucoside with 1,2-diphenylethyne 2a under the above experimental conditions failed, as only starting materials were recovered unchanged.

With substantial amounts of **3l** in hand (Table 2), we focused our attention on demonstrating whether our method could be employed for molecular diversity. As shown in Scheme 1, β -*N*-glucosyl indole 4, which is an analogue of compound **A**, a highly promising cytotoxic and antitubulin agent developed in our group,¹⁵ was easily

Scheme 2 Scope of β -*N*-nitroso-aryl glycosides **1j-r** coupling with **2a**

Reaction conditions: reaction were performed in a flame dried re-sealable Schlenk tube using **1j-r** (0.30 mmol), alkyne **2a** (2 equiv), $[RhCp^*Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%), in 1,2-DCE (0.1 M) at 90 °C for 5 h. ^{*b*} Yield of isolated product **3**. ^{*c*} The reaction was achieved at 80 °C

prepared *via* a Pd-catalyzed coupling reaction of **3l** with 3,4,5-trimethoxy-*N*-methylaniline. Compound **5** was obtained from **4** by deprotection of the acetates groups under Zemplen's conditions using a catalytic amount of potassium carbonate in methanol.¹⁶

Scheme 1 Application of this methodology the synthesis of bioactive compounds 4 and 5

The *in vitro* activity of derivatives 4 and 5 was evaluated by their growth-inhibitory potency against HCT-116 cancer cells (human colon carcinoma) at the concentration of 10⁻⁶ M. The quantification of cells survival in this cell line was established by using MTT assays after 72 h of exposure. We found that analogues 4 and 5 displayed a mod-

erate effect in the growth of HCT-116 (81% and 70% survival, respectively) compared to the reference compound A (IC₅₀ = 7 nM) (Scheme 1).

In conclusion, we successfully developed an efficient and practical method based on Rh(III)-catalyzed C-H activation/annulation process of various β -*N*-nitroso-aryl glycosides with alkynes. The protocol exhibited a broad substrate scope with respect to the coupling partners, thus providing an attractive access to a large molecular diversity of 2,3-disubstituted *N*-glycosyl indoles 3. This protocol developed is stereoretentive, functional-group tolerant, and proceeds in good yields. We believe that this methodology will find broad applications in organic synthetic chemistry as well as in combinatorial and pharmaceutical sciences.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures, spectroscopic data and NMR spectra of new compounds.

AUTHOR INFORMATION

Corresponding Author

*E-mail: samir.messaoudi@u-psud.fr

Author Contributions

The manuscript was written through contributions of all authors. / All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Authors acknowledge support of this project by CNRS, University Paris Sud, ANR (ANR-15-CE29-0002) and by la Ligue Contre le Cancer through an Equipe Labellisée 2014 grant. We also thank the China Scholarship Council for a fellowship (CSC) to Guangkuan Zhao and Mingxiang Zhu. Our laboratory is a member of the Laboratory of Excellence LERMIT supported by a grant (ANR-10-LABX-33).

