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ABSTRACT: 

This article announces VERDE materials DB, the first database to include downloadable excited-

state structures (S0, S1, T1) and photophysical properties. VERDE materials DB is searchable, 

open-access via www.verdedb.org, and focused on light-responsive π-conjugated organic 

molecules with applications in green chemistry, organic solar cells, and organic redox flow 

batteries. It includes results of our active and past virtual screening studies; to date, more than 

13,000 density functional theory (DFT) calculations have been performed on 1,500 molecules to 

obtain frontier molecular orbitals, and photophysical properties, including excitation energies, 

dipole moments, and redox potentials. To improve community access, we have made VERDE 

materials DB available via an integration with the Materials Data Facility. We are leveraging 

VERDE materials DB to train machine learning algorithms to identify new materials and 

structure-property relationships between molecular ground- and excited-states. We present a case-

study involving photoaffinity labels, where we identify new diazirine-based photoaffinity labels 

with optimal photostabilities.  

 

Introduction 

Approximately 50,000 exajoules of harvestable solar energy reach the Earth each year, far 

exceeding the 400 exajoule total global energy consumption in 2016.1, 2 The most recent inorganic 

photovoltaic devices are able to capture this energy with power conversion efficiencies (PCEs) 

exceeding 47%; in contrast, the highest confirmed PCEs for organic photovoltaics (OPVs) recently 

surpassed 16%.3, 4 The solar day-night cycle interrupts solar energy conversion, thus making solar 

energy storage an equal priority for renewable energy research. Organic redox flow batteries, 

which use dissolved, electronically-active organic materials (e.g., quinone and anthraquinone 

derivatives), have shown potential for large-scale energy storage.5, 6 While inorganic materials 

have higher PCEs and battery efficiencies, their relatively high cost makes commercialization 

difficult and often requires subsidies.7 In addition, organic energy materials provide green 

alternatives to commonly used inorganic materials.5, 8, 9 Renewable solar energy has led to 

increasingly sustainable chemical reactions by eliminating the need for Earth-rare and 

organometallic catalysts for powerful organic transformations. The low-cost of organic materials 

combined with their straightforward processability and tunability suggests that sustainable next-

generation devices and reactions, including singlet fission materials, organic photoredox catalyst-

substrate pairs, and photoaffinity labels, are possible, but have yet to be discovered.10-12 

Organic chromophores of broadest general interest absorb UV, visible, or near-IR light, 

depending on the application. They are typically π-conjugated and often feature aromatic moieties. 



 

Porphyrins, quinones, and dibenzoperylenes are representative examples and are shown in Scheme 

1. The vast number of possible chromophores compounded by the substitution patterns and 

possible functional groups makes the number of possible accessible organic molecules approach 

1023.13 

 

Scheme 1. Examples of π-conjugated and aromatic molecule and their applications. 

 

 

 
 

Experimental determination of molecular structure and properties is extremely expensive in terms 

of human time and chemical costs. An emerging approach involving quantum mechanical (QM) 

calculations combined with data-driven techniques (e.g., machine learning) has facilitated the 

navigation of chemical space and ‘smart’ searches of chemical space. The QM calculations are 

typically density functional theory (DFT) and provide optimized geometries and electronic 

structures at reasonable cost. Machine learning (ML) algorithms—especially neural nets—require 

large datasets that are relatively rare in academia and proprietary in industry. The QM/ML 

approach allows scientists to determine the structures and properties of molecules and materials 

relatively quickly with high performance computing (HPC) resources and large datasets can be 

compiled. Indeed, the Harvard Clean Energy Project (CEP) contains an open-access dataset of 2.3 

million candidate organic photovoltaic (OPV) materials and their predicted highest occupied 

molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs), and corresponding 

short-circuit current densities, open circuit voltages, and power conversion efficiencies, computed 

with the Scharber model.14-16 

Databases of computed physicochemical properties of organic compounds can reveal 

trends in properties and help establish QSPR models which guide the rational design of new 

materials. Existing databases of organic compounds highlight their utility. GDB-13 enumerates 

