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Abstract

We have designed and implemented software that enables integration of a scalable
GPU-accelerated molecular mechanics engine, HOOMD-blue, with the machine learning
(ML) TensorFlow package. TensorFlow is a GPU-accelerated, scalable, graph-based tensor
computation model building package that has been the implementation of many recent
innovations in deep learning and other ML tasks. Tensor computation graphs allow for
designation of robust, flexible, and easily replicated computational models for a variety
of tasks. Our plugin leverages the generality and speed of computational tensor graphs
in TensorFlow to enable four previously challenging tasks in molecular dynamics: (1)
the calculation of arbitrary force-fields including neural-network-based, stochastic, and/or
automatically-generated force-fields which are differentiated from potential functions; (2)
the efficient computation of arbitrary collective variables; (3) the biasing of simulations
via automatic differentiation of collective variables and consequently the implementation
of many free energy biasing methods; (4) ML on any of the above tasks, including coarse
grain force fields, on-the-fly learned biases, and collective variable calculations. The Ten-
sorFlow models are constructed in Python and can be visualized or debugged using the rich
set of tools implemented in the TensorFlow package. In this article, we present examples of
the four major tasks this method can accomplish, and describe the architecture of our im-
plementation. This method should lead to both the design of new models in computational
chemistry research and reproducible model specification without requiring recompiling or
writing low-level code.

1 Introduction

HOOMD-blue [1,2] is a GPU-accelerated engine for molecular dynamics (MD) and hard particle
Monte Carlo simulations, and has simulated clathrate crystal colloids, [3] coarse grained solar
cell polymers, [4] intrinsically disordered proteins, [5] and various other systems. [6–24] HOOMD-
blue can simulate large systems with high speed due to the scalable nature of GPU processing.
Another advantage of HOOMD-blue is that it has a Python interface that can be readily
incorporated into a larger Python workflow.

TensorFlow [25] is a ML library created and maintained by Google. TensorFlow uses a graph-
based computation framework with tensor operations to represent its underlying mathematical
operations. This tensor graph abstraction allows for flexible model design, where one can
easily add, remove, or alter operations (nodes) of a model (graph) while preserving the overall
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structure and flow of the tensor data (edges). TensorFlow has a built-in visualization tool
called TensorBoard [25] to aid in this process. One consequence of this tensor computation
graph model designation is a major advantage of TensorFlow: most of the tensor operations
defined in its library are analytically differentiable, and these derivatives can be automatically
propagated throughout any TensorFlow model upon request. Thus, as long as we can express
a model as a composition of tensor operations, we automatically have access to its derivatives
at every step to compute forces or perform learning. Additionally, TensorFlow can optimize
model evaluation by caching values of tensors as they are evaluated so that branches in the
graph need not have these values explicitly stored in memory.

The HTF package described in this work gives TensorFlow access to the per-particle posi-
tions, neighbor lists, and forces generated by HOOMD-blue at each time step of a simulation.
Since both HOOMD-blue and TensorFlow can execute entirely on the GPU, there is minimal
loss of speed due to communication. With HTF, a user may specify any tensor operation on
the neighbor list and automatically calculate its derivatives and thus, its forces. This enables
use of arbitrary force fields (e.g., from neural networks), calculation of arbitrary collective
variables, and biasing of arbitrary collective variables. In addition, since TensorFlow contains
a suite of ML algorithm implementations, a user can also perform learning on any of the items
calculated using HTF.

ML has been defined a number of different ways in the past, [26–28] but for the purpose of
this work, it is taken to mean a computer “learning” how to best perform some task under a
given performance metric via optimization of a set of vector operations. For example, common
ML applications are regression problems and classification problems, where the performance
metric is usually obvious – e.g. how many items the program correctly sorts in a classification
problem, or the mean squared error from a target function or distribution in a regression
problem. Specifying the correct performance metric and model structure to accomplish a given
task is neither deterministic nor necessarily simple, [29,30] but TensorFlow eases the process with
its library of ML algorithms.

Recently, ML methods have been used to improve the accuracy of MD simulations, and
some have even achieved configurational accuracy on par with ab-initio methods. [31–33] How-
ever, the way this process is typically performed can be difficult or cumbersome to reproduce. [34]

This is because implementing a given ML model often requires custom low-level code to achieve
learning in the context of MD simulation engines, or because it necessitates an iterative process
of generating data, training, and validating, rather than a single ongoing process. [35,36] HTF
can bridge this gap and make the process of connecting ML models with MD simulations easy,
transparent, and reproducible via the model specification interface of TensorFlow.

