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Abstract
Flexible ligands often have multiple binding
modes or bound conformations that differ by
rotation of a portion of the molecule around
internal rotatable bonds. Knowledge of these
binding modes is important for understand-
ing the interactions stabilizing the ligand in
the binding pocket, and also for calculating
accurate binding affinities. In this work, we
use a hybrid molecular dynamics (MD)/non-
equilibrium candidate Monte Carlo (NCMC)
method to sample the different binding modes
of several flexible ligands and also to estimate
the population distribution of the modes. The
NCMC move proposal is divided into three
parts. The flexible part of the ligand is alchem-
ically turned off by decreasing the electrostat-
ics and steric interactions gradually, followed
by rotating the rotatable bond by a random
angle and then slowly turning the ligand back
on to its fully interacting state. The alchemi-
cal steps prior to and after the move proposal
help the surrounding protein and water atoms
in the binding pocket relax around the pro-
posed ligand conformation and increase move
acceptance rates. The protein-ligand system
is propagated using classical MD in between
the NCMC proposals. Using this MD/NCMC
method, we were able to correctly reproduce the
different binding modes of inhibitors binding to
two kinase targets – c-Jun N-terminal kinase-1
and cyclin-dependent kinase 2 – at a much lower

computational cost compared to conventional
MD and umbrella sampling. This method is
available as a part of the BLUES software pack-
age.

1. Introduction
Ligands often bind to proteins in multiple bind-
ing modes.1,2 Understanding ligand conforma-
tional heterogeneity in the binding pocket is im-
portant for modulating binding affinity and se-
lectivity, and in turn for having better molecu-
lar recognition and function. For example, re-
searchers used knowledge of the two distinct
binding modes of mono-substituted ligands of
the tyrosine kinase EphB4 to rationally design
bi-substituted ligands with single conformation
and higher affinity.3 In a different drug design
project, nuclear magnetic resonance (NMR)
spectroscopy identified minor population states
of ligands binding to the antibiotic target LpxC,
which hinted towards a larger cryptic binding
site and led to the design of a larger and more
potent antibiotic.4 Thus, improved understand-
ing of binding mechanisms can be used to de-
velop better inhibitors in structure-based drug
design.
Multiple binding modes are commonly iden-

tified experimentally using X-ray crystallogra-
phy and NMR techniques, which can be time-
consuming or costly. Information about multi-
ple binding modes present in electron density
maps is often overlooked during construction of
the 3-dimensional structure during X-ray crys-
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tallography. One recent study showed that up
to 29% of protein-ligand co-crystal structures
deposited in the Protein Data Bank have un-
modeled ligand conformations and sometimes
even unrealistic single bound conformations
that are based on averaged electron density
contributions from multiple binding modes.1
The same study also found that less than
2% of ligand-bound crystal structures in the
PDB database contained multiple ligand con-
formations. Additionally, crystal preparation
methods like cryocooling can alter the binding
modes.4,5 Thus, simply having a high-resolution
crystal structure does not always guarantee
adequate information for structure-guided de-
sign.4,6 On the other hand, binding affinity
studies such as based on calorimetry present
an overall picture of the protein-ligand interac-
tions in solutions, but are hard to interpret in
terms of contribution of each individual binding
mode. Thus, there is a need for computational
tools which can provide information about lig-
and conformational heterogeneity during ratio-
nal structure-based drug design.
Moreover, knowledge of ligand binding

modes, and in particular the occupancy of each
mode, can help improve alchemical binding free
energy calculations.7,8 These free energy calcu-
lations are beginning to be commonly used dur-
ing lead optimization to prioritize compounds
for synthesis and further testing. Ligands with
multiple binding modes need separate calcu-
lations or other careful study to estimate the
contribution of each mode. But, if the popula-
tion distribution of the modes is known, then
only a single free energy calculation is needed,
which decreases the computational cost and
improves the accuracy at the same time.
In this work, we introduce a new method

for sampling multiple binding modes of flexi-
ble ligands with rotatable bonds. We use a hy-
brid method which combines molecular dynam-
ics (MD) and nonequilibrium candidate Monte
Carlo9 (NCMC) for this purpose. Previously it
has been shown than MD/NCMC can help to
accelerate sampling of multiple binding modes
of rigid fragments8 and side-chain rotameric
states of proteins.10

We validated our MD/NCMC protocol using

ligands binding to the protein target c-Jun N-
terminal kinase-1 (JNK1). These ligands have
different substitutions in a terminal phenyl ring
which revolves around a rotatable bond, result-
ing in two distinct binding modes. Kaus et al.
performed extensive alchemical free energy cal-
culations to determine the free energy differ-
ence between the two binding modes for these
ligands,7 which can be converted to population
estimates. Additionally, we also validated our
method using a different ligand binding to the
cyclin-dependent kinase 2 (CDK2) protein with
experimental population estimates of the two
binding modes based on X-ray electron density
maps of crystal structures.1
Using MD/NCMC, we computed population

estimates close to those obtained using ex-
perimental or other computational techniques.
MD/NCMC also required much less compu-
tation than standard MD and umbrella sam-
pling, thus suggesting that MD/NCMC is an ef-
ficient computational tool for determining mul-
tiple binding modes of flexible ligands.

