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Abstract 

The fish embryo toxicity (FET) assay offers high-throughput and ethically favorable toxicity 

testing but does not yet meet the demands of REACH legislation. This is partly because the 

standard protocol for FET is largely incapable of generating data on a chemical’s mode-of-

action (MoA). To address this limitation, we developed a seamless add-on to the FET assay 

involving high-throughput, single zebrafish embryo metabolomics (‘metaFET’). Incubation, 

microscopy, embryo extraction, and instrumental metabolomics analysis of single zebrafish 

embryos were all performed in the same 96-well plate, following acquisition of conventional 

FET endpoints. The total time for metaFET (including testing of 6 doses with positive and 

negative controls, assessing conventional endpoints, instrumental analysis, data processing and 

multivariate statistics) is <14 days, i.e. 1 wk longer than conventional FET. Metabolomic 

perturbations at low dose were linked statistically to those observed at high dose and in the 

presence of an adverse effect, thereby contextualizing omic data amongst regulatory endpoints. 

Overall, this technology enables collection of high resolution metabolomic data in a high 
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throughput manner, suitable for MoA hypothesis generation in the context of regulatory 

pharmaceutical or toxicological screening. 

 

Introduction 

EU REACH (Registration, Evaluation and Authorization of Chemicals) legislation requires 

chemical manufacturers to carry out comprehensive hazard assessment on new products, 

necessitating the use of large numbers of animals (11.5 million in 2011) in the European Union 

alone1. In addition to the practical challenges associated with high throughput toxicity testing 

(e.g. time, money) there are ethical dilemmas associated with experimentation involving 

animals. Recently, the United States Environmental Protection Agency pledged to stop 

financing animal tests by 20352 and within the EU REACH legislation lies imbedded the 3R 

principle which strongly encourages a reduction in animal tests3.  Substitution of the OECD 

adult fish acute toxicity test (test guideline (TG) 203) with the fish embryo acute toxicity test 

(TG 236) could address some of these issues4 through low cost, multi-well plate-based in vitro 

testing5. However, TG 236 does not yet meet the information requirements of REACH Annex 

VIII on its own, in part because apical endpoints measured by TG236 are not fully compatible 

with those of TG2036. Thus, TG236 is currently only suitable for regulatory purposes by 

applying a weight-of-evidence approach. For example, if a chemical’s mechanism-of-action 

(MoA) is known, inclusion of TG236 data may fulfill the requirements of REACH for short-

term acute toxicity in fish. MoA data are necessary for linking molecular initiating events to 

apical endpoints through Adverse Outcome Pathways and a number of studies have generated 

chemical-specific and mixture-exposure transcriptomic7–10, proteomic11,12, and metabolomic 

data10,13 from zebrafish embryos. However, these data are often of limited use to regulators, 

since incubation protocols are usually non-standardized (and do not follow TG236), and omic 



responses are often not connected to an apical endpoint, making them difficult to interpret in a 

regulatory context.14  

 

Most metabolomic studies on zebrafish (ZF) embryos have employed pooling approaches, 

extracting between 3 and 80 embryos per replicate, in order to obtain sufficient biomass for 

instrumental analysis10,13,15–17. One of the major drawbacks of pooling is that there is no 

practical way of linking apical endpoints of individual embryos to their respective exposure-

induced metabolic perturbations. While the analysis of single ZF embryos could facilitate direct 

linkages between metabolic perturbation and apical endpoints, single ZF embryo metabolomics 

is hampered by their small size (~200 µg/individual at 120 hpf), which makes them difficult to 

extract and ultimately generate sufficient quantities of extract for instrumental analysis. 

Perhaps for this reason, single ZF embryo metabolomics has, to our knowledge, only been 

attempted once, with a focus on studying changes in the metabolome of developing embryos18 

(i.e. not conducted in resemblance to TG236). In that work, a 3-step homogenization scheme 

was followed by filtration and pre-concentration prior to LC- and GC-MS analysis18. However, 

preparing samples in this manner is time consuming, and limits the number of replicates which 

are practically possible to analyze. 