The rest of this paper is broken up into five sections plus some concluding remarks. The
first section summarizes the architecture of the HTF package and how it works. The remaining
four sections each describe an application of HTF to a particular task in molecular dynam-
ics, demonstrating online ML in MD, arbitrary collective variable calculations, a use-case of
TensorFlow’s automatic differentiation, and learning of coarse-grain forces.

2 Methods and Implementation

A more complete description of TensorFlow may be found in (author?) [25] TensorFlow models
are built and run in separate steps, similar to how a computer program is compiled and then
executed. The models in TensorFlow are expressed as tensor computation graphs where nodes
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are tensor operations and edges are tensors. The HTF plugin follows the same approach,
whereby there is a graph building step and then an execution step. In reality, both of these
steps may be performed in a single Python script. We make this conceptual distinction here
for ease of discussion.

During the graph building step, placeholder tensors are accessible for neighbor lists, po-
sitions, and forces. During the execution step (i.e., running the simulation), they will be
populated with their respective values in HOOMD-blue at the current time step. The native
HOOMD-blue neighbor list is used. A neighbor list is an N ×M × 4 tensor, where N is the
number of particles, M is a pre-set maximum number of neighbors, and the last dimension
is x, y, z, w. Here, wm denotes the mth neighbor’s particle type, and xn,m, yn,m, zn,m are the
components of the distance vector to the mth neighbor of the nth particle. The positions,
neighbor lists, and forces are provided as possible inputs at each step. However, the format of
the neighbor list is changed to a tensor to facilitate further tensor operations in HTF. Addi-
tionally, the neighbor list tensor is zero-padded to handle cases where the number of neighbors
for a particle is fewer than M . Unfortunately, the optimal choice of M is not well-defined and
instead must be considered on a case-by-case basis, based on available computational resources,
system size, and ML model complexity. It should be noted that in HOOMD-blue the neighbor
list order is not deterministic, resulting in a randomly-ordered neighbor list for each particle
at each step. [1,2] In principle, learning functions that depend only on pairwise particle distance
will not be affected by neighbor list order, but for cases where a sorted neighbor list is desired
for specific ML objectives, HTF includes a method for enforcing ordered neighbor lists instead.
For an example of a deep ML method using neighbor lists in sorted order, see (author?) [31]

The tensor computation graph can also output forces and a virial at each step. During the
graph building step, these may be computed in the tensor computation graph or automatically
calculated from a per-particle or total potential energy tensor. The neighbor lists are taken
directly from HOOMD-blue and are not reconstructed. The automatic differentiation computes
the forces on particles as:

~Fi = −∂U (r)

∂~ri
−
∑
i<j

∂U (r)

∂~rij
(1)

where U(r) is the potential energy as a function of both positions and/or pairwise distances, ~Fi

is the net force on particle i, and ~rij is the distance vector from particle i to j. HTF computes
the per-particle virial contribution from pairwise interactions only:

τi =
∑
i<j

Fij

rij
(~rij ⊗ ~rij) (2)

Here τi is the virial stress tensor of particle i, Fij is the magnitude of the force on particle
i from particle j, and ⊗ indicates an outer product. If a biasing force in HTF is not pairwise
additive, then the virial contribution can be computed by the user to override this default
contribution.

During the execution step, while the simulation is running, the TensorFlow graph is exe-
cuted with the current neighbor lists, positions and forces. Forces can be an input or output.
If the TensorFlow graph outputs forces, those will be set in HOOMD-blue to be forces on
the particles. Sometimes there is no output, for example if computing a collective variable.
Variables in the tensor computation graph allow values to be saved and updated at each step.
This allows computed quantities at all stages of the graph to be output. Further, this allows
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accumulation of values and thus computing quantities like running averages or time-dependent
biases. The variables can also be checkpointed and restarted within HTF. During online train-
ing with HOOMD-blue, training input is not batched. Rather, based on a set parameter called
“period,” HTF updates its model parameters periodically throughout the ongoing HOOMD-
blue simulation. Thus, a “batch” of data in the typical ML sense is a single instance of a
neighbor list for each particle in the simulation.

Further details, including software architecture and benchmarking information, can be
found in the supporting information.

