Virtual Chemist Suite 2019

QUEMIST, CONSTRUCTS, and ACE

Tutorial

Department of Chemistry McGill University Montréal, Québec, Canada

Molecular Forecaster Inc. Montréal, Québec, Canada

24/08/2019

Table of Contents

I.	Running Forecaster with the User Interface
II.	Quemist3
1	. Basics
2	. Platform5
3	. Basis sets5
III.	Analyzing Quemist results7
1	. Single point energy
2	. Geometry optimization9
3	. Obtaining force field parameters 11
IV.	Quemist and Reactants and Products14
V.	Constructs
1	. Diethyl zinc addition to aldehydes 18
2	Asymmetric Dihydroxylation
VI.	References

I. RUNNING FORECASTER WITH THE USER INTERFACE

The user interface (UI) can be started by double clicking on the Forecaster-UI.jar file in the Forecaster folder. This will open the main window.

Under Linux and Mac OSX, it is recommended to launch it from a terminal window by typing the command below. Make sure that you are located in the folder where this jar file is.

Forecaster@Linux/Forecaster:~\$ java -jar Forecaster-UI.jar

	.settings	2018-01-15 3:35 PM	File folder	
	conformationalLibraries	2018-01-15 2:25 PM	File folder	
	constructs	2018-01-15 2:25 PM	File folder	
	examples	2018-01-15 2:25 PM	File folder	
	executables	2018-01-26 10:09	File folder	
	impacts	2018-01-15 2:25 PM	File folder	
	reactions	2018-01-15 2:25 PM	File folder	
4	Forecaster-Ul.jar	2018-01-26 10:14	Executable Jar File	3,326 KB
7	LISPARIES SOFTWARE LICENSES-READM	2018-01-15 2:25 PM	Adobe Acrobat D	18 KB
] machine_id.exe	2018-01-15 2:25 PM	Application	23 KB

The first step is to set the working directory. Click **Browse**, under **Working Directory**. You will be prompted to navigate to the folder where you will save various files while working with FORECASTER. If this is the first time you use FORECASTER, you may need to create a new folder. This folder can have any name and can be located anywhere you want..

Working Directory	
Browse	C:\Users\User\Desktop\Working Directory
Open directory	

You may then click Start Forecasting to expand the "Modular Workflow" section.

II. QUEMIST

As soon as the working directory is set, copy the file of your small molecule of interest in this folder. Make sure this file is in mol2 format. Then make a modular workflow that includes QUEMIST. As soon as a modular workflow is ready (see corresponding tutorial), open QUEMIST.

🌲 FORECASTER - QUEMIST			_		×						
QUEMIST (QUantum Energy of Molecules Inducing Structural Transform											
This program will optimize a structure using Hartree-Fock or DFT techniques.											
Working directory											
Browse ii\Desktop\FORE	CASTER-Suite2019-rev5619-Windows	7-8-10\Completel	Package\ti	utorialQM							
Open directory	l										
Settings											
Source of molecule structures	From working directory										
Input file	ethanol.mol2 🗸										
Output file name	optimizedMolecule										
Mode	Single Point Energy 🗸 🔻										
Basis Set	6-31G(d) 🗸										
Overall molecule charge	0										
Number of Cores	1										
Running OUEMIST											
Edit Parameter File	e\tutorialOM\parameters-quemist.txt										
Save	parameters-quemist.txt										
	· · ·										
		E	Exit		-						

1. Basics

QUEMIST can run HF (Windows, Linux, MacOS) and DFT (Linux, MacOS) calculations, including single point energy calculations and geometry optimizations (in Cartesian coordinates). Moreover, if one wishes to parametrize their own reaction in ACE, QUEMIST can run geometry optimizations of reactants/products necessary for TS template building followed by computation of force field parameters using the Seminario method¹ later improved by Allen *et. al.*²

Some important information about QUEMIST:

 Running it on Linux/MacOS will always be significantly faster than running it on Windows because of the usage of the libint library for the computation of two-electron integrals. From our experience, we recommend running only very small molecules (< 40 atoms) with small basis sets (STO-3G, minix, 6-31G) on Windows. If you have Windows 10, you can download the Linux subsystem for Windows 10 and can run the Linux version of QUEMIST on this subsystem. We highly recommend using the Linux version!

- For now, DFT calculations are only possible on Linux/MacOS. We use the libxc library for functionals which is only available for Linux systems.
- Geometry optimizations/force field parameter generation is only available on Linux.

Options:

After significant testing we have come up with defaults for various options available within QUEMIST. These are encoded into the platform and will be automatically written to the parameter file. **DO NOT CHANGE THESE DEFAULTS** (unless you know the potential impact of these changes).

2. Platform

You can run single point energies, geometry optimizations and geometry optimizations that involve computing force field parameters (WARNING: this last option involves computing the Hessian of your molecule, which will take a very long time (ie, days)!). For the first part of the tutorial, we will run a single point energy calculation on ethanol, both on Windows and Linux. We will use the STO-3G basis set and will be running the calculation on 4 cores. First, change the name of the output file name to ethanol-QM-Windows.

Settings			
Source of molecule structures	From working directory	-	
Input file	ethanol.mol2	-	
Output file name	ethanol-QM-Windows		
Mode	Single Point Energy	-	
Basis Set	Single Point Energy Geometry Optimization Geometry Optimization and FF	paran	neters
Overall molecule charge	0		
Number of Cores	1	-	

The QUEMIST code is parallelized so you can select as many cores as you can spare for your calculations.

3. Basis sets

Below are listed the available basis sets:

• 6-31G (Elements w/ atomic numbers 1-30, 34-35 and 53 taken from 6-311G)

- 6-31G(d) = 6-31G* (Elements w/ atomic numbers 1-30, 34-35 and 53 taken from DZVP)
- 6-31G(d,p) = 6-31G^{**}(Elements w/ atomic numbers 1-30, 34-35 from 6-31G^{*} and 53 taken from DZVP)
- 6-311G (Elements w/ atomic numbers 1-20, 34-35 and 53)
- Augmented-dzp (Elements: H (1), B (5), C (6), N(7), O(8), F(9), Al(13), Si(14), P(15), S(16), Cl(17), Fe(26), Zn(30), Se(34), Br(35),Rh(45), I(53), Os(76), Ir(77))
- DZP (Elements: H (1), B (5), C (6), N(7), O(8), F(9), Al(13), Si(14), P(15), S(16), Cl(17), Fe(26), Zn(30), Se(34), Br(35), I(53), Os(76))
- Def2-SVP (def2-SVP basis set for elements 1-36. lodine, Rhodium and Osmium taken from augmented-DZP)
- Def2-TZVP (def2-TZVP basis set for elements 1-36. lodine, Rhodium and Osmium taken from augmented-DZP)
- STO-3G (Elements w/ atomic numbers 1-53 + 76 from WTBS)
- Minao (Elements w/ atomic numbers 1-36 + 45, 53 and 76 from ANO-RCC, 77 from WTBS)
- Minix :

H-He, B-Ne	MINIS
Li-Be	MINIS + 1(p)
Na-Mg	MINIS + 1(p)
Al-Ar	MINIS + 1(d)
K-Zn	SV
Ga-Kr	SVP
I, Rh, Os and Ir	taken from augmented-DZP

• Forecaster-BS:

Elements:	1-36, 45, 53, 76 and 77
H - Al	def2-SVP
Si - Cl	def2-TZVPD
Ar - Cu	def2-SVP
Zn	def2-TZVPD
Ga - Kr	def2-SVP
Rh, I, Os, Ir	augmented-DZP

Basis Set	STO-3G 🗸	
Overall molecule charge	6-31G(d) 6-311G	
Number of Cores	STO-3G 6-31G	
	6-311G dzp	
Running QUEMIST	def2-SVP x2c-SVP	

Once the selections is made, save the parameter file. Below is the parameter file generated.