 

Here we present an addition to the FET assay which rapidly generates and contextualizes 

metabolomic data amongst conventional toxicological endpoints. Incubation, microscopy, 

embryo extraction, and instrumental analysis were all performed in the same 96-well plate, 

resulting in a total assay time of less than 2 weeks (1 week longer than the standard 236 assay). 

Metabolomic effects at low dose are statistically linked to those at high dose (i.e. in the presence 

of an apical endpoint) which places these data into context amongst regulatory endpoints. 

Overall, this sample preparation and analysis method is suitable for high sensitivity, high 



throughput MoA hypothesis generation in regulatory pharmaceutical or toxicological 

screening. 

 

Materials and methods 

In-plate heart rate, morphology, and mortality measurements according to TG 236 

ZF embryos were incubated up to 120 hours post fertilization (hpf) with the beta blocker 

propranolol (PPL) building on the OECD 236 Test Guidelines4. A single plate consisted of 6 

different concentrations of PPL (n=12 embryos/concentration), a vehicle control (n=12 

embryos) and a positive control (3,4-dicholoroaniline (DCA); n=12 embryos; see Figure S1 for 

plate layout). At 48 and 120 hpf we examined embryos microscopically for standard lethal and 

sub-lethal apical endpoints (plus heart rate19,20; Table S1) and observed significantly lower 

heart rates (relative to negative controls) in both the positive control and the 46540 µg/L 

exposure group at 48hpf (Fig. 1a), as well as the 46540 and 4550 µg/L groups at 120 hpf (Fig. 

1b). These results align well with the only no- and lowest-observed effect concentrations 

(NOEC and LOEC, respectively) for decreased heart rate due to PPL exposure in zebrafish 

embryos (3500 µg/L and 7000 µg/L respectively at 48 hpf20) known to the authors.  Significant 

mortality was only observed in the positive controls, both at 48 and 120 hpf.  

 

Dosage analysis 

By measuring the exposure water in each well, following incubation and exposure, we were 

able to determine the concentrations for all but the lowest dose (which was below the limit of 

quantification; Table S2). The measured concentrations in the exposure medium were on 

average 0.49, 12, 62, 4550 and 46540 µg/L at 120 hpf. The nominal dose for the lowest 

concentration was 0.050 µg/L. We also confirmed that doses stayed within ± 10% over the 



duration of exposure, thus ruling out substantial degradation or biotransformation during the 

study (Table S3). 

 

In-plate sample preparation and sequence planning 

To minimize sample handling and enhance throughput for metabolomic analysis, we developed 

a method for in-plate extraction of up to several hundred embryos in < 3 hours. The extraction 

involved bead blending and sonication with methanol/chloroform (plus internal standard) 

followed by centrifugation (see Supporting Information), after which the plate was placed 

directly in the autosampler of the liquid chromatograph (LC) for instrumental analysis. We 

used mixed-diameter stainless-steel beads to reproducibly homogenize the embryos, as 

opposed to single-sized beads which tended to leave the larvae husk intact. By gluing silicone 

cap-mats lined with polytetrafluoroethylene (PTFE) to each 96-well plate, up to 960 embryos 

(i.e. 10 × 96 well plates stacked) could potentially be homogenized simultaneously with this 

method. To ensure the absence of cross contamination between wells, we performed a number 

of a priori microscopy experiments where no sign of moisture between the wells was detectable 

and where empty wells close to solvent-filled wells remained dry after homogenization. Blanks 

were prepared in separate blank plates alongside the sample plates, but followed the exact same 

treatment as normal samples, and were injected prior to the analysis of real samples.  

 

In order to avoid compromising the LC columns and mass spectrometer through injection of 

small, insoluble skin-fragments we increased the autosampler needle-height to draw extract 5 

mm from the bottom of the wells (as opposed to the default setting 2 mm). In this step, the 

extraction beads also served to stop suction-induced turbulence from disturbing tissue remnants 

at the bottom of the wells. As a final precaution, we installed an in-line metal filter (0.5 µm) 

downstream of the autosampler but upstream of the analytical column. Each plate underwent 



three analyses over 74 hours: a) a lipidomics analysis via flow-injection MS/MS, b) non-target 

analysis using hydrophilic interaction chromatography (HILIC) positive ionization Orbitrap 

mass spectrometry; and c) resuspension followed by reversed phase-chromatography negative 

ionization Orbitrap mass spectrometry (see Supporting Information). 