3 Case Studies with HTF

3.1 Neural Network Force Field (Arbitrary Force Fields)

Neural networks are a powerful class of ML tools whose original theory dates back to the 1950s
and 60s. [37–39] These highly flexible tools have been applied to a variety of diverse tasks in
the past, including guiding surveillance technology, [40,41] tracking visual targets, [42–44] predict-
ing cancer occurrence in patients, [45,46] processing medical imaging for enhanced diagnostic
accuracy, [47] controlling the beam of a particle accelerator, [48] and aiding in finance applica-
tions. [49] They have seen recent use in molecular dynamics simulations, allowing for trained
force fields that accurately reproduce experimental conformations [32] and dynamical proper-
ties in coarse-grained simulations. [31] Other recent examples include an energy-conserving force
field by (author?) [50], later improved to include physical symmetries of molecules, [51] a multi-
neural-network-based force field with DFT-level accuracy, [52] and another neural network force
field based on atomic symmetry functions. [53]

The HTF plugin allows users to designate the structure of neural networks and achieve
online training based on HOOMD-blue data during the HOOMD-blue simulation. Any collec-
tive variable that can be expressed as a tensor operation on the HOOMD-blue neighbor list
or per-particle positions or forces can be used as training data or neural network input. As
a proof of concept, we have trained a neural network to reproduce the Lennard-Jones forces
on a 2D simulation of 10000 particles. Training was done online, i.e. during the simulation.
The neural network input was the HOOMD-blue neighbor list, and it was trained to output
the forces on each particle with an l2 loss function (mean squared error) and the TensorFlow
built-in ADAM optimizer [54] with a learning rate η = 0.001, and with TensorFlow’s default
parameters of β1 = 0.9, β2 = 0.999, and ε = 1× 10−8. We employed random dropout at a rate
of 20% to avoid overfitting. [55] The simulation used reduced LJ units with a time step of 0.005,
and Langevin integration with kT = 1.0. The simulation box was created in HOOMD-blue as
a square lattice with lattice constant a = 2.0 (100×100 2D box). A complete list of simulation
and ML parameters can be found in Table 1.

The model structure was a dense neural network with three layers: one input layer, one
hidden layer, and one output layer. Each layer is size 20 and uses a tanh activation function,
except the output layer, which had no activation function. A neural network can be thought
of as repeated application of operations {Fi} defined in eq 3, where ~wi is a weight vector and
~bi is a bias vector, both of which are unique to each layer, and ~xi is the vector of input values
to layer i. σi is some activation function. The limiting case of an activation function is a linear
activation, which is the same as “no activation”, where σ(x) = x. This is rarely used, however,
since only neural networks with non-linear activation functions can serve as universal function
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Simulation Parameters (LJ reduced units)

Dimension 2D

Ensemble NVT

Thermostat Langevin

Box Size 100

time step 0.005

kT 1.0

Force Field Lennard-Jones

Cutoff Radius 3.0

Nparticles 10000

Langevin γ 1.0

Lennard-Jones Parameters

ε 1.0

σ 1.0

Neural Network Hyperparameters

Nhidden 1

Nodes per Layer 20

Activation Function tanh

Optimizer Adam [54]

Dropout Rate 0.2

Adam Parameters

Learning Rate 0.005

β1 0.9

β2 0.999

ε 10−8

HTF Parameters

Period 10

M 63

Table 1 NN Force Field Simulation Parameters.

approximators. [56] Common activation functions include the sigmoid, σ(x) = 1
1+e−x , tanh (x),

and relu (“rectified linear unit”), σ(x) = max(0, x).

Fi (~xi) = σi(~wi · ~xi +~bi) (3)

In this case, the neural network’s output is then F2 (F1 (F0 (~x))), with σ0(x) = σ1(x) = tanh (x)
and σ2(x) = x. The final layer uses a linear activation function to allow for values of greater
magnitude than 1.0. The trained quantities are the weight and bias vectors. The input is
~x = ~r−1, the vector of inverse distances between each particle and the particles in its neighbor
list.