Fil	e Edit	Search	View	Encoding	Lan	guage	Settir	ngs	Tools	Macro	Run	Plu	gins	Wind	ow	?					
) 📑 🗎	🖺 🔒	īg 📮) 🕹 🖻) 💼	20	2 8	^b 2	٩	ج ٦		=,	1	I 🐺	7	E	۲	٠	▶	ii uc	Ę
H	arameters-quemist.txt 🔀																				
	1	Mole	ecul	e et	har	nol	.mo	12													_
	2	Outp	out	etha	nol	L-QI	4-W	ind	dow	s											
	3	Mair	n Mo	de q	m																
	4	Run	Mod	le rh	f																
	5	QM_N	leth	od					h	f											
	6	Chai	cge				1	0													
	7	Inte	egra	l_Th	rea	shol	ld	1	le-	10											
	8	Enei	gy_	Thre	sho	old		1	le-	05											
	9	DIIS	S_Th	resh	olo	ł		1e-	-05												
	10	RMSI	DP_T	'hres	hol	Ld		1e-	-05												
	11	MAXI	DP_T	'hres	hol	Ld		1e-	-05												
	12	Damp	oing	_Fac	toı	2		0.7	70												
	13	Prir	nt_I	evel				1													
	14	Basi	is_S	let					S	TO-3	3G.(dat	-								
	15	No_I	DFT_	Core	s				4												
	16	Geon	netr	y_Op	tin	niza	ati	on	n	0											
	17	Comp	oute	_Hes	sia	an	no														
	18	End	of	Keyw	ord	ls															

At this stage, you are ready to Run the workflow.

Excluded File Conv	
✓ Included QUEMIST ②	
Save current workflow workflow	Run workflow
	Exit

The calculation should not take more than a few minutes.

III. ANALYZING QUEMIST RESULTS.

1. Single point energy

Open the file ethanol-QM-Windows.out using your favorite text editor. Here are a few things we are interested in:

SCF ITERATIONS											
It. # Energy(B	Eh) deltaE	n (Eh)	RMS(D,P)	[F,P]	MAX-DP						
$\begin{array}{cccccc} 0 & -151.4863739\\ 1 & -151.5350973\\ 2 & -151.5724209\\ 3 & -151.7004025\\ 4 & -151.7009882\\ 5 & -151.7010136\\ 6 & -151.7010156\\ 7 & -151.7010156\\ 8 & -151.7010156\\ 9 & -151.7010156\\ \end{array}$	924 0.000 379 -0.048 964 -0.037 562 -0.127 245 -0.000 676 -0.000 506 -0.000 680 -0.000 694 -0.000 695 -0.000	000 723 324 982 586 025 002 000 000 000	0.030397 0.025150 0.043483 0.003610 0.000782 0.000207 0.000067 0.000019 0.000006 0.000006	0.230774 0.184925 0.147579 0.007969 0.001969 0.000598 0.000172 0.000041 0.000013 0.000006	0.209471 0.172083 0.249489 0.023590 0.006618 0.001886 0.000600 0.000128 0.000038 0.000024						
	SCF CONVERG	ED AFTER 1	0 ITERATION	15							
[-151	.701015695	5304								
Last energy change Last RMS change Last MAX- DP change Last DIIS error	= 1.53 = 3.23 = 2.38 = 6.19	830e-009 117e-006 863e-005 049e-006	Tolerance = Tolerance = Tolerance = Tolerance =	= 1.00000e-(= 1.00000e-(= 1.00000e-(= 1.00000e-()05)05)05)05						
Ekinetic = 1. Enuclattr = -5. Enuclear = 8. Eone = -3. Ecoul = 1. Eel = -2. E(XC) = -2. Etotal = -1. Virial factor= 9.	.523185e+002 .264914e+002 .449362e+001 .741728e+002 .590333e+002 .361946e+002 .105507e+001 .517010e+002 .95946e-001	Eh Eh Eh Eh Eh Eh Eh									

The calculation converged after 10 iterations. Most important, the virial factor is 0.99 (~ 1.00), which is what you would expect from a converged calculation.

Now, if you have the Linux version, run the same parameter file (make sure to change the output file name to ethanol-QM-Linux) using the Linux version. Below find the results you should obtain:

Total	time elapsed	:	0.0015	minutes.						
4	-151.7010150	94	-0.000	036	0.000078	0.000344	0.000620			
Total	time elapsed	:	0.0019	minutes.						
5	-151.7010165	16	-0.000	001	0.000027	0.000060	0.000178			
Total	time elapsed	:	0.0022	minutes.						
6	-151.70101662	28	-0.000	000	0.000006	0.000013	0.000035			
Total	time elapsed	:	0.0026	minutes.						
7	-151.7010166	35	-0.000	000	0.000004	0.000007	0.000027			
Total	time elapsed	:	0.0030	minutes.						
						¬				
		SCF	CONVERG	ED AFTER	3 ITERATIONS					
			FINAL	SINGLE PO	INT ENERGY					
			- 151	.70101663	5474					
Dispersion correction = -0.162855473696 Eh Total energy (including corrections) = -151.863872109170 Eh										
Last energy change = 7.30179e-09 Tolerance = 1.00000e-05 Last RMS change = 3.83300e-06 Tolerance = 1.00000e-05 Last MAX-DP change = 2.66312e-05 Tolerance = 1.00000e-05 Last DIIS error = 6.54883e-06 Tolerance = 1.00000e-05										

As you can see, the results files are different. First, using libint (a library used in QUEMIST when running on Linux/MacOS) reduces the number of iterations from 10 to 8. Moreover, for the Linux version, there is no detailed energy breakdown (including virial factor computation) but a special dispersion correction is included. However, as you can see, the energy difference between the two computations is as low as -0.00000094017 Hartrees, approx. -0.000589 kcal/mol.

2. Geometry optimization

WARNING: Geometry optimizations are only available on Linux.