REFERENCES

(a) Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Masuma, R. A New Alkaloid Am-2282 of Streptomyces Origin Taxonomy, Fermentation, Isolation and Preliminary Characterization J. Antibiot. 1977, 30, 275; (b) Furusaki, A.; Hashiba, N.; Matsumoto, T.; Hirano, A.; Iwai, Y.; Omura, S. The Crystal and Molecular Structure of Staurosporine, a New Alkaloid from a Streptomyces Strain. Bull. Chem. Soc. Jpn. 1982, 55, 3681; (c) Bush, J. A.; Long, B. H.; Catino, J. J.; Bradner, W. T.; Tomita, K. Production and Biological Activity of Rebeccamycin, A Novel Antitumor Agent. J. Antibiot. 1987, 40, 668; (d) Golik, J.; Doyle, T. W.; Krishnan, B.; Dubay, G.; Matson, J. A. AT2433-A1, AT2433-A2, AT2433-B1 And AT2433-B2 Novel Antitumor Compounds Produced by Actinomadura Melliaura. J. Antibiot. 1989, 42, 1784; (e) Tanida, S.; Takizawa, M.; Takahashi, T.; Tsubotani, S.; Harada, S. TAN-999 and TAN-1030A, New Indolocarbazole Alkaloids with Macrophage-Activating Properties. J. Antibiot. 1989, 42, 1619; (f) Bonjouklian, R.; Smitka, T. A.; Doolin, L. E.; Molloy, R. M.; Debono, M.; Shaffer, A. S.; Moore, R. E.; Stewart, J. B.; Patterson, G.; Tjipanazoles, M. L. New Antifungal Agents from the Blue-green Alga Tolypothrix Tjipanasensis. Tetrahedron 1991, 47, 7739; (g) Osada, H.; Satake, M.; Koshino, H.; Onose, R.; Isono, K. A New Indolocarbazole Antibiotic, RK-286D. J. Antibiot. 1992, 45, 278; (g) Ren, J. S.; Bailly, C.; Chaires, J. B. NB - 506, an Indolocarbazole Topoisomerase I Inhibitor, Binds Preferentially to Triplex DNA. FEBS Lett. 2000, 470, 355; (h) Marminon, C.; Pierré, A.; Pfeiffer, B.; Pérez, V.; Léonce, S.; Joubert, A.; Bailly, C.; Renard, P.; Hickman, J.; Prudhomme, M. Syntheses and Antiproliferative Activities of 7-Azarebeccamycin Analogues Bearing One 7-Azaindole Moiety. J. Med. Chem. 2003, 46, 609; (i) Messaoudi, S.; Sancelme, M.; Polard-Housset, V.; Aboab, B.; Moreau, P.; Prudhomme, M. Synthesis and Biological Evaluation of Oxindoles and Benzimidazolinones Derivatives. Eur. J. Med. Chem. 2004, 39, 453; (j) Messaoudi, S.; Anizon, F.; Léonce, S.; Pierré, A.; Pfeiffer, B.; Prudhomme, M. Synthesis and Cytotoxicities of 7-aza Rebeccamycin Analogues Bearing Various Substituents on the Sugar Moiety, On the Imide Nitrogen and On the Carbazole Framework. Eur. J. Med. Chem. 2005, 40, 961; (k) Messaoudi, S.; Anizon, F.; Léonce, S.; Pierré, A.; Pfeiffer, B.; Prudhomme, M. Synthesis of Bridged Aza-rebeccamycin Analogues. Tetrahedron 2005, 61, 7304; (1) Henon, H.; Messaoudi, S.; Hugon, B.; Anizon, F.; Pfeiffer, B.; Prudhomme, M. Synthesis of Granulatimide Bis-imide Analogues. Tetrahedron 2005, 61, 5599; (m) Marminon, C.; Anizon, F.; Moreau, P.; Pfeiffer, B.; Pierré, A.; Golsteyn, R. M.; Peixoto, P.; Hildebrand, M. P.; David-Cordonnier, M. H.; Lozach, O.; Meijer, L.; Prudhomme, M. Rebeccamycin Derivatives as Dual DNA-Damaging Agents and Potent Checkpoint Kinase 1 Inhibitors. Mol. Pharmacol. 2008, 74, 1620; (n) Anizon, F.; Golsteyn, R. M.; Léonce, S.; Pfeiffer, B.; Prudhomme, M. A Three-step Synthesis from Rebeccamycin of an Efficient Checkpoint Kinase 1 Inhibitor. Eur. J. Med. Chem. 2009, 44, 2234; (o) Nomura, S.; Yamamoto, Y.; Matsumura, Y.; Ohba, K.; Sakamaki, S.; Kimata, H.; Nakayama, K.; Kuriyama, C.; Matsushita, Y.; Ueta, K.; Tsuda-Tsukimoto, M. Novel Indole-Nglucoside, TA-1887 As a Sodium Glucose Cotransporter 2 Inhibitor for Treatment of Type 2 Diabetes. ACS Med. Chem. Lett. 2014, 5, 51; (p) Li, L.; Konishi, Y.; Morikawa, T.; Zhang, Y. F.; Kitabayashi, C.; Kobara, H.; Masaki, T.; Nakano, D.; Hitomi, H.; Kobori, H.; Nishiyama, A. Effect of a SGLT2 Inhibitor on the Systemic and Intrarenal Renin-angiotensin System in Subtotally Nephrectomized Rats. J. Pharmacol. Sci. 2018, 137, 220; (q) Ōmura, S.; Asami, Y.; Crump, A. Staurosporine: New Lease of Life for Parent Compound of Today's Novel and Highly Successful Anticancer Drugs. J. Antibiot. 2018, 71, 688; (r) Kassab, S. E.; Hegazy, G. H.; Eid, N. M.; Amin, K. M.; El-Gendy, A. A. Synthesis of New 9-glycosyl-4,9-dihydropyrano [3,4-b]indole-1(3H)-ones as Antibacterial Agents. Nucleos. Nucleot. Nucl. 2011, 30, 991; (s) https://www.ema.europa.eu/en/medicines/human/EPAR/rydapt.