After a 4000 step equilibration period, the model was trained for 500000 steps, which can
be done in minutes using a GPU-enabled compute node (NVIDIA Tesla V100). The l2 loss of
the model over time is shown in Figure 1. The model converged after 450000 time steps with
a final loss value of 0.25.
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Figure 1 Using a simple neural network in a 10000 particle Lennard-Jones simulation to
learn the Lennard-Jones force field. (a): The l2 loss over time of the neural network force
field during training (log scale). The l2 loss is computed as the mean squared difference
between the Lennard-Jones forces calculated by HOOMD-blue and those generated by the
neural network. The dashed red line shows when cost falls below 1.0, an arbitrary signifier
of “good agreement.” (b): Comparison of the learned potential and the true Lennard-Jones
potential, showing recovery of the key features of the Lennard-Jones force field.
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3.2 Force Matching (Learning)

Bottom-up coarse graining (CG) [57–59] has been used to model various systems like alkanes [59],
polymers [60], and biomolecules. [57] In the bottom-up approach, the CG potentials are derived
from the underlying all-atom (AA) simulation. Force-matching (FM) [61–63] is a bottom-up CG
approach which aims to match the forces on CG particles as closely as possible to the cumulative
forces on their constituent atoms in the reference AA simulation. [57] Besides obtaining the
CG potential, another vital step in defining the CG system is to determine the mapping
operator, which indicates how atoms in the AA system are grouped into CG particles. The
general practice to define a CG mapping operator has historically been driven by chemical
intuition. [64] However, recently there have been efforts toward choosing mapping operators
more systemically. [65–67]

In the following section, let r represent the coordinates of particles in an all-atom simulation,
and let R represent the corresponding coarse-grained particle positions. The reference mapped
force is calculated by eq 4, where F ref

I is the force on the Ith CG particle, SI refers to the

subset of particles which are mapped into the Ith CG particle and ~Fi is the net force on the
ith particle in the AA model.

Fref
I (r) =

∑
i∈SI

~Fi(r) (4)

The FM method finds FCG(R) that minimizes the objective function given by eq 5,

χ2 =

〈
1

3N

N∑
I=1

∣∣∣FCG
I (R)− Fref

I (r)
∣∣∣2〉 (5)

where N is the number of CG particles and the angular brackets denote an ensemble average.
In the most common implementation, FCG(R) is approximated using cubic splines as the basis
set. [62,68]

Previous studies have reported the use of various ML techniques for CG models. [31,69] Here
we model the CG potential using a basis set (B) of 48 Gaussian functions and a repulsive term,
Urep(R) = u(R− r0)(R− r0)12, where u() is the unit step function, R is the pairwise distance
between particles, and r0 is a fitting parameter. The variance and the height of each of the
Gaussian functions in the basis set were trained on-the-fly using mapped CG positions from
an atomistic simulation of methanol molecules in HOOMD-blue using the parameters given in
Table 2. Each methanol molecule was mapped to one CG bead at its center of mass (COM).
Corresponding mapped pairwise distances were calculated considering 128 nearest neighbors.

The optimization was done at a learning rate of 0.1 using the ADAM optimizer [54] by
minimizing the objective function given by eq 6

χ2 =

〈
1

3N

N∑
I=1

∣∣∣FBI (R)− Fref
I (r)

∣∣∣2〉− r0 (6)

where FBI refers to the forces calculated using the basis set and the mapped pairwise distances
and r0 is a fitting parameter for the repulsive function Urep. In eq 6, the first term is the
mean squared error between the mapped CG forces from the atomistic simulation and the
forces calculated using the the basis set, and the last term pushes the short range repulsive
term to the right. A cutoff radius of 12 Å was used for the simulation. After equilibrating
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Dimension 3D

Ensemble NVT

Thermostat Nosé-Hoover

Density 778 kg/m3

time step 2 fs

Temperature 300 K

Force Field OPLS-AA

Cutoff Radius 10

Nmolecules 256

Table 2 Simulation Parameters for AA Methanol.

the CG system, the production CG simulation was run for 10,000 time steps. Figure 2 shows
the learned CG potential along with the locations of the Gaussian basis set functions of B.
The locations of the minima in the learned CG potential conform well with those reported
in previous studies [70–72] which used conventional tools for FM. Figure 3 compares the COM
radial distribution function (RDF) obtained from the AA simulation and that obtained from
running a CG simulation using the learned potentials. The RDF shows good agreement.
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Figure 2 The learned CG potential along with the fit centers of the Gaussian basis set functions
for a one bead methanol simulation. A reference potential of mean force (PMF) computed as
−kT ln[g(r)] is plotted. Agreement between CG potential and PMF is not expected, but
provides a reference for location of potential energy minima. The repulsion term provides
stronger repulsion than is possible with the Gaussian basis set alone.
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Figure 3 The center of mass radial distribution function from the AA (Mapped) and the CG
simulation of methanol. The one bead CG simulation shows good agreement with a mapped
AA simulation.