In the platform, select "Geometry optimization" instead of "Single point energy". Change the name of the output file to ethanol-QM-Linux-GeomOpt. The parameter file should look like this:

File	Edit	Search	View	Encoding	Language	Settings	Tools	Macro	Run	Plugin	is I	Windo	w ?					
<u></u>	 	E 🔒	To 🔒	K 🖻	b > c	: 🏦 🍾	1 🔍	ج 13		E⊋ ¶	ļ		<u>X</u>	R) 🖿	۲	•	>>	 3
🔚 pa	rameter	s-quemist.	txt 🗵 🚦	ethanol-Q1	M-Linux.out 🗵													
	1 :	Mole	cul	e etł	nanol.	mol2												
	2	Outp	ut	ethai	nol-QM	1-Lin	ux-	Geom	Opt	:								
	3	Main	n_Mo	de qr	n													
	4	Run_	Mod	le rhi	E													
	5	QM_M	leth	od			h	f										
	6	Char	ge			0												
	7	Inte	egra	l_Th	reshol	.d	1e-	10										
	8	Ener	gy_	Threa	shold		1e-	05										
	9	DIIS	5_Th	resh	old	1e	-05											
1	0	RMSE	P_T	hresl	nold	1e	-05											
1	1 :	MAXE	P_T	hresh	nold	1e	-05											
1	2	Damp	oing	_Fact	tor	0.	70											
1	3	Prin	nt_L	evel		1												
1	4	Basi	.s_S	et			S	то-3	G.c	lat								
1	5	No_E)FT_	Cores	3		4											
1	6	Geon	letr	y_Opt	timiza	ation	У	es										
1	7	Comp	ute	_Hes:	sian	no												
1	8	End_	of_	Keywo	ords													

Run the calculation. You should obtain a results file named ethanol-QM-Linux-GeomOpt.out, a file ethanol-QM-Linux-GeomOpt.xyz that shows all the steps of the geometry optimization (you can open it with Avogadro for example) and a file called ethanol-QM-Linux_qm.mol2 which will contain the optimized structure in mol2 format. Here are a few guidelines to interpreting the results file:

At every step we evaluate convergence:

726 -_____ 727 1 728 --- STEP 1 --- COMPLETE 729 1 730 _____ 1-731 ******* CONVERGENCE CRITERIA ******* 732 1------

 dEn. = 2.80e-01
 Tolerance : 5.00e-04
 Converged : NO

 Fmax = 1.91e-01
 Tolerance : 1.50e-04
 Converged : NO

 Frms = 1.30e-01
 Tolerance : 4.50e-04
 Converged : NO

 733 734 735
 736
 Drms = 1.26e-01
 Tolerance : 1.20e-03
 Converged : NO
 Tolerance : 1.80e-03 Dmax = 1.83e-01 737 Converged : NO 738

As the optimization runs the convergence criteria will start being fulfilled until all "Converged" fields will say "YES".

```
--- STEP 39 --- COMPLETE
Т
             ******* CONVERGENCE CRITERIA *******
        _____
den. = 1.11e-05 Tolerance : 5.00e-04 Converged : YES
Fmax = 1.29e-04
                  Tolerance : 1.50e-04
                                       Converged : YES
Frms = 8.65e-05
                  Tolerance : 4.50e-04
                                       Converged : YES
Drms = 3.40e-04
                  Tolerance : 1.20e-03
Tolerance : 1.80e-03
                                       Converged :
                                                   YES
Dmax = 5.64e - 04
                                        Converged :
                                                   YES
                   Geometry optimization complete.
T
L
              _____
```

3. Obtaining force field parameters

In the platform, select Geometry optimization and FF parameters instead of Geometry optimization. Change the name of the output file to ethanol-QM-Linux-GeomOpt-FF. The parameter file should look like this:

📄 paramet	ers-quemist.txt 🗵		
1	Molecule ethanol.mo	512	
2	Output ethanol-QM-I	Linux	x-GeomOpt-FF
3	Main_Mode qm		
4	Run_Mode rhf		
5	QM_Method		hf
6	Charge	0	
7	Integral_Threshold	10	e-10
8	Energy Threshold	10	e-05
9	DIIS_Threshold	1e-(05
10	RMSDP Threshold	1e-(05
11	MAXDP Threshold	1e-(05
12	Damping_Factor	0.70	D
13	Print_Level	1	
14	Basis Set		STO-3G.dat
15	No DFT Cores		4
16	Geometry Optimizati	ion	yes
17	Compute Hessian ye	es	
18	End_of_Keywords		

Run the calculation. You should obtain a results file titled ethanol-QM-Linux-GeomOpt-FF.out, a file called ethanol-QM-Linux-GeomOpt-FF.xyz that shows all the steps of the geometry optimization (you can open it with Avogadro for example), a file called ethanol-QM-Linux-GeomOpt-FF_customized_ff_parameters.txt which contains the custom force field parameters and a file called ethanol-QM-Linux-GeomOpt-FF_hessian.txt that contains the Hessian of the molecule. Here are a few guidelines to interpreting the results file:

	STEP 39 COMPLETE	
	******* CONVERGENCE CRITERIA	*****
dEn. = 1.11e-05 Fmax = 1.29e-04 Frms = 8.65e-05 Drms = 3.40e-04 Dmax = 5.64e-04	Tolerance : 5.00e-04 Tolerance : 1.50e-04 Tolerance : 4.50e-04 Tolerance : 1.20e-03 Tolerance : 1.80e-03 Geometry optimization	Converged : YES Converged : YES Converged : YES Converged : YES Converged : YES converged : YES

The geometry optimization successfully completed, as such the Hessian can now be computed.

|-------| The flag for computing the Hessian matrix has been found. Will proceed. | Performing (+) displacement on coordinate # 0 ... done | Computing (+) SCF for coordinate # 0 ... done | Computing (+) gradient for coordinate # 0 ... done | Performing (-) displacement on coordinate # 0 ... done | Computing (-) SCF for coordinate # 0 ... done | Computing (-) gradient for coordinate # 0 ... done Computing Hessian elements for coordinate # 0 ... done | --- 26 coordinates left to compute. ---| Performing (+) displacement on coordinate # 1 ... done | Computing (+) SCF for coordinate # 1 ... done | Computing (+) gradient for coordinate # 1 ... done | Performing (-) displacement on coordinate # 1 ... done | Computing (-) SCF for coordinate # 1 ... done | Computing (-) gradient for coordinate # 1 ... done | Computing Hessian elements for coordinate # 1 ... done | ----25 coordinates left to compute. ---| Performing (+) displacement on coordinate # 2 ... done | Computing (+) SCF for coordinate # 2 ... done | Computing (+) gradient for coordinate # 2 ... done | Performing (-) displacement on coordinate # 2 ... done Computing (-) SCF for coordinate # 2 ... done | Computing (-) gradient for coordinate # 2 ... done | Computing Hessian elements for coordinate # 2 ... done