970 million synthetically-accessible, organic molecules containing up to 13 heavy atoms (C, N, O, 

S, Cl).17 The QM7 dataset provides, for the subset of GDB-13 containing up to seven heavy atoms, 

Coulomb matrices and atomization energies for 7,165 organic molecules and was successfully 

used to train a nonlinear regression machine learning model to predict atomization energies based 

on molecular geometry and nuclear charges.18 QM7b extends QM7 with 13 additional properties, 

such as HOMO and LUMO energies, polarizabilities, and excitation energies for 7,211 organic 

molecules.19 Montavon et al. used this dataset to train multi-task deep neural network to predict, 

with reasonable accuracy, these additional properties using Coulomb matrices as descriptors. 

GDB-17, which extends GDB-13 to organic molecules containing up to 17 heavy atoms, 

enumerates 166 billion molecules. Von Lilienfeld et al. constructed the QM9 dataset, the subset 

of GDB-17 containing up to 9 heavy atoms, featuring ground state geometries, dipole moments, 

polarizabilities, enthalpies, and free energies for approximately 134,000 molecules.20 QM9 has 



 

been used by many groups to construct neural networks to predict, with DFT-level accuracy, 

molecular properties at a relatively low computational cost.21-23 

These databases of computed chemical properties have proven to be useful in the material 

discovery process.21-24 Organic electronics function when constituent materials are in non-

equilibrium states (e.g., oxidized or photoexcited). The non-equilibrium structures are critically 

important to understanding the properties of these materials yet absent from current open-source 

large databases. However, current open-access databases, including QM7, QM9, and CEP, do not 

include excited state properties, such as structures and transition energies, which we have shown 

to be useful in understanding photophysical properties and photochemical reaction mechanisms. 

As shown in our case study below, the optimized excited-state structures of diazirines provide 

important clues about the photostabilities of diazirines. The open-access nature of VERDE 

materials DB means that research groups everywhere can discover new materials and infer 

fundamental structure-property relationships.  

 

Results/Discussion 

Organization of the data into the VERDE materials DB 

This manuscript introduces the Virtual Excited State Reference for the Discovery of 

Electronic materials database (VERDE materials DB). We make VERDE materials DB and the 

associated data (i.e., calculation output files, and derived calculation results) openly available 

through an integration with data services provided by the Materials Data Facility (MDF).25 We 

have implemented a flow where data supporting VERDE materials DB are published to MDF as 

they become available, important information about each calculation is automatically extracted 

and loaded into a search index, and the associated data are discoverable via advanced search 

capabilities, including partial matching and range queries. The open access nature of this database 

is meant to speed the discovery of new materials through simplified collection of data upon which 

machine learning and other analyses may be performed. We see opportunities in the future to 

leverage other data services, like the Data and Learning Hub for Science (DLHub), to act as a 

central repository of machine learning models derived from this database, to enable users to run 

models on new data, to benchmark and compare models, and to directly link these models to 

training data from VERDE materials DB.  

As such, VERDE materials DB will meet a substantial need from the experimental and 

theoretical communities developing sustainable materials for OPVs, organic field-effect 

transistors, and green chemistry (e.g., photoredox catalysts). VERDE materials DB is the first 

containing extensive ground and excited state, DFT-optimized geometries and thermochemical 

calculations for organic materials. The computed electronic states include the S0, S1, T1, and radical 

cation states (see Methods for computational methodology). Further, VERDE materials DB 

includes properties computed from these DFT calculations such as redox potentials, 0-0 transition 

energies (interchangeable with 𝐸0–0 throughout the manuscript), and ionization potentials.26, 27 

𝐸0–0 requires the optimization of the chromophore in a given excited state. Computations of 

vertical excitation energies are shown to be functional-dependent because the functionals can be 

overfit for classes of chromophores. Given the vast molecular diversity in VERDE materials DB, 

we chose to report 𝐸0–0 values. 

 

 

 

 



 

High-throughput virtual screening library generation 

VERDE materials DB relies on standardized high-throughput virtual screening (HTVS) libraries 

and an automated computational workflow. HTVS libraries are generated using an in-house 

algorithm that systematically links 20 spacer and 11 terminal groups shown in Scheme 2. These 

linking reactions are meant to resemble well-established cross-coupling reactions.28 

 

 
Scheme 2. Combinatorial method used for generating high-throughput virtual screening libraries. 