2. Sassatelli, M.; Bouchikhi, F.; Messaoudi, S.; Anizon, F.; Debiton, E.; Barthomeuf, C.; Prudhomme, M.; Moreau, P. Synthesis and Antiproliferative Activities of Diversely Substituted Glycosyl-isoindigo Derivatives. *Eur. J. Med. Chem.* **2006**, *41*, 88.

3. Ohkubo, M.; Nishimura, T.; Jona, H.; Honma, T.; Ito, S.; Morishima, H. Synthesis of Dissymmetric Indolocarbazole Glycosides Using the Mitsunobu Reaction at the Glycosylation Step. *Tetrahedron* **1997**, *53*, *5937*.

4. Bayle, C.; Defaye, J.; Horton, D.; Lehmann, J.; Scheuring, M. O-(3-Butenyl), A Stable Blocking Group Removable by Ozonolysis. *Carbohydr. Res.* **1992**, *232*, 375.

5. Gallant, M.; Link, J. T.; Danishefsky, S. J. A Stereoselective Synthesis of Indole- β -N-glycosides: An Application to the Synthesis of Rebeccamycin. *J. Org. Chem.* **1993**, 58, 343. 6. Murray, R. W. Chemistry of Dioxiranes. 12. Dioxiranes. *Chem. Rev.* **1989**, 89, 1187.

7. Bruneau, A.; Brion, J. D.; Alami, M.; Messaoudi, S. Stereoselective Copper-catalyzed Chan–Lam–Evans N-arylation of Glucosamines with Arylboronic Acids at Room Temperature. *Chem. Commun.* **2013**, *49*, 8359.