WARNING: depending on the size of the system, the Hessian computation can be very lengthy. Below find the end of the Hessian computation:

```
0 coordinates left to compute. ---
| ----
                                                                                                       I
Hessian eigenvalues:
  Eigenvalue 0 ---
                                  0.000000
1 --- 0.000000
  Eigenvalue
  Ligenvalue1Eigenvalue2Eigenvalue3Eigenvalue4Eigenvalue5Eigenvalue6Eigenvalue7Eigenvalue8Eigenvalue8
0.000000
0.000011
1
                                  0.000026
0.000074
Т
                                  0.002644
Т
                                0.007837
L
                      8 --- 0.030980
Т
  Eigenvalue
                      9 ---
  Eigenvalue9 ----0.041964Eigenvalue10 ----0.070608Eigenvalue11 ----0.090664Eigenvalue12 ----0.113989Eigenvalue13 ----0.126167Eigenvalue14 ----0.155349Eigenvalue16 ----0.172208Eigenvalue17 ----0.239940Eigenvalue18 ----0.280157Eigenvalue19 ----0.392493Eigenvalue20 ----0.743094Eigenvalue21 ----1.038901Eigenvalue22 ----1.178609
                                0.041964
Т
1
1
1
1
L
Т
Т
1
1
L
  Eigenvalue
                      23 ---
                                  1.178609
Т
  Eigenvalue
                      24 ---
                                  1.265350
1
   Eigenvalue
                      25 ---
                                  1.325864
Т
                   26 --- 1.431079
   Eigenvalue
L
| Hessian contains only positive eigenvalues, optimized structure
                                                                                                       I
| is a minimum !!!
                                               HURRAY
| The Hessian matrix has been successfully computed.
I------
| Will now create a customized force field of the optimized structure.
| File name ... ethanol-QM-Linux-GeomOpt-FF customized ff parameters.txt
```

The generation of the force field parameters should be fairly fast. The message "*Force field file created successfully*." will appear once the parameter computation finishes.

To visualize the force field parameters, open the file ethanol-QM-Linux-GeomOpt-FF_customized_ff_parameters.txt. Here is how the file should look like:

ALON 1	TYPES						
1	C 3 2	3 4	5 00 00	-0.1910 -4.	3341 0.5951	0.0846	
2	C 3 1	6 7	8 00 00	0.0088 -3.	0707 1.4731	-0.0757	
3	H 0 1	00 00 (00 00 00	0.0647 -5.	0096 0.7579	-0.7495	
4	H 0 1	00 00 (00 00 00	0.0555 -4.	8593 0.8409	1.0035	
5	H 0 1	00 00 (00 00 00	0.0669 -4.	0646 -0.4561	0.1132	
6	H 0 2	00 00 (00 00 00	0.0477 -3.	3678 2.5280	-0.1317	
7	H 0 2	00 00 (00 00 00	0.0636 -2.	5736 1.2235	-1.0174	
8	0 3 2	9 00 0	00 00 00	-0.2861 -2.	1023 1.2627	0.9613	
9	н о в	00 00 0	00 00 00	0.1699 -2.	5815 1.5162	1.7912	
K is (yiven in mdyn	1/A					
If Rel	L = 0 K is co	ompletely rel:	iable				
If Rel	L = 1 an imag	ginary eigenva	alue > 0.1 was	detected for	the bond - K is	moderately re	liable
If Re?	L = 2 a negat	ive eigenval:	le was detecte	d for the bond	l - K is unrelia	ble since ther	e is no bond between t
Bond ?	length (LO) :	is given in An	ngstrom				
BOND-0	GENERAL						
	·····	DET			Dead access	Band Onder	
	1-0	REL.	ĸ		Bond moment	Bond Order	Comments
M_1	1 2	0	4 8873	1 5469	-0.0025	0 9882	None
M-2	1 3	0	7 2385	1.0856	-0.0596	0.9821	None
M-3	1 4	ő	7.1822	1.0865	-0.0511	0.9832	None
M-4	1 5	ő	7.2614	1.0856	-0.0617	0.9829	None
M-5	2 6	0	6.8059	1.0974	-0.0434	0.9653	None
M-6	2 7	0	7.0552	1.0937	-0.0582	0.9715	None
M-7	2 8	0	6.3991	1.4344	0.0810	0.9879	None
M-8	8 9	0	9.9018	0.9912	-0.1714	0.9501	None
Kisc	vivon in keni	L / mol*deg ^	2				
	given in koa.		ishle				
If Rel	L = 0 K is co	ompletely rel:	Labie				
If Rel If Rel	L = 0 K is collocation K is a collected with the collected state of	ompletely rel: ginary eigenva	alue > 0.1 was	detected for	the bond - K is	moderately re	liable
If Rel If Rel If Rel	L = 0 K is co L = 1 an imag L = 2 a negat	ompletely rel: ginary eigenva tive eigenvalu	alue > 0.1 was alue alue > 0.1 was	detected for d for the bond	the bond - K is l - K is unrelia	moderately re ble since ther	liable e is no bond between t
If Rel If Rel If Rel Angle	L = 0 K is co L = 1 an imag L = 2 a negat value (A0) :	ompletely rel: ginary eigenva tive eigenvalu ls given in De	alue > 0.1 was le was detecte	detected for d for the bond	the bond - K is I - K is unrelia	moderately re ble since ther	liable e is no bond between †
If Rel If Rel If Rel Angle	L = 0 K is co L = 1 an imag L = 2 a negat value (A0) : 	ompletely rel: ginary eigenva tive eigenvalu is given in De	alue > 0.1 was 1e was detecte 2grees	detected for d for the bond	the bond - K is l - K is unrelia	moderately re ble since ther	liable e is no bond between 1
If Rel If Rel If Rel Angle	L = 0 K is co L = 1 an imag L = 2 a negat value (A0) : -GENERAL	ompletely rel: ginary eigenv. tive eigenvalu is given in De	alue > 0.1 was 1e was detecte Egrees	detected for d for the bond	the bond - K is I - K is unrelia	moderately re ble since ther	liable e is no bond between :
If Re: If Re! If Re! Angle ANGLE-	L = 0 K is cd L = 1 an imag L = 2 a negat value (A0) : 	ompletely rel: yinary eigenval tive eigenvalu is given in De REL.	alue > 0.1 was le was detecte ggrees K	detected for d for the bond A0	the bond - K is i - K is unrelia. Comme	moderately re ble since ther 	liable e is no bond between t
If Re: If Re: If Re: Angle ANGLE-	L = 0 K is cd L = 1 an imag L = 2 a negat value (A0) : -GENERAL I-J-K	pompletely rel: ginary eigenval ive eigenval is given in De REL.	alue > 0.1 was e was detecte grees 	detected for d for the bond 	the bond - K is I - K is unrelia 	moderately re ble since ther 	liable e is no bond between :
If Re: If Re: If Re: Angle ANGLE- M-1 M-2	L = 0 K is co L = 1 an imag L = 2 a negat value (A0) : 	ompletely rel: ginary eigenval is given in De REL. 0 0	Alue > 0.1 was ae was detecte grees 	detected for d for the bond 	the bond - K is I - K is unrelia Comme Non	moderately re ble since ther 	liable e is no bond between :
If Re: If Re: If Re: Angle ANGLE M-1 M-2 M-3	IVEN IN ICA. L = 0 K is co L = 1 an ima; L = 2 a negat value (A0) : -GENERAL I-J-K 1 2 6 1 2 7 1 2 8	ompletely rel: ginary eigenvalu is given in De REL. 0 0 0	LaDie > 0.1 was e was detecte grees 	detected for d for the bond 	the bond - K is I - K is unrelia Comme Non Non	moderately re ble since ther 	liable e is no bond between :
If Re: If Re: If Re: Angle ANGLE- M-1 M-2 M-3 M-4	IVEN IN RCA. L = 0 K is c: L = 1 an imag L = 2 a negat value (AO) : 	ompletely rel: ginary eigenv. tive eigenval: is given in De REL. 0 0 0 0 0	LaDie > 0.1 was ue was detecte egrees 	detected for d for the bond 	the bond - K is i - K is unrelia Comme Non Non Non	moderately re ble since ther nts e e e e	liable e is no bond between :
If Re: If Re: If Re: Angle ANGLE- M-1 M-2 M-3 M-4 M-5	14 en 11 12. 1 1 1 11 1 2 1 12	ompletely rel; ginary eigenval; tive eigenval; ls given in De REL. 0 0 0 0 0 0 0	Alue > 0.1 was we was detecte egrees 	detected for d for the bond 	the bond - K is i - K is unrelia Comme Non Non Non Non Non	moderately re ble since ther nts e e e e e e e e	liable e is no bond between :
If Re: If Re: If Re: Angle Angle M-1 M-2 M-3 M-4 M-5 M-6	IVEN IN RCA. L = 0 K is c: L = 1 an ima(L = 2 a negativation (AO) : 	ompletely rel: ginary eigenvalu is given in Do REL. 0 0 0 0 0 0 0 0 0 0	Alue > 0.1 was was detecte egrees 	detected for d for the bond 	the bond - K is I - K is unrelia 	moderately re ble since ther 	liable e is no bond between :
If Re: If Re: If Re: Angle Angle M-1 M-2 M-3 M-4 M-5 M-5 M-6 M-7	IVEN IN ICA. L = 0 K is c: L = 1 an imag L = 2 a negat value (A0) : 	mpletely rel: ginary eigenvalu is given in Do- REL. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Alue > 0.1 was e was detecte egrees	detected for d for the bond 	the bond - K is I - K is unrelia 	moderately re ble since ther 	liable e is no bond between n
If Re: If Re: If Re: Angle ANGLE- M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8	IVEN IN RCA. L = 0 K is c: L = 1 an imag L = 2 a negat value (AO) : -GENERAL I -J-K 1 2 6 1 2 7 1 2 8 2 1 3 2 1 4 2 1 5 2 8 9 3 1 4	mpletely rel: pinary eigenvalu is given in D REL. 0 0 0 0 0 0 0 0 0 0 0 0 0	Alue > 0.1 was e was detecte egrees	detected for d for the bond 	the bond - K is I - K is unrelia Comme Non Non Non Non Non Non Non Non	moderately re ble since ther 	liable e is no bond between :
If Re: If Re: If Re: Angle ANGLE- M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9	IVEN IN RCA. 1 = 0 K is c: 1 = 1 an imagent 2 a negativature (AO) : 	mpletely rel: pinary eigenv. tive eigenval: is given in De- REL. 0 0 0 0 0 0 0 0 0 0 0 0 0	Alue > 0.1 was we was detecte egrees 	detected for d for the bond 	the bond - K is i - K is unrelia Comme Non Non Non Non Non Non Non Non Non Non	moderately re ble since ther nts 	liable e is no bond between :
If Re: If Re: If Re: Angle ANGLE M-1 M-2 M-3 M-4 M-3 M-4 M-5 M-6 M-7 M-8 M-9 M-10	IVEN IN RCA. L = 0 K is c: L = 1 an ima(L = 2 a negativation (AO) : 	ompletely rel: ginary eigenval is given in De REL. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Alue > 0.1 was we was detecte egrees 	Aetected for d for the bond A0 109.2579 109.3284 113.1566 110.0844 110.7348 110.4616 103.9680 108.3722 108.6550 108.4691	the bond - K is i - K is unrelia Comme Non Non Non Non Non Non Non Non	moderately re ble since ther nts 	liable e is no bond between :
If Re: If Re: Angle ANGLE- M-1 M-2 M-3 M-4 M-5 M-6 M-6 M-7 M-8 M-9 M-10 M-11	IVEN IN RCA. L = 0 K is c: L = 1 an ima(L = 2 a negativation (AO) : 	mpletely rel: jinary eigenvalu is given in D REL. 0 0 0 0 0 0 0 0 0 0 0 0 0	Alue > 0.1 was was detecte egrees	detected for d for the bond 	the bond - K is I - K is unrelia 	moderately re ble since ther 	liable e is no bond between n