3.3 EDS in HTF (Biasing/Automatic differentiation)

Simulations often do not agree with experiments or quantum mechanics results due to force-field
or time-scale limitations. [73] However, simulations can be biased to agree with experimental
observables or reference values. [74] Experiment Directed Simulation (EDS) is a maximum-
entropy biasing technique used to match simulations with some experimental observables. [74]

EDS minimally modifies the free energy surface of a simulation such that average values of
simulated collective variables (CVs) match specified average reference values. [74] If instead of a
single average value, an entire free energy distribution along a CV needs to match a target free
energy distribution, Experiment Directed Metadynamics can be applied. [75] EDS can match
multiple experimental values in a single iteration of the simulation. [74] EDS has been previously
applied in various systems such as Li ion battery and bead-spring polymer models, [74] a water
model, [76] a peptide model, [73] and in coarse graining techniques. [77] Dynamical studies of water
with EDS showed improved prediction of both biased and unbiased dynamic properties, which
are known to be hard to reproduce even with quantum mechanics. [76] This is possible because
EDS minimally modifies the free energy surface and allows accurate prediction of dynamical
and structural properties. A recent review on EDS and other maximum entropy methods can
be found in Amirkulova and White. [78] In this work EDS was implemented in the TensorFlow
framework in HTF.

In EDS, the potential energy, U(~r) is modified minimally with addition of multiple coupling
constants, αj , as shown in eq 7, where the index j is over the number of CVs to be biased. We

desire that the ensemble average of a simulated CV, f(~r), satisfy 〈f(~r)〉 = f̂ , where 〈f(~r)〉 is
the ensemble average of the CV and f̂ is the reference value of that CV. The force of the ith

particle, is calculated from the potential given by eq 7 at each time step.

U ′(~r, α) = U(~r) +
∑
j

αj
fj(~r)

f̄j
(7)
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Simulation Parameters

Dimension 2D

Ensemble NVT

Thermostat Langevin

Box Size 16× 16

time step 0.005

kT 1.0

Velocity Randomization Seed 40

Force Field Lennard-Jones

Cutoff Radius 3.0

Nparticles 64

Langevin γ 1.0

Lennard-Jones Parameters

ε 1.0 (reduced units)

σ 1.0 (reduced units)

HTF Parameters

Period 10

M 63

EDS Parameters

Period 20

Range 0.3

Save Period 1000

f̄ 5.8

Table 3 EDS Simulation Parameters.

R̂COM =
1

N

N∑
i

|~ri − ~rCOM | (8)

A Lennard-Jones particle simulation was performed, and biased with EDS. Mean radius
(R̂COM ), which is defined in eq 8, is an average of absolute differences between each particle
position and the center of mass (COM) of all N particles. By using the mean radius as a CV for
EDS, we can enforce the simulation on average to form a circle around the COM with a radius
of a reference value. We ran EDS and control simulations of Lennard-Jones particles in the
canonical ensemble with parameters shown in table 3. We assigned random initial velocities
to the particles. The only difference between the EDS and control simulations was biasing the
potential energy of the EDS simulation at every HTF iteration, which corresponds to “Period”
in the EDS Parameters section of table 3. The “Range” parameter indicates the range of
coupling constant values for the EDS bias, in reduced energy units.

We biased the EDS simulation such that the ensemble average of R̂COM matches a reference
value of 5.8, as shown in fig 4. In fig 4, the average R̂COM in the EDS simulation, shown in
green, oscillates and finally matches the reference value, shown in red. In comparison, the
control simulation has an average R̂COM of 6.1. The distribution of particle positions in the
simulation box is shown as a heatmap averaged over all all time steps in fig 5. EDS tries to
force the particles to form a circle around the center of the box, but this is not energetically
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Figure 4 EDS matches a reference set-point value with addition of bias. At the end
of the EDS simulation, the average radius agrees with the reference value of 5.8. The control
simulation converges to an average radius around 6.1 and does not converge to the reference
value. Each iteration consists of 6000 time steps.

favorable due to repulsion effects. Instead, as seen in in fig 5 (A), particles are mostly inside
or outside of the circle of radius 5.8. Although these particles are either on the inside or the
outside of this circle, they are distributed in such a way that their average R̂COM is 5.8, due
to the EDS bias. The particles in the control simulation are distributed more uniformly as
shown in fig 5 (B), where all positions are roughly equally likely.