(a) Brachet, E.; Brion, J. D.; Messaoudi, S.; Alami, M. 8. Palladium - Catalyzed Cross - Coupling Reaction of Thioglycosides with (Hetero) aryl Halides. Adv. Synth. Catal. 2013, 355, 477; (b) Brachet, E.; Brion, J. D.; Alami, M.; Messaoudi, S.; Stereoselective Palladium-Catalyzed Alkenylation and Alkynylation of Thioglycosides. Adv. Synth. Catal. 2013, 355, 2627; (c) Brachet, E.; Brion, J. D.; Alami, M.; Messaoudi, S. Nickel-Catalyzed Arylation, Alkenylation, and Alkynylation of Unprotected Thioglycosides at Room Temperature. Chem. Eur. J. 2013, 19, 15276; (d) Al-Shuaeeb, R. A. A.; Galvani, G.; Bernadat, G.; Brion, J. D.; Alami, M.; Messaoudi, S. Diversity-oriented Synthesis of Fused Thioglycosyl Benzo[e][1, 4]Oxathiepin-5-ones and Benzo[f][1, 4]thiazepin-5(2H)ones by a Sequence of Palladium-catalyzed Glycosyl thiol Arylation and Deprotection-lactonization Reactions. Org. Biomol. Chem. 2015, 13, 10904; (e) Bruneau, A.; Roche, M.; Hamze, A.; Brion, J. D.; Alami, M.; Messaoudi, S. Stereoretentive Palladium-Catalyzed Arylation, Alkenylation, and Alkynylation of 1-Thiosugars and Thiols Using Aminobiphenyl Palladacycle Precatalyst at Room Temperature. Chem. Eur. J. 2015, 21, 8375; (f) Chabrier, A.; Bruneau, A.; Benmahdjoub, S.; Benmerad, B.; Belaid, S.; Brion, J. D.; Alami, M.; Messaoudi, S. Stereoretentive Copper-Catalyzed Directed Thioglycosylation of C(sp²)-H Bonds of Benzamides. Chem. Eur. J. 2016, 22, 15006; (g) Montoir, D.; Amoura, M.; Ababsa, Z. E.-A.; Vishwanath, T. M.; Yen-Pon, E.; Robert, V.; Beltramo, M.; Piller, V.; Alami, M.; Aucagne, A.; Messaoudi, S. Synthesis of Aryl-thioglycopeptides through Chemoselective Pd-mediated Conjugation. Chem. Sci. 2018, 9, 8753.

(a) Ackermann, L.; Carboxylate-Assisted Ruthenium-9. Catalyzed Alkyne Annulations by C-H/Het-H Bond Functionalizations. Acc. Chem. Res. 2014, 47, 281; (b) Guo, T. L.; Huang, F.; Yu, L. K.; Yu, Z. K. Indole Synthesis Through transition Metalcatalyzed C-H Activation. Tetrahedron Lett. 2015, 56, 296; (c) Kumar, I.; Kumar, R.; Sharma, U. Recent Advances in the Regioselective Synthesis of Indoles via C-H Activation/Functionalization. Synthesis 2018, 50, 2655; (d) Mancuso, R.; Dalpozzo, R. Recent Progress in the Transition Metal Catalyzed Synthesis of Indoles. Catalysts 2018, 8, 458.

10. (a) Ackermann, L.; Lygin, A. V. Cationic Ruthenium (II) Catalysts for Oxidative C-H/N-H Bond Functionalizations of Anilines with Removable Directing Group: Synthesis of Indoles in Water. *Org. Lett.* **2012**, *14*, 764; (b) Wang, C. M.; Sun, H.; Fang, Y.; Huang, Y. General and Efficient Synthesis of Indoles through Triazene-Directed C-H Annulation. *Angew. Chem. Int. Ed.* **2013**, *52*, 5795; (c) Lin, H.; Li, S. S.; Dong, L. Synthesis of Indoles and Polycyclic Amides via Ruthenium(ii)-catalyzed C-H Activation and Annulation. *Org. Biomol. Chem.* **2015**, *13*, 11228; (d) Xu, F.; Li, Y. J.; Huang, C.; Xu, H. C. Ruthenium-Catalyzed Electrochemical Dehydrogenative Alkyne Annulation. *ACS Catal.* **2018**, *5*, 3820.

(a) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M.
N.; Fagnou, K. Indole Synthesis via Rhodium Catalyzed Oxidative Coupling of Acetanilides and Internal Alkynes. *J. Am. Chem.* Soc. 2008, *1*30, 16474; (b) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. Rhodium (III)-Catalyzed Arene and Alkene C–H Bond Functionalization Leading to Indoles and Pyrroles. *J. Am. Chem. Soc.* 2010, *1*32, 18326; (c) Zhao, D. B.; Shi, Z. Z.; Glorius, F. Indole Synthesis by Rhodium (III)-Catalyzed Hydrazine-