IV. QUEMIST AND REACTANTS AND PRODUCTS

In this section, we describe how to apply QUEMIST to more complex molecules with the ultimate objective to use these as templates for CONSTRUCTS and generated force field parameters with ACE. To start, create the modular workflow shown below.

We will first use reported structures to build models of reactants and products for the Sharpless dihydroxylation reaction. To do so, open the "File converter" menu by clicking on the cog on the first box of the workflow. We will use the Cartesian coordinates provided by Houk and co-workers shown below.³

BECKE3LYP, Os: 341/3 all other E(RB+HF-L)	/GEN PSEUDO- 21/21 with F elements: 6 XP) = -566.	-READ 3CP 5-31G* .383753477			
Zero-poin Thermal (Thermal (Sum of e Sum of e Sum of e Sum of e	nt correction t correction t correction t lectronic ar lectronic ar lectronic ar	on= co Energy= co Enthalpy= co Eibbs Free Ene dd zero-point Ene hd thermal Energi hd thermal Enthal d thermal Free H	ergy= ergies= .es= .pies= mergies=	.133976 .145801 .146745 .095318 _566. _566. _566. _566.	(Hartree/Particle) 249777 237953 237009 288436
TOTAL	st	E KCAL/MOL 91.491 candard orientati	CV CAL/MOL-KEL 41.24	.VIN CAL, 2	S /MOL-KELVIN 108.237
Center	Atomic	Coord	linates (Angs	troms)	
Number	Number	x	¥	z	
1	6	2.800552	.283553	.388893	
2	6	2.325823	1.543624	.085438	
3	1	2.428505	1.941977	918403	
4	1	2.122397	2.262903	.870033	
5	1	2.941296	.027668	1.435018	
6	76	475420	167099	.062250	
7	8	1.039055	934166	.524284	
8	8	.257573	1.409297	251936	
9	8	900363	-1.050549	-1.366843	
10	8	-1.385725	257608	1.533398	
11	1	-2.528883	-97516Z	591331	
12	1	-2.9222/2	+321019	-1.414040	
13	1	-2.34/938	1.954243	607331	
14	т с	-3.1338/1	.923002	.1/3015	
15	1	3.403083	39/112	013230	
17	1	4.0/9/00	-1 651406	- 433261	
19	1	3.193274	345843	-1.637195	
10		5.155274		-1.007195	

These coordinates will be entered in the "File Converter" menu as shown below. As you will see, some reformatting may be necessary. This transition state also needs some changes to convert it alternatively into reactants or into a product. Click on "Fix structure" then on "Preview". The structure will be opened in JMol as shown below.

S6

First, the NH₃ group used as OsO4 ligand will be converted into Me₃N and the propene will be converted into butene by converting 4 hydrogen atoms (#4, 12, 13 and 14) into methyl groups. Bonds will then be added between atoms 2 and 8 and between atoms 1 and 7.