 

Signal-drift during both lipidomic and Orbitrap analyses were corrected using the R-package 

batchCorr21 which required inclusion of quality control (QC) samples throughout the injection 

sequences. The QCs were prepared in 1.5 mL polypropylene tubes and consisted of extract of 

five pooled embryos, for which the same solvent to sample ratio as for plate samples was used. 

Blanks for the QCs were prepared in 1.5 mL polypropylene tubes and analyzed together with 

the plate blanks. Furthermore, we analyzed a portion of the highest concentration dose medium 

with both Orbitrap methods to identify features corresponding to PPL (e.g. parent ions, in-

source fragments, and impurities), and remove them during processing. Collectively, analysis 

using all three methods yielded over 13,000 raw features per embryo. 

 

Isolation of endogenous metabolites through data filtration 

Both lipidomic and Orbitrap data were processed using previously described methods 

developed by our group22, the former of which was adapted from Liebisch et al22,23 (see also 

Supporting Information). Peaks acquired through lipidomics analysis had to be on average 10-

fold higher than in blanks to be considered metabolite features. For non-target data, exogenous 

substances (e.g. PPL, its metabolites and background noise) were removed using a combination 

of batchCorr21 and an in-house R package comprised of a total of 6 data filters24. The first filter 

used the gap-filling status recorded by Compound Discoverer (CD) to remove features not 

detected in any of the sequence QC injections. Features which passed the gap-filter were then 

subjected to sequence correction using batchCorr21 and any features displaying RSDs above 



30% in the sequence QCs post correction were discarded. The third filter removed low-intensity 

features (i.e. those features with highest peak height <200,000 counts per second for ESI+ 

HILIC or <150,000 counts per second for ESI- reversed-phase) whereafter the remaining 

features were internal standard-corrected to account for inter-well variability in evaporation. 

For the fourth filter we used the annotation package “ramclustR” to detect and remove any in-

source fragments of the masses predicted to be metabolites of PPL by CD, based on retention 

time and MS1 intensities25. The fifth filter removed all features within 5 ppm of masses on a 

list of expected phase I and II metabolites of PPL generated by CD, as well as all features 

detected in the exposure medium and in blanks. The sixth filter removed any feature which had 

negative intensities and the seventh filter discarded features present in procedural blanks with 

peaks >40% relative to the maximum signal in samples or QCs respectively. Overall, this 

procedure reduced the total number of features obtained from lipidomic and Orbitrap analyses 

from >13000 to <350 (Table S4). 

 

Multivariate statistical analysis 

Statistical analysis for apical observations were carried out using Student’s t-test for heart rates 

and Pearson’s Chi-squared test for mortality. For metabolomics data statistical analysis was 

performed using the R-package MUVR26 which performs minimal variable selection through 

recursive variable elimination by repeated double cross-validation (Table S5). In order to both 

characterize the MoA of PPL and to obtain data suitable for benchmarking of exposure, we 

developed and refined two random forest (RF) models: a classification and a regression model. 

 

Metabolite identification through retention time and MS2-based fingerprint matching 

Metabolite features measured by non-target analysis and selected by the models were 

putatively identified using mzCloud (through CD), Metlin27, Metfrag28 and 



Sirius+CSI:FingerID29,30. For compounds where there was no clear consensus regarding 

identification between these four software, we used the structure proposed by 

Sirius+CSI:FingerID due to its performance in inter-method comparisons31. Following putative 

identification, we procured authentic standards and determined a similarity score between 

sample and standard MS2 spectra using the R-script ‘NTScreeneR’32 (Data S1). All candidate 

metabolite features displayed a similarity score > 0.85, which we deemed sufficient to confirm 

their identities.  

 

Results and Discussion 

Reproducibility of between-plate controls 

To evaluate the potential for future cross-plate comparison, and the reproducibility of our in-

plate sample preparation method, we analyzed non-exposed (i.e. control) embryos distributed 

over four plates from a second incubation event (see Methods). After instrumental analysis (i.e. 