We have shown that EDS can modify a simulation such that there is an agreement between
simulations and chosen observables. This technique can be applied to larger and more complex
systems in HOOMD-blue where there may exist a major discrepancy between simulations and
experiments.

3.4 Calculating Scattering Profiles (Arbitrary Collective Variables)

Scattering techniques are used extensively for material characterization and structure deter-
mination. [79] Neutron scattering in particular has applications in the field of condensed matter
physics, [80,81] nuclear physics and nuclear materials research, [82] biology, [83] crystallography,
and catalysis. [81] For this work, we demonstrate that HTF can be used to approximate the
neutron scattering profile of a simulation box at every time step, on-the-fly.

The neutron scattering profile for particles can be analytically estimated using Debye’s
formula given by eq (9). [84]

I(q) =
∑
i

∑
j

bibj
sin(q rij)

q rij
(9)

Here, bi and bj are the coherent scattering lengths for the particles i and j respectively, rij is the
inter-particle distance between particles i and j, and q is the magnitude of ~q, the scattering
vector or the momentum transfer vector, which is a function of the scattering angle θ and
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Figure 5 Lennard Jones particles are biased to reside inside the circle during EDS. EDS (A)
allows particles to be inside of a circle with a radius of 5.8. Control (B) particles do not form
a circle with mean radius of 6.1, which was the average radius computed during the control
simulation. The circles with radii corresponding to the average radii of particles away from the
COM are shown in white. The average radius of 5.8 during EDS (A) agrees with the reference
value of 5.8, as opposed to value of 6.1 (B).

wavelength λ. The data for scattering lengths of different particles is available in literature. [85]
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Figure 6 The neutron scattering profile for 5000 H2O molecules calculated using HTF. Scat-
tering intensities are calculated for every value of q at each time step on-the-fly and the averaged
intensities over all time steps are presented here.

A box of 5000 water molecules was simulated in order to calculate their neutron scattering
profile. Figure 6 shows the resultant scattering profile, which was calculated as an average of
the scattering intensities at each time step during the simulation. The simulation details are
given in Table 4. The obtained scattering profile (Figure 6) is in close agreement with the
experimentally observed neutron scattering profile for H2O from (author?) [86]

Due to the automatic differentiation included in TensorFlow, a more complex system could
be conveniently biased toward an experimentally obtained neutron scattering profile on-the-fly,
without necessitating tracking the analytic derivative of eq 9 with respect to rij of every pair
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of particles for every value of q.

Simulation Parameters (LJ reduced units)

Dimension 3D

Ensemble NVT

Thermostat Nosé-Hoover

Box Size 53.1

time step 0.04

Total time steps 0.04

T 298 K

Force Field OPLS-AA

Water Model TIP3P

Cutoff Radius 4.0

Nmolecules 5000

Nosé-Hoover τ 2.0

Neutron Scattering Lengths

bH −3.742

bO 5.805

HTF Parameters

Period 10

M 256

Table 4 H2O Simulation Parameters to Calculate Scattering Profile.

4 Concluding Remarks

We have presented a general tool for utilizing TensorFlow in the MD and MC simulation
engine HOOMD-blue. TensorFlow’s tensor computation graphs are expressive enough to allow
force-fields, biasing methods, learning, and collective variable computation within a single
framework. HTF enables GPU-accelerated and low-latency use of TensorFlow in HOOMD-
blue and thus makes online learning in a simulation possible with little additional effort. The
online nature of learning in HTF simplifies the “traditional” workflow of ML in simulations by
removing the need for post-processing of trajectories or custom implementations of common ML
algorithms. The tensor computation graphs allow for transparent and simple model designation
with a high degree of customizability, replicability, and efficiency.

The HTF source code is available as specified in the Supporting Information where each of
the systems presented in this article are available as examples.
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and Nico F. a. Van Der Vegt. Systematic Coarse-Graining Methods for Soft Matter Sim-
ulations – A Review. Soft Matter, 9(7):2108–2119, 2013.

18



67. Yi Ling Chen and Michael Habeck. Data-driven coarse graining of large biomolecular
structures. PLoS ONE, 12(8):1–17, 2017.