Settings		
Source of ligand structures	To be Entered Below	•
Output file name	molecule_mol2	
Molecule Name	Dihydroxylation_Product	
Cartesian Coordinates	C 2.8005 0.2835 0.3888 C 2.3258 1.5436 0.0854 H 2.4285 1.9419 -0.9184 H 2.1223 2.2629 0.8700 H 2.9412 0.0276 1.4350 Os -0.4754 -0.1670 0.0622 O 1.0390 -0.9341 0.5242 O 0.2575 1.40922519 O -0.9003 -1.0505 -1.3668 O -1.3857 -0.2576 1.5333 N -2.5288 0.9751 -0.5913 H -2.9222 0.5216 -1.4146 H -2.3479 1.9542 -0.8073 H -3.1998 0.9236 0.1738 C 3.4896 -0.5971 -0.6132 H 4.5797 -0.4775 -0.5374 H 3.2582 -1.6514 -0.4332 H 3.1932 -0.3458 -1.6371	
	Fix structure	
Add Methyl groups	4 1 12 13	
Add Phenyl groups		
Adding Bonds	281 171	
	Preview	
Rotate bonds		
Adjust bond length	281.4 171.4	

Clicking on Preview will open the modified structure as shown below.

The change in bond length to convert the TS into either reactants or product will be carried out when the workflow will be launched.

You can now save the parameters.

Running FILECONVERTER						
Edit Parameter File						
Save	parameters-fileconverter.txt					

Now we are ready to open QUEMIST. In the "Source of molecule structures", select "From File Converter Box". This will ensure that we use the Cartesian coordinates we introduced previously. We will be using geometry optimization coupled with FF parameter generation. For this reaction, we will use the "Forecaster-BS" basis set, which is a combination of several basis sets designed for speed and accuracy. Select also the number of CPU cores you would like to use (4 in our case) and save the parameters.

Settings	
Source of molecule structures	From File Converter box (Wor 🔻
Output file name	Dihydroxylation_Reactants_QM
Mode	Geometry Optimization and F 🔻
Basis Set	Forecaster-BS.dat
Overall molecule charge	0
Number of Cores	4 🗸

This will produce a parameter file which should look the one below.

Molecule dihydroxyl	ation_reactants.mol2
Output Dihydroxylat	ion_Reactants_QM
Main_Mode qm	
Run_Mode rhf	
QM_Method	hf
Charge	0
Integral_Threshold	1e-10
Energy_Threshold	1e-05
DIIS_Threshold	1e-05
RMSDP_Threshold	1e-05
MAXDP_Threshold	1e-05
Damping_Factor	0.70
Print_Level	1
Basis_Set	Forecaster-BS.dat
No_DFT_Cores	4
Geometry_Optimizati	on yes
Compute_Hessian ye	s
End of Keywords	

The workflow is now ready to be started.

WARNING: Run this calculation only on Linux. This calculation will take some time, ranging from a few hours to a few days depending on the PC power and number of cores used (if you use more cores it will take less time). Also, computing the Hessian needed to generate the FF parameters is very time-expensive! So be prepared to not use your PC for quite some time.

This first workflow will generate the files for the product. Run the same workflow with adjusted parameters for the reactants. At the end of these computations, you will have a new reaction parameterized for ACE.

V. CONSTRUCTS

1. Diethyl zinc addition to aldehydes

We now wish to use the optimized structures with CONSTRUCTS to generate templates with associated force field parameters and use them to create transition state structures ready for stereoselectivity prediction with ACE. We start using the following workflow

Included File Conv ↑ ↑ ↑ ↑		☑ Included	File Conv 🕐
<u> </u>	- 0_0)
	✓ Included CONSTRU		
	✓ Included ACE		
			and floor
Save current workflow	workflow	Run	workflow

The *anti* and *syn* transition states reported by Norrby and co-workers will be used.⁴ The first "File Converter" menu will be open. The Cartesian coordinates available as supporting information to the report from Norrby and co-workers will then simply be copy/pasted into the Cartesian coordinate box after the source of ligand structures is set to "To be entered below"

a) Transition state from Norrby et al.

b) Templates developed herein. Templates for the 2 rings flips will also be developed as well as the enantiomers.

Source of ligand structures	To be Entered Below
Output file name	TS-Anti
Molecule Name	TS-Anti
Cartesian Coordinates	Zn -1.44340 -0.47728 0.03998 O -0.08044 0.76329 -0.85089 C -0.34536 2.13468 -0.65064 C -1.79105 2.36225 -0.19104 N -2.09632 1.40812 0.90368 C -2.66954 -1.90150 -0.58914 Zn 1.71967 0.13572 -0.19425 C 1.79150 -1.85011 -1.01312 C 3.10586 1.32739 0.57730 O 0.10284 -0.95001 1.40506 C 0.86209 -1.91054 1.04724 H -0.18562 2.70558 -1.57842 H 0.33259 2.56440 0.10666 H -2.48581 2.14182 -1.00915 H -1.93731 3.40858 0.11112 H -3.07700 1.45322 1.17341 H -1.54073 1.62063 1.73323 H -2.13450 -2.65801 -1.17633 H -3.15075 -2.41868 0.25050 H -3.46657 -1.50387 -1.22979 H 2.39608 -2.69563 -0.67638 H 0.89907 -2.20859 -1.53199 H 2.41096 -1.33763 -1.77423 H 3.78240 1.70570 -0.19958 H 2.66870 2.19842 1.08127 H 0.43043 -2.82539 0.62894 H 1.82159 -2.03661 1.56242
	Fix structure

To visualize the structure, click on "Fix structure". In this current case, we are converting the NH_2 of the catalyst reported into $N(Me)_2$ which we believe would be more representative of the catalysts under investigation. To do so, two hydrogens (16 and 17) are converted into methyl. To identify the atom number, you may click on "Preview". Before the instruction to add two methyl groups, the structure looks like this:

As soon as "16 17" is added to the "Add methyl groups" text box, clicking on preview shows:

Once this is done, save the parameters.

The second "File converter" box can now be setup similarly with the *syn* TS also adding two methyl groups.

Source of ligand structures	To be Entered Below
Output file name	TS-Syn
Molecule Name	TS-Syn
Cartesian Coordinates	Zn -1.39243 -0.66756 0.04334 O -0.12779 0.57259 -0.95067 C -0.50953 1.92617 -0.95696 C -1.99564 2.07925 -0.61021 N -2.28095 1.29429 0.61567 C -2.61314 -2.17114 -0.36141 Zn 1.70750 -0.01017 -0.34749 C 2.91975 -1.21387 -1.34487 C 2.14547 1.39552 1.26463 O 0.23349 -1.08966 1.32253 C 0.98017 -0.38742 2.07361 H -0.33871 2.37936 -1.94611 H 0.07863 2.51174 -0.22988 H -2.60882 1.65398 -1.41227 H -2.26012 3.14059 -0.50213 H -3.28210 1.23409 0.79139 H -1.85895 1.73976 1.43057 H -2.07074 -2.98695 -0.85348 H -3.05584 -2.58008 0.55551 H -3.43650 -1.87853 -1.02496 H 3.54549 -1.81063 -0.67067 H 2.34803 -1.90515 -1.97450 H 3.59094 -0.64551 -2.00081 H 2.74357 1.88157 0.47152 H 1.40044 2.13127 1.57890 H 2.84839 1.21768 2.08255 H 1.91446 -0.83026 2.43379 H 0.54846 0.38463 2.72152
Add Methyl groups	16 17
Add Phenyl groups Addina Bonds	
	Preview

By default, the parameters are saved into parameters-fileconverter.txt. If this name is not changed, you will be warned that the keyword file has already been used by the other "File converter" box (there are two of them in the workflow) and should not be used again as it would overwrite the parameters of the other box and affect the calculations. Change the file name into for example parameters-fileconverter2.txt and save.