Spacer groups are attached at user-defined substitution positions, then each spacer is combined 

with a terminal group. 

 

Generated molecules are then processed through the computational workflow illustrated in Scheme 

3. The workflow is composed of four phases (computational details are elaborated in the 

computational methods section). 

Phase 1: The workflow uses RDKit29 to generate 3-D coordinates from the SMILES30 string 

followed by a low-mode conformational search that produces up to four low-lying conformers 

minimized with the Universal Force Field.31 

Phase 2: Each conformer in this ensemble is refined with two sequential semi-empirical 

optimization calculations: PM732 followed by RM1-D,33 which includes the empirical D3-

dispersion correction.34 Our group has shown that RM1-D produces geometries that are 

remarkably close to DFT-optimized (ωB97XD/jun-cc-pvdz) structures. We then perform M06/6-

31+G(d,p)35-37 single point energy calculations on each of these optimized structures to determine 

the lowest-energy conformer. 

Phase 3 and 4: The lowest-energy structure is subjected to an M06/6-31+G(d,p) optimization (with 

IEFPCMMeCN to account for bulk solvent effects)38 and frequency calculation to confirm the 

stationary point as true minimum on the ground- and excited-states (S0, S1, and T1). In addition, 

we perform an optimization of the SN excited state where N is the lowest singlet excited state less 

than or equal to 5 which has an oscillator strength greater than 0.1. This provides optimized 

geometries and E0-0 values. The optimized structure and energies of the molecular radical cations 

afford the redox potentials of each molecule in the database. 

 

 

 

 

 

 



 

 

 

Scheme 3. Illustration of the automated computational workflow used to run calculations for 

VERDE materials DB.  

 

 
 

VERDE materials DB and MDF Integration 

VERDE materials DB leverages MDF-operated data services, MDF Connect, Publish, and 

Discover to allow for streamlined access to, and discovery of, the data by researchers.25 MDF 

Publish is a decentralized dataset repository, that allows a user to publish a dataset to any Globus 

endpoint,39, 40 in the process creating a permanent identifier (e.g., DOI) for the dataset, and 

following a defined user-driven dataset curation flow to help ensure data quality. MDF Discover 

is an access-controlled, cloud-hosted search index with supportive Python software tools that 

support data search and facilitate data retrieval. MDF Connect is a service that supports the flow 

of data provided by a user from many storage locations to many services in the scientific data 

ecosystem. MDF Connect supports three key actions: 1) submission via user requests, made by 

script or web interface, triggers MDF Connect to collect the data from common storage locations 

including Google Drive, Box, or a Globus endpoint; 2) enrichment of collected data through 

extraction of general and domain-specific metadata (e.g., molecular information from output files, 

.xyz, .mol and other common chemistry data formats), combination of extracted and user-provided 

metadata into MDF metadata records, and transformation of dataset contents (e.g., from 

proprietary to open formats); and 3) dispatch of data to MDF Publish, metadata to MDF Discover, 

and combinations of data and metadata to other community data services (e.g., NIST Materials 

Resource Registry, Citrine) selected by the user.  

 

In the case of VERDE materials DB, data generated through high-throughput computations are 

submitted to MDF Connect via an automated Python script as it becomes available. Following 

submission, MDF Connect extracts important metadata describing the molecule being studied 

(e.g., InChI and SMILES strings, molecular mass) as well as calculated properties (e.g., dipole 

moments, redox potentials, and 0-0 transition energies) from files included in the submission to 

improve data discoverability (see SI for a full description of the extracted metadata). These 

metadata are dispatched to MDF Discover where it is loaded into a search index to facilitate 



 

discovery and usage and then dispatched to MDF Publish to create a dataset, mint a permanent 

identifier, and move the data to storage endpoints at Argonne National Laboratory’s Petrel 

Facility41 and at the University of Illinois at Urbana-Champaign Blue Waters to hold the associated 

data files and metadata. Further, VERDE Materials DB is made available to other community 

services for example, the NIST Materials Resource Registry for dataset registration. All dataset 

contents can be accessed via REST API or with the MDF Forge Python client. Users may then 

discover and download the entire dataset contents or the results of individual or matching 

calculations using the MDF Discover API and Python client. 