Orbitrap using HILIC chromatography and lipidomics) and a data processing approach slightly 

modified to facilitate batch comparison (see Methods) we used principle component analysis 

(PCA) to get an unbiased measure of between-plate variability in the measured metabolome. 

Evaluating the PCA score plots for both the lipidomics (Fig. 2a) and Orbitrap data (Fig. 2b), as 

well as a combination thereof (Fig. 2c) it is not surprising that only the Orbitrap data scores 

plot shows signs of outliers (Fig. 2a). Non-target metabolomics is not only susceptible to in-

sequence drift but also drift between batches, both in mass and baseline signal21. To counteract 

these phenomena we prepared a batch QC sample which, together with batchCorr, was used to 

normalize the baseline between the Orbitrap data of the four plates21. Since the outliers are not 

present in the lipidomics data (Fig. 2b) we conclude that the deviation of the outliers is not 

inherent to the embryos or the sample preparation but rather stems from the analysis.  

Interestingly, the extreme samples in the Orbitrap data are almost completely attenuated in the 



first 2 PCs by combining the datasets (Fig. 2c). Altogether, by utilizing the full functionality of 

batchCorr21, we were able to show that zebrafish embryos can be reproducibly incubated, 

homogenized and analyzed using our in-plate sample preparation and analysis methods. 

 

PPL exposure modelling  

For the classification model we used all PPL exposure concentrations as well as negative 

controls as input which generated a model based on 34 of the 311 metabolite features. 

Unsurprisingly, the majority of misclassification of samples occurred between similar dosing 

concentrations (i.e. doses within 1 order of magnitude; Fig. 3a). However, when we considered 

misclassification as only those samples which were incorrectly classified by over an order of 

magnitude, the misclassification-rate decreased from 51% to only 24% (Fig. 3a). Permutation 

analysis of the model with randomized sample labels revealed that the model was highly 

statistically significant (n = 100, p = 1.16×10-10) which confirmed that there was no overfitting. 

In comparison, the RF regression model was constructed using only the negative control along 

with the groups in which statistically significant apical endpoints were observed (i.e. heart rate 

perturbations at 46540 and 4550 µg/L; Fig. 3b). This model resulted in a selection of 10 

metabolite features, 7 of which were also identified by the classification model (Fig. 4). The 

Q2 and p-value for 100 permutations were 0.67 and 9.2×10-5 respectively. In summary, we 

obtained two adequately accurate and non-overfitted RF models of PPL exposure using MS-

data collected from single ZF embryos through RF analysis. 

 

PPL mode of action 

The relative, scaled abundance of the 11 structurally confirmed, 20 putatively identified, and 

the 6 unidentified metabolite features elected by the two models were plotted on a heat map to 

obtain a biochemical overview of the exposure (Fig. 4). Both monotonic and non-monotonic 



dose-responses were observed, highlighting the multi-faceted and complex perturbation of the 

metabolome caused by PPL exposure. It is well-documented that PPL strongly interacts with 

the phosphatidate phosphatase (PAP)/phospholipase D (PLD) pathway, causing inhibition of 

PAP and induction of PLD (Fig. 5a)33–35. The PAP/PLD pathway is a major component of 

glycerophospholipid metabolism in which a number of other enzymes have been documented 

to be affected by PPL exposure (Fig. 5a). Phospholipids such as phosphatidylcholine (PC), -

ethanolamine (PE), -inositol (PI), -serine (PS), -glycerol (PG) and phosphatidic acid (PA) as 

well as the fatty acids (FA) to which they are composed of are not only structural components 

of the lipid membrane but also signaling molecules governing important cellular and 

physiological mechanisms such as cytokinesis36, apoptosis37, neurotransmission38 and 

inflammation.39 Thus, it is no surprise that a large number of PC lipids show signs of a 

monotonic increase in abundance over the exposure doses in this study (Fig. 4). Interesting to 

note is that our RF regression model is solely based on compounds with an increase in relative 

concentration over increasing exposure doses. We hypothesize that the chain of events that 

induces PC lipids with one ether-bound FA also explains the increase of PE lipids in higher 

exposure doses (Fig. 4). When PPL induces PLD and inhibits PAP a build-up of PA will occur35 

which will lead to a subsequent increase in PI and PS40. PS can be further metabolized into PE 

which in turn can be metabolized into glycerol-3-phosphate, one of the main starting molecules 

for ether lipid metabolism (Fig. 5a). Also, many enzymes which are either directly or indirectly 

affected by PPL can be found within the ether lipid metabolism pathway (e.g. phospholipase 