At this stage, these two TS structures will be used to prepare TS templates to assemble the catalyst-substrate containing TS structures. To do so, the "CONSTRUCTS" box should be setup. In a first step, we recommend building the templates and checking them before assembling the TS structures. To do so, select "Prepare template only" as show below. As CONSTRUCTS has identified that two "File converter" boxes are above in the workflow, it automatically fills the menu with the corresponding files (TS-Anti.mol2 and TS-Syn.mol2 in this case).

Settings		
Source of catalyst structures	From File Converter box above	-
Preset reactions	No	•
Transition state template	Build from TS file (mol2)	-
Prepare TS templates	Prepare templates only	-
Transition states	2 transition states	•
Transition state file #1	TS-Anti.mol2	•
Load template structure		

These templates can now be built by clicking on "Load template structure". The files will be loaded and we will now characterize the templates from the TS structures. First, the catalyst part O-CH₂-CH₂-NMe₂ group will be converted into a generic O-CR₂-CR₂-NR₂. To do so, first select the 6 hydrogens of the methyl groups by clicking on them and remove them as shown below.

At this stage, the structure will now look like this:

Then select the different atoms which will be converted into R (can be H) using the menu shown below:

At this stage, the structure will look like this:

Now, the different atoms making up the catalyst (amino alcohol in this case) will be identified as shown below:

These atoms will be used to place the actual catalyst when assembling the TS structures. At this stage, the structure looks like this:

The bonds order should also be corrected. For instance, through the course of the reaction, the carbonyl (C=O) group will be converted into an alcohol (C-O bond). Select the two atoms of this carbonyl group and change the bond into a "double bond for reactant only". The program will understand that the bond remains a single bond in the product.

Do the same with the O-Zn and C-C bonds which will form during the course of the reaction.

And the Zn-C bond breaking should be identified as follows:

Now the atoms which will be used to template the substrates should be identified as shown below:

The reported TS by Norrby and co-workers were built using Me_2Zn while the reaction under investigation is with Et_2Zn , so we recommend converting the following 3 hydrogens into carbon atoms.

At this stage, the structure should look like this:

A last step is to prepare templates with ring flipped for optimal TS structure development. To do so, select an atom of the ring to flip and the four atoms directly connected and select "flip the ring". With these instructions, both flipped templates will be produced.

At this stage, the instructions are complete, and the parameters can be saved as shown below.

This will automatically add these instructions to the CONSTRUCTS menu.

Transition state file #2 Load template structure	TS-Syn.mol2	
Parameters for template 2	Remove_Atoms 6 29 30 31 32 33 34 R_Groups 0 RH_Groups 8 12 13 14 15 16 17 27 28 Additional_C 3 19 23 24 Catalyst_Atoms 10 12 13 14 15 16 17 2 3 4 5 Substrate_Atoms 4 10 11 27 28 Reagent_Atoms 0 Change_Bond_Order 4 reactant 2 10 11 product 1 7 10 product 1 9 11 product 0 7 9 Flip_Ring 5 3 4 5 14 15	
	Only this enantiomer	
Catalyst residue name	CAT1	

Follow the same steps with the other TS (TS-Syn.mol2 in this case). As you can see below, you may also instruct the program to derive both enantiomeric forms of the templates by selecting "Both enantiomers".

Transition state file #2	TS-Syn.mol2 🗸	
Load template structure		
Parameters for template 2	Remove_Atoms 6 29 30 31 32 33 34 R_Groups 0 RH_Groups 8 12 13 14 15 16 17 27 28 Additional_C 3 19 23 24 Catalyst_Atoms 10 12 13 14 15 16 17 2 3 4 5 Substrate_Atoms 4 10 11 27 28 Reagent_Atoms 0 Change_Bond_Order 4 reactant 2 10 11 product 1 7 10 product 1 9 11 product 0 7 9 Flip_Ring 5 3 4 5 14 15	
	Only this enantiomer 🗸 🔻	
Catalyst residue name	CAT1	

Finally, to ensure that all the TS structures eventually produced with all the catalysts and substrates will not be in a single file, you may indicate how many files (ie, how many cores you will use for computation); 200 is requested below. You may also request a minimum number of structures per file (16 here). The default for the other parameters can be used. To complete the process, save your parameters.

Catalyst residue name	CAT1		
Substrate residue name	REA1		
Reagent residue name	REA2		
Output File Name	constructs_output		
ACE to be ran on multiple cores	Multicore or cluster	•	
Number of cores	200		
Number of TS configurations	16		
Running CONSTRUCTS			
Edit Parameter File			
Save	parameters-constructs.txt		
			Exit

At this stage, 3 of the 4 boxes of the workflow are ready. Exclude ACE for now and click on "Run workflow". This will take a few seconds to complete. You may now want to open the produced templates (constructs_output-autoTS.mol2 here) to check whether they correspond to your needs.

✓ Included File Conv ?		☑ Included	File Conv 🕐
			7
	✓ Included CONSTRU ?)	
	Π	-	
	Excluded ACE		
Save current workflow	workflow	Run	workflow
			Exit

When this is done, select "Prepare template and TS for ACE" to provide the catalysts and substrates file names as shown below.

Settings		
Source of catalyst structures	From File Converter box above	•
Library of Catalysts	Et2ZnAddition-catalysts.sdf	•
Library of Substrates	Et2ZnAddition-substrates.sdf	-
Library of Reagents	none	•
Preset reactions	No	-
Transition state template	Build from TS file (mol2)	-
Prepare TS templates	Prepare template and TS for	•
Transition states	2 transition states	-
Transition state file #1	TS-Anti.mol2	-
Load template structure		
Parameters for template 1	Remove_Atoms 6 29 30 31 32 33 34 R_Groups 0 RH_Groups 8 12 13 14 15 16 17 27 2 Additional_C 3 19 23 25 Catalyst_Atoms 10 12 13 14 15 16 13	8 7 2 3

Your workflow is now ready to assemble the TS structures. It is not recommended to run ACE with too many catalysts and substrates on a regular Windows PC as it may take a lot of time (ca. 1 to 12 hours per catalyst-substrate pair). Also be aware that laptops are not necessarily set up to run heavy calculations which require ventilation (heat released by the processor) often good enough in workstations or desktop PC/Mac but not always on laptops.

To prepare the ACE keywords, use (the force field parameters have been developed in a separate workflow presented earlier in this tutorial):

Settings			
Source of TS structures	From CONSTRUCTS box abov 🔻		
Output File Name	ace_output		
ACE or Q2MM	ACE		
Ground states parameters	2 reactants and 2 products 🔍 🗸		
Q2MM parameters	ACE_Zn_Anti_Products_resul 🔻		
ACE_Zn_Reactants_Anti_res 🔻	ACE_Zn_Products_Anti_resul 🔻		
ACE_Zn_Reactants_Syn_res 🔻	ACE_Zn_Products_Syn_resul 🔻		
Number of lambda values(s)	1 - Synchronous 🗸 🗸		
Lambda #1	0.5	* - Generic Lambda	-
Temperature (in Celcius)	0		
Epsilon (dielectric constant)	4.0		
Number of TS configurations	4		

You can now run the workflow again which will generate all the necessary files ready to be used by ACE.