  
Figure 1. Data flow overview. Excited state data are submitted to MDF Connect. MDF Connect 

automatically extracts metadata (e.g., redox potentials, dipole moments, and 0-0 transition 

energies) from the submission, and the data and extracted metadata are dispatched to MDF Publish 

for long-term data storage, minting of a persistent identifier, and versioning, and to MDF Discover 

for loading into a search index to facilitate querying, aggregation, and data consumption. 

 

Case-study: Screening of new photoaffinity labels 

Photoaffinity labeling (PAL) is a technique used to identify the binding site of a protein through 

the regulated, covalent addition of a photoactive moiety to the protein of interest.42 A ligand 

functionalized with a photoactive group can be irradiated once the ligand binds to the target 

protein, covalently binding the ligand to the protein. Further spectrometric analysis can be used to 

elucidate the location of binding. Knowledge of the binding site can guide the rational design of 

compounds that bind more strongly and specifically to the target protein.42-44 Diazirines are a 

commonly used class of photoaffinity labels (PALs) and aryl diazirines, in particular, are known 

for their chemical and thermal stability, especially compared to other photoaffinity labels such as 

azides and benzophenones.42, 45 Further, diazirines are one of the smallest photoreactive groups 

(PGs) used in PALs and therefore result in PALs that better mimic the ligand than do larger PGs.45 

Diazirines which exhibit greater photostability are desired to increase ambient light stability and 

increase the fidelity and specificity of PAL. Kumar et al. has determined the photostabilities of the 

3-trifluoromethyl-3-aryldiazirines, which are summarized in Figure 2.46 

 

 



 

Figure 2. Percentage of 3-trifluoromethyl-3-aryldiazirines remaining after 31 days of ambient 

light exposure. 

 

The 0-0 transition energy (𝐸0–0) is defined in Eq. 1 as the difference in energy between the S0 and 

SN states minus the difference in zero-point vibrational energy (𝛥𝑍𝑃𝑉𝐸) between the two states. 

This value empirically corresponds to the midpoint between the λmax of the emission and 

absorption spectra. 

 𝐸0–0 = 𝐸𝑆1
 − 𝐸𝑆N

− 𝛥𝑍𝑃𝑉𝐸 Eq. (1) 

 

𝐸0–0 values were computed for the aryldiazirines in Figure 2. The computed 𝐸0–0 values are 2.80, 

2.97, and 3.12 eV for compounds 1, 2, and 3 respectively. Larger 𝐸0–0 energies correspond with 

increasing stability along the series shown in Figure 2. This trend appears to correlate with the 

electron-withdrawing nature of the substituents, with more strongly electron-withdrawing 

substituents resulting in greater 𝐸0–0 values. Our groups were also interested in understanding the 

concerted or stepwise nature of the photochemical diazirine ring-opening mechanism (Scheme 4), 

which is largely outside the scope of this manuscript. 

 

Scheme 4. Representative concerted and 

stepwise mechanisms of carbene formation in 

a prototypical diazirine system. (a) The initial 

diazirine, (b) the diazo intermediate in the 

stepwise mechanism, and (c) the carbene 

product. 

 

However, the diazo intermediate (Figure 3), 

had a substantially different geometry in the 

S1 state than in its ground state because of 

𝜋𝑁𝑁
 𝜋𝑁𝑁

∗  transition that rehybridizes the 

central nitrogen of the diazo intermediate. This photoexcited geometry is remarkably close–and 

thus pre-distorted–towards an adjacent conical intersection. 

 

 
Figure 3. Geometries of diazo intermediate in the ground (S0) and excited (S1) states. The length 

of the N=N bond and the C=N=N bond angle are labeled. 