2. Theory
2.1. Knowledge of binding modes is im-
portant for accurate binding free energy
calculations. Each binding mode makes a sep-
arate contribution to the total binding free en-
ergy G◦ –

∆G◦ = −β−1 ln(
n∑
i=1

e−β∆Gi)

where ∆Go is the binding free energy, n is the
total number of binding modes and β is the
inverse of the product of the Boltzmann factor
kB and the absolute temperature T .
Binding modes often interconvert slowly com-

pared to the timescales of typical MD simula-
tions, and thus interconversions are not gener-
ally observed in free energy calculations unless
enhanced sampling techniques are used.8 As a
result, if the binding mode is uncertain or may
change as a ligand is modified (e.g. in a lead op-
timization context) one needs to perform sepa-
rate free energy calculations starting from each
binding mode to compute the total binding free
energy.7,8 This increases the overall computa-

2



tional cost of binding affinity calculations for
ligands with multiple binding modes.
However, if the population distribution of

binding modes are known, the the binding affin-
ity calculation can become faster and cheaper.
Specifically, if we know the probability p1 of
binding mode 1, then total binding free energy
G◦ is given as –

∆G◦ = ∆G◦
1 + β−1 ln p1

Thus, only one binding free energy calculation
is needed per ligand leading to significant de-
crease in the computational cost.8,11

2.2. Various computational methods can
be applied for sampling binding modes. In
this section we mention a few common compu-
tational techniques that can be used to sample
binding modes, and the benefits and difficulties
of using these methods.
The most common and computationally

cheapest method for suggesting potential bind-
ing modes of ligand is docking.12,13 However,
docking is designed to rapidly screen large
molecular libraries and compromises accuracy
to achieve such high speed. As a result, dock-
ing is not very efficient is identifying the true
binding mode(s).14 Moreover, docking scores
do not correlate well with binding affinities14

and thus, they do not give reasonable estimates
of occupancy ratios of multiple binding modes
(if present).
An alternative to docking is to use MD-based

approaches.15 Classical MD can sample mul-
tiple binding modes, but the modes are usu-
ally separated by large energy barriers result-
ing in slower time scales for binding mode tran-
sitions in these simulations, necessitating very
long simulations. A more pragmatic approach
is to use MD-based enhanced sampling tech-
niques to overcome the energy barriers.
In order to overcome energy barriers, meta-

dynamics continuously adapts the potential en-
ergy along a few chosen degrees of freedom as
the MD simulation progresses which in turn de-
creases energy barriers between different states.
Thus, metadynamics biases the simulation to
sample regions of the phase space not yet sam-
pled. This can potentially enhance the sam-

pling of the entire energy surface. However,
metadynamics require some degree of intuition
about the important degrees of freedom of the
system.
Another way to accelerate sampling across en-

ergy barriers is by varying the system temper-
ature in MD simulations, which is commonly
done using tempering and annealing methods.
For example, replica exchange with solute tem-
pering (REST/REST2)16 scales the tempera-
ture of only the ligand and selected protein
residues to explore alternate conformations.
However, there is always a possibility of the pro-
tein becoming unstable (and potentially even
unfolding) with these techniques because of the
high temperatures.
If the binding modes are known, the prob-

lem of crossing energy barriers becomes more
tractable. Relative alchemical free energy per-
turbation (AFE) simulations can sometimes be
used in such cases to find out the free en-
ergy difference between two binding modes.7,17

These calculations simulate a series of sepa-
rate intermediate states to transform one bind-
ing mode into another by disappearing atoms
from one region and growing them in another
region. The resulting free energy difference
can be computed via a variety of perturbation-
based estimators such as the multistate Bennett
acceptance-ratio method (MBAR), or via al-
ternative formulations like thermodynamic in-
tegration (TI). The binding modes need to be
very similar to each other for relative AFE cal-
culations.
Another way to determine the free energy dif-

ference between binding modes is to use um-
brella sampling.18 Similar to AFE, umbrella
sampling constructs a series of intermediate
states between binding modes along a physi-
cal degree of freedom. For example, for sam-
pling the energy change associated with rotat-
ing a rotatable bond, the intermediate states
are described by different degrees of rotations
of the rotatable bond. The system is simulated
at the intermediate states using restraints, and
then a free energy profile is constructed based
on all sampled conformations. However, sam-
pling along a single degree of freedom can result
in inadequate sampling of all relevant confor-
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mations in complex three-dimensional protein-
ligand systems. Particularly, orthogonal de-
grees of freedom can be especially difficult to
adequately sample. Both AFE and umbrella
sampling simulations require prior knowledge of
what the different binding modes are.
Monte Carlo (MC) is another class of molec-

ular simulation technique where moves are pro-
posed to hop between energy basins. Unlike
MD-based techniques, the likelihood of MC
moves between binding modes depends only
on the initial and proposed states of the sys-
tem and not on the barrier heights. How-
ever, proposing a move without introducing any
clashes is extremely difficult in densely solvated
systems. Thus, MD-based techniques are more
popular for biomolecular simulations.
Recently, there have been few efforts to use

hybrid MD/MC based approaches instead for
ligand sampling. For example, Chodera et
al. have used rotational and translations MC
moves to explore ligand binding modes during
absolute binding free energy calculations in the
YANK software package.19 However, designing
move proposals with high acceptance rates still
remains a major challenge.
As discussed in this section, there does not ex-

ist a general solution to rapidly sample ligand
binding modes and obtain correct populations
or free energies, even in cases where binding
modes differ primarily only by rotation of one or
several rotatable bonds. To address this prob-
lem, we developed a hybrid MD and nonequi-
librium candidate Monte Carlo based method
in this work, which could potentially provide a
more general approach.
2.3. Nonequilibrium Candidate Monte