68. C. Scherer and D. Andrienko. Comparison of systematic coarse-graining strategies for
soluble conjugated polymers. European Physical Journal: Special Topics, 225(8-9):1441–
1461, 2016.

69. Karteek K. Bejagam, Samrendra Singh, Yaxin An, and Sanket A. Deshmukh. Machine-
Learned Coarse-Grained Models. The Journal of Physical Chemistry Letters, 9(16):4667–
4672, 2018.

70. Victor Ruhle, Christoph Junghans, Alexander Lukyanov, Kurt Kremer, and Denis An-
drienko. Versatile Object-Oriented Toolkit for Coarse-Graining Applications. Journal of
Chemical Theory and Computation, 5(12):3211–3223, 2009.

71. Christoph Scherer and Denis Andrienko. Understanding three-body contributions to
coarse-grained force fields. Physical Chemistry Chemical Physics, 20(34):22387–22394,
2018.

72. Lanyuan Lu, James F. Dama, and Gregory A. Voth. Fitting coarse-grained distribu-
tion functions through an iterative force-matching method. Journal of Chemical Physics,
139(12), 2013.

73. Dilnoza B Amirkulova and Andrew D White. Combining Enhanced Sampling with Exper-
iment Directed Simulation of the GYG peptide. J. Theor. Comput. Chem., 17(3):1840007,
2018.

74. Andrew D White and Gregory A Voth. Efficient and Minimal Method to Bias Molecular
Simulations with Experimental Data. J. Chem. Theory Comput., 2014.

75. Andrew D. White, James F. Dama, and Gregory A. Voth. Designing Free Energy Surfaces
That Match Experimental Data with Metadynamics. Journal of Chemical Theory and
Computation, 11(6):2451–2460, 2015.

76. Andrew D. White, Chris Knight, Glen M. Hocky, and Gregory A. Voth. Communication:
Improved ab initio molecular dynamics by minimally biasing with experimental data. J.
Chem. Phys., 146(4):041102, 2017.

77. Thomas Dannenhoffer-Lafage, Andrew D. White, and Gregory A. Voth. A Direct Method
for Incorporating Experimental Data into Multiscale Coarse-Grained Models. J. Chem.
Theory Comput., 12(5):2144–2153, 2016.

78. Dilnoza B Amirkulova and Andrew D White. Recent Advances in Maxi-
mum Entropy Biasing Techniques for Molecular Dynamics. Submitted, feb 2019.
https://arxiv.org/abs/1902.02252.

79. Benjamin Chu and Tianbo Liu. Characterization of nanoparticles by scattering techniques.
Journal of Nanoparticle Research, 2(1):29–41, Mar 2000.

80. Stewart F Parker and Paul Collier. Applications of Neutron Scattering in Catalysis Where
atoms are and how they move Neutron Properties and their Applications. Johnson Matthey
Technol. Rev, 60(2):132–144, 2016.

19



81. Felix Fernandez-Alonso and David L. (David Long) Price, editors. Neutron scattering :
applications in biology, chemistry, and materials science. Academic Press, 2017.

82. Sven Vogel. A review of neutron scattering applications to nuclear materials. ISRN Mat.
Sci., 2013, 08 2013.

83. Jeremy C Smith, Pan Tan, Loukas Petridis, and Liang Hong. Dynamic Neutron Scattering
by Biological Systems. Annual Review of Biophysics, 47:335 – 354, 2018.

84. Christopher L. Farrow and Simon J. L. Billinge. Relationship between the atomic pair dis-
tribution function and small-angle scattering: implications for modeling of nanoparticles.
Acta Crystallographica Section A, 65(3):232–239, May 2009.

85. Varley F Sears. Special Feature Neutron scattering lengths and cross sectioirn. Neutron
News, 3(3):26–37, 1992.

86. Katrin Amann-Winkel, Marie-Claire Bellissent-Funel, Livia E. Bove, Thomas Loerting,
Anders Nilsson, Alessandro Paciaroni, Daniel Schlesinger, and Lawrie Skinner. X-ray and
neutron scattering of water. Chemical Reviews, 116(13):7570–7589, 2016. PMID: 27195477.

20


	Introduction
	Methods and Implementation
	Case Studies with HTF
	Neural Network Force Field (Arbitrary Force Fields)
	Force Matching (Learning)
	EDS in HTF (Biasing/Automatic differentiation)
	Calculating Scattering Profiles (Arbitrary Collective Variables)

	Concluding Remarks
	Acknowledgements