A2 (PLA2)41, PAP, PLD and PLC42). So, despite the lack of detailed knowledge on how PPL 

interacts with ether lipid metabolism, our findings in literature are indicative of a MoA which 

would explain the stepwise increase and subsequent decline in PE and the monotonic increase 

in PC ether lipids over the exposure concentrations. A number of biologically important FAs 

(i.e. docosapetaenoic acid, eicosapentaenoic acid, docosahexaenoic acid, X-hydroxy 



eicosatetraenoic acid) showed similar non-monotonic expression patterns to one another, 

consistent with the response observed for a number of lysoPEs and lysoPCs (Fig. 4). The 

concentration of these FAs decreased in the lower dose groups (0.5-62 µg/L) before returning 

to levels similar to controls at the highest doses (4540-46540 µg/L). This could be explained 

by the ability of PPL to inhibit the activation of PLA2, which facilitates hydrolysis of acyl-

bound FAs from phospholipids (Fig. 5a)41. Considering that all of the affected lipids and FAs 

are messenger molecules, we propose that fold-change increases in higher doses might be the 

result of many negative and positive feedback loops interacting with each other. The only non-

lipid related metabolite feature we identified with a level 1 certainty was phenylalanine, which 

has also been reported in a previous metabolomics study on PPL exposure43. The direct 

inhibition of tyrosine hydroxylase (TH) by PPL  is a likely explanation for the relative increase 

of phenylalanine in the two highest exposure concentrations  in our data (Fig. 5b)44. If tyrosine 

concentrations grow large, due to TH-inhibition, alternative pathways could be over-burdened 

which would ultimately result in a build-up of its precursor phenylalanine. Thus, we conclude 

that the metabolites elected by our models are consistent with existing literature on PPL and 

provide strong evidence supporting their perturbation at the exposure concentrations 

investigated in the present work. 

 

Ecotoxicological evaluation 

Having confirmed that our models reflected actual metabolomic perturbations we employed 

the RF regression model to predict the four concentrations not used to train the model (i.e. 0.05 

µg/L, 0.49 µg/L, 12 µg/L and 62 µg/L; Fig. 6). For the test-set dose-groups we then calculated 

the Q2-value for all exposure groups together and separately (Equation S1). The results showed 

a large variation in predictability of different dose concentrations (Fig. 6): The two higher doses 

(12 µg/L and 62 µg/L) were very close to modelled values while lower doses (0.05 µg/L and 



0.49 µg/L; Fig. 5) suffered from slightly worse prediction accuracy, although without any 

measurable bias (Fig. 6). Importantly, predicted doses at all concentrations were significantly 

higher than predictions of the negative control, suggesting a high potential to correctly identify 

the occurrence of exposure even at such low exposures that could not be accurately predicted 

(Fig. 6). We also used the data acquired from the model to make benchmark dosing (BMD) 

calculations using the U.S. EPA BMD tool (BMDS, version 3.0)45. This resulted in a log-

normal model with constant variance which fulfilled all but one of the default requirements of 

BMDS (Table S6). The metabolomic BMDL and LOEC of this model were 0.0016 µg/L and 

0.050 µg/L at 120 hpf, which are orders of magnitude lower than the LOEC for heart rate (7000 

µg/L at 48 hpf20; 46540 µg/L at 48 hpf in this study) which the metabolomic effect is anchored 

in. Unfortunately, we were unable to find any heart rate BMDL for propranolol in the literature.  