 

The mechanistic study in on-going between our groups and will be published in due course. After 

consulting with Manetsch and co-workers, we jointly designed a virtual library of 206 diazirines 

(following a modified combinatorial method shown in Scheme 5) that were subjected to the 

workflow in Scheme 3.  



 

 

 

 

Scheme 5. Combinatorial method for generating HTVS library of diazirines  

 

 
 

The 206 diazirines were screened to find those which had vertical excitations with oscillator 

strengths > 0.1 within the first five singlet excited states (S1–S5). Twelve diazirines met this 

criterion (See SI for candidate diazirines). These 12 diazirines had 𝐸0–0 values ranging from 1.15 

to 3.88 eV. We identified 4 candidates that met the 𝐸0–0 > 3.12 eV threshold, informed by the high 

photostability of compound 3 (Figure 2). Figure 4 shows these top candidates. 

 

 
Figure 4. Theoretical diazirines with 𝐸S2

0–0 > 3.12 eV. E0-0 values and oscillator strengths for S2 

vertical excitations are shown. Geometry optimizations and frequency calculations were 

performed with M06/6-31+G(d,p) and 𝐸S2

0–0 values were computed. 

 

The greatest 𝐸0–0 correspond to those diazirines with electron-withdrawing substituents. In these 

diazirines, the HOMOs are strongly stabilized by the electron-withdrawing group and the LUMOs 

are relatively unperturbed, leading to larger excitation energies, manifested as higher 𝐸0–0 

transition energies. Experimental verification of these results is currently underway in our groups; 

we anticipate that the diazirines in Figure 4 will be at least as stable as 3. Solar and fluorescent 



 

light have vanishingly few photons in UV-range; those diazirines requiring relatively high-energy 

photons will be slower to react under these standard illumination conditions.  

 

Conclusions 

Our pyMolGen code and high throughput virtual screening workflow has been used to determine 

the ground- and excited-state structures (S0, S1, T1) for 1,500 organic π-conjugated organic 

molecules. We established the VERDE materials DB as the first database to feature these 

optimized geometries and corresponding properties, including redox potentials, dipole moments, 

excitation energies, redox potentials, and 0-0 transition energies. It is hosted on the Materials Data 

Facility in a form conducive to consumption by researchers, and is continually growing through 

internal projects and collaborations. Data gathered from high-throughput virtual screening (HTVS) 

of diazirine derivatives for photoaffinity labeling showcases the utility of computed excited 

structures and properties. Ongoing HTVS projects are examining dibenzoperylene and 

anthraquinone derivatives for organic photoredox catalysis and new candidates for singlet fission 

solar cells, respectively. We are working to make VERDE materials DB even more interactive 

by including features for users to upload structures to be computed with our resources.  

 

Computational Methods 

 We developed a Python-based code that generates molecular SMILES30 strings based on a 

π-conjugated core moiety with substituent sites informed by literature and commercial precedent. 

These SMILES strings are organized in a virtual screening library to begin the automatic 

computational workflow. We employ the RDKit29 Python library to generate four conformers, 

which undergo structural relaxation with the Universal Force Field. Each conformer is subjected 

to the following series of calculations: (1) PM732 optimization, (2) RM1-D optimization (using 

DFT-D3 dispersion correction),33, 34 and (3) single-point DFT calculation. The lowest energy 

conformer, determined based on the aforementioned single-point DFT calculation, undergoes the 

following series of DFT optimizations and frequency calculations (4) S0 in vacuo, (5) S0 in 

IEFPCMMeCN, (6) S1 in IEFPCMMeCN, (7) T1 in IEFPCMMeCN, (8) radical cation in vacuo, (9) 

radical cation in IEFPCMMeCN.38 All DFT calculations are performed by using M06/6-

31+G(d,p).35-37 All calculations are performed with the default settings provided by the Gaussian 

16 software package,47 with the exception of the RM1-D optimization which is performed by using 

GAMESS version 2018 R1.48, 49 0-0 transition energies are derived from these calculations based 

on a method described by Jacquemin et al.26 Redox and ionization potentials are computed as 

described by Fu et al.27 Excited state redox potentials are computed as described by Romero et 

al.10 
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