Directed C-H Activation: Redox-Neutral and Traceless by N-N Bond Cleavage. *Angew. Chem. Int. Ed.* **2013**, **52**, **12426**; (d) Hoshino, Y.; Shibata, Y.; Tanaka, K. Oxidative Annulation of Anilides with Internal Alkynes Using an (Electron-Deficient η^{5-} Cyclopentadienyl) Rhodium (III) Catalyst Under Ambient Conditions. *Adv. Synth. Catal.* **2014**, 356, 1577; (e) Zhou, S. G.; Wang, J. H.; Zhang, F. F.; Song, C.; Zhu, J.; A Versatile, Traceless C-H Activation-Based Approach for the Synthesis of Heterocycles. *Org. Lett.* **2016**, *18*, 2427; (f) Terasawa, J.; Shibata, Y.; Kimura, Y.; Tanaka, K. Synthesis of Functionalized (η^{5-} Indenyl) Rhodium (III) Complexes and Their Application to C-H Bond Functionalization. *Chem. Asian J.* **2018**, *13*, 505.

12. Song, W. F.; Ackermann, L. Nickel-catalyzed Alkyne Annulation by Anilines: Versatile Indole Synthesis by C-H/N-H Functionalization. *Chem. Commun.* **2013**, *49*, 6638.

13. (a) Dupont, J.; Pfeffer, M.; Daran, J. C.; Gouteron, J. Reactivity of Cyclopalladated Compounds. Part 18. Compared Reactivity of the Pd-C Bonds of Two Closely Related Sixmembered Palladocyclic Rings with Substituted Alkynes. X-Ray and Molecular Structures of $[Pd\{C(Ph)=C(R)C(Ph)=C(R)(o-C_6H_4N=CMeNHPh)\}CI]$ (R = CO₂Et) and $[Pd\{C(R)[C(CO_2Me)C(R)=C(R)C(R)=C(R)][o-$

 $C_6H_4N=CMe(OH)]$ Cl] (R = CO_2Me). J. Chem. Soc., Dalton Trans. 1988, 2421; (b) Wu, G. Z.; Rhelngold, A. L.; Heck, R. F. Alkyne Reactions with Cyclopalladated Complexes. Organometallics 1986, 5, 1922.

14. (a) Liu, B. Q.; Song, C.; Sun, C.; Zhou, S. G.; Zhu, J. Rhodium (III)-Catalyzed Indole Synthesis Using N–N Bond as an Internal Oxidant. *J. Am. Chem. Soc.* **2013**, *135*, 16625; (b) Song, X.; Gao, C.; Li, B.; Zhang, X. Y.; Fan, X. S. Regioselective Synthesis of 2-Alkenylindoles and 2-Alkenylindole-3-carboxylates through the Cascade Reactions of N-Nitrosoanilines with Propargyl Alcohols. *J. Org. Chem.* **2018**, *83*, 8509.

(a) Soussi, M. A.; Provot, O.; Bernadat, G.; Bignon, J.;
Wdzieczak-Bakala, J.; Desravines, D.; Dubois, J.; Brion, J. D.;
Messaoudi, S.; Alami, M. Discovery of Azaisoerianin Derivatives as Potential Antitumors Agents. *Eur. J. Med. Chem.* 2014, *78*, 178;
(b) Zhao, G. K.; Bignon, J.; Levaique, H.; Dubois, J.; Alami, M.;
Provot, O. One-Pot Synthesis of 2-Styrylindoles from Ortho-Substituted Chloroenynes. *J. Org. Chem.* 2018, *83*, 15323.

16. (a) Zemplén, G.; Kunz, A. Studien über Amygdalin, IV: Synthese des Natürlichen l-Amygdalins. *Eur. J. Inorg. Chem.* **1924**, 57, 1357; (b) Ren, B.; Wang, M. Y.; Liu, J. Y.; Ge, J. T.; Zhang, X. L.; Dong, H. Zemplén. Transesterification: A Name Reaction that Has Misled Us for 90 Years. *Green Chem.* **2015**, *17*, 1390.