 

Perspectives on the use of metaFET for regulatory hazard assessment 

While the standard FET assay generates hazard data based on mortality (e.g. NOEL, LC50), it 

provides little in the way of mode-of-action. This limitation is addressed in the metaFET 

approach by linking metabolomics data to the standard FET assay, which represents a 

significant leap forward in chemical hazard assessment. Previous protocols for ZF embryo LC-

MS analysis have decoupled apical and metabolomic endpoints, by requiring the pooling of 

embryos. Our approach represents a vast improvement by generating apical and metabolomic 

measurements from the same embryo. The metaFET in-plate extraction and analysis adds on 

to standard FET assays without the need to perform additional embryo experiments. The 

extraction procedure, while minimizing sample handling error induced by multi-step protocols 

and the delicacy of small sample volumes, also improves time-efficiency, thus effectively 

enabling large-scale, high-throughput analysis. The possibility to determine metabolomic 

BMDs, NOECs and LOECs linked to apical endpoints in single fish embryos not only forwards 



the possibility to use omics data in a legislative context but it also emphasizes the question of 

where the threshold of an adverse effect should be drawn. Beyond molecular hazard screening, 

the developed in-plate sample processing method can also be used for rapid determination of 

transformation products, metabolomics of fish embryos from other fish species, other small 

test organisms or cells as well as processing of smaller samples from larger organisms which 

require small extraction volumes. Overall, the method presented here constitutes a significant 

development in high-throughput, cost-effective LC-MS analysis of small organisms. 
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Data availability 

Datasets obtained through data processing of instrumental raw files from Thermo Scientific 

Quantiva and  from Q Exactive Orbitrap instrumental analysis are available in the Data Dryad 

repository (https://doi.org/10.5061/dryad.7m0cfxppz). The raw files generated through 

instrumental analysis in this study, as well as result files generated by data processing software, 

are available from the corresponding author upon reasonable request. 
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called “metLab”, (https://github.com/parasitetwin/metLab).  All functionality connected to our 

non-targeted data filtering procedures are available as a package for R called “ExpMetFilter”, 

(https://github.com/parasitetwin/ExpMetFilter).  
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Fig. 1: Heart rate of embryos measured at 48 hpf (A) and 120 hpf (B) for the range of 

exposure concentrations. Heart rate was measured through microscopy and determined by 

counting the number of heartbeats of the embryo during 15 seconds. Groups with 

significantly lower heart rate compared to controls (p<0.05) are marked by *.  

 

 

 

 

 

 



 

Fig. 2: PCA score plot of single zebrafish embryo data from four different plates 

acquisitioned by Orbitrap utilizing HILIC chromatography (A); lipidomics analysis (B) and a 

combination of both analyses (C). 

 



 

Fig. 3: Results of MUVR random forest (RF) modelling. Panel A shows results of the RF 

classification model with actual and predicted exposure groups in the columns and rows, 

respectively (green for correct predictions, orange for prediction within one order of 

magnitude and red for erroneous predictions). Panel B shows the results of the RF regression 

model, trained on the two exposure groups with lower heart rate at 120 hpf (i.e. 4550 and 

46540 µg/L) and the negative controls (Q2= 0.67, p=9.2×10-5). 



 

Fig. 4: Heatmap of all endogenous metabolites elected by the classification and regression 

random forest models. 1-5 = level of putative identification as suggested by Schymanski et 

al.46 ¤ = No MS2 data gathered.



 

Fig. 5: Pathways of phospholipid (A) and tyrosine (B) metabolism implicated in the mode of action of propranolol. Enzymes are color-coded for 

up-regulation or induced activity (green), down-regulation or reduced activity (red) or no documented effect (gray) associated with PPL. The 

hexagon indicates a direct interaction of PPL (PPL DI) with phopshatidylo choline lipids. Metabolite heatmaps are arranged from the highest 

concentration (top) to the negative control (bottom).  # = Only in regression model; ¤ = Both in regression and classification model. 



 

Fig. 6: Exposure concentration predicted by the MUVR RF regression model trained on 

exposure groups marked in orange. Exposure groups marked in turquoise were not used for 

model construction, but still produced dose-dependent predictions. Concentrations predicted 

to be significantly (p<0.05) lower than 4550 µg/L and higher than negative controls are 

denoted with *. Of note, although predictions at the lowest exposure (0.05 µg/L) were 

inaccurate, the model still managed to identify these samples as exposed. mBMDL is the 

lower metabolomics benchmarking dose as determined by the US EPA tool “BMDS 3.0” 

using prediction data from the regression model. 
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