2. Asymmetric Dihydroxylation

For this example, we will use the optimized reactant and product structure files to build the templates and the VIRTUAL CHEMIST preset workflow. These optimized structures were obtained using QUEMIST and TS previously reported following a strategy similar to the one presented earlier.

First exclude FINDERS, REACT2D and ACE.

Click on the cog of the CONSTRUCTS box to open the CONSTRUCTS menu.

Settings	
Source of catalyst structures	From working directory
Preset reactions	No
Transition state template	Build from Reactant and Prod
Prepare TS templates	Prepare templates only
Ground states	1 reactant and 1 product
Ground state reactant file #1	ACE_dihydroxylation_reactant
Ground state product file #1	ACE_dihydroxylation_product
Load template structure	
Parameters for template 1	

First, we convert NMe_3 used into NR_3 by removing the hydrogens and converting the carbon atoms into generic R groups.

Then the substrate H_3C -CH=CH-CH₃ is converted into R_2 -C=C= R_2 .

We next modify bond orders (the ones currently shown are only correct for the reactant). In the product, two of the Os=O bonds will become Os-O.

In the course of the reaction, two O-C will be created, and the double bond of the alkene will be converted into a single bond. We need to instruct CONSTRUCTS of these changes.

The template atoms corresponding to catalyst and substrate will next be defined.

We can now save these parameters:

The parameters will appear in the "Parameter for template 1" box. As there is no chiral atom in the generic catalyst in this template, no need to look at enantiomers.

Parameters for template 1	Remove_Atoms 15 22 23 24 25 26 27 28 29 30 16 17 18 19 20 21 R_Groups 3 12 13 14 RH_Groups 4 3 4 5 15 Additional_C 0 Catalyst_Atoms 4 11 12 13 14 Substrate_Atoms 6 1 2 3 4 5 15 Reagent_Atoms 0 Change_Bond_Order 5 product 1 6 8 pr roduct 1 6 7 product 1 2 8 product 1 1 7 product 1 1 2 Flip_Ring 0	
Catalyst residue name	CAT1	
Substrate residue name	REA1	
Reagent residue name	REA2	
Output File Name	constructs_output]
ACE to be ran on multiple cores	Multicore or cluster	
Number of cores	200	
Number of TS configurations	4	

You may now save the parameters.

Running CONSTRUCTS		
Edit Parameter File		
Save	parameters-constructs.txt	

The template file should like the one below:

5											
	Creat	ing user	name:	SMA	RT (Foreca:	ster v.	. 5620)				
ŧ	Creat	ion time:	:	Fri A	Apr 12 08:	32:37 2	2019				
-TRI	POS>MOL	ECULE									
empla	ate1_1										
1	5 15	0 0 0									
SMALL											
USER_	CHARGES										
3 <tri< td=""><td>POS>ATO</td><td>М</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tri<>	POS>ATO	М									
1	С	2.60	005	0.0595	0.2694	C.3	1	REA1	0.0000	*****	1
2	С	2.00	615	1.3789	0.1557	C.3	1	REA1	0.0000	*****	2
3	R	2.24	439	2.0348	-1.2033	R/H	1	REA1	0.0000	*****	3
4	R	1.9	749	2.2498	1.3984	R/H	1	REA1	0.0000	****	4
5	R	3.30	837	-0.1766	1.5505	R/H	1	REA1	0.0000	****	5
6	OS	-1.03	346	-0.2557	-0.2151	Os	1	MOL	0.0000	*****	6
7	0	0.53	280	-1.0824	0.0904	0.3	1	MOL	0.0000	*****	7
8	0	-0.25	587	1.3336	-0.4991	0.3	1	MOL	0.0000	*****	8
9	0	-1.40	679	-1.1131	-1.6065	0.3	1	MOL	0.0000	*****	9
10	0	-1.78	818	-0.4295	1.2939	0.3	1	MOL	0.0000	****	10
11	N	-3.02	201	0.8183	-0.6786	N.3	1	CAT1	0.0000	*****	11
12	R	-4.13	353	-0.2082	-0.5645	R/R	1	CAT1	0.0000	*****	12
13	R	-3.2	170	1.9424	0.3254	R/R	1	CAT1	0.0000	****	13
14	R	-2.9	521	1.3657	-2.0345	R/R	1	CAT1	0.0000	*****	14
15	R	2.9	638	-0.7085	-0.9910	R/H	1	REA1	0.0000	*****	15
A-TRI	POS>BON	D									
	1 1	1 14	1	1							
	2	6 11	1	1							
	3	9 6	2	2							
	4 1	2 11	1	1							
	5 1	3 11	1	ĩ							
5	6	8 6	2	î							
	7	7 6	2	î							
	8 1	0 6	2	2							
	9	2 9	0	1							
1	0	3 2	1	î							
1	1	1 2	2	î							
1	2 1	5 1	1	1							
1	2 1	4 2	1	1							
1	4	5 1	1	1							
1	5	1 7	1	1							
1	J DC	1 /	0	1							
e <vc></vc>	15										
0											
0											
T.											

After checking the template, we can now prepare the TS structures.

Settings		
Source of catalyst structures	From working directory	-
Library of Catalysts	Dihydroxylation_catalysts.sdf	-
Library of Substrates	Dihydroxylation_substrates.sdf	•
Library of Reagents	none	-
Preset reactions	No	-
Transition state template	Build from Reactant and Prod	-
Prepare TS templates	Prepare template and TS for A	•
Ground states	1 reactant and 1 product	-
Ground state reactant file #1	ACE_dihydroxylation_product	-
Ground state product file #1	ACE_dihydroxylation_product	-
Load template structure		
Parameters for template 1	Remove_Atoms 15 22 23 24 25 26	27

With these parameters set, we can now save the parameters and run the workflow.

VI. **REFERENCES**

- (1) Seminario, J. M. Calculation of intramolecular force fields from second-derivative tensors. *Int. J. Quant. Chem.* **1996**, *60*, 1271-1277.
- (2) Allen, A. E. A.; Payne, M. C.; Cole, D. J. Harmonic Force Constants for Molecular Mechanics Force Fields via Hessian Matrix Projection. *J. Chem. Theory Comput.* **2018**, *14*, 274-281.
- DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas,
 A. A. Experimental and Theoretical Kinetic Isotope Effects for Asymmetric Dihydroxylation.
 Evidence Supporting a Rate-Limiting "(3 + 2)" Cycloaddition. J. Am. Chem. Soc. 1997, 119, 9907-9908
- (4) Rasmussen, T.; Norrby, P. O. Modeling the stereoselectivity of the beta-amino alcoholpromoted addition of dialkylzinc to aldehydes. *J. Am. Chem. Soc.* **2003**, *125*, 5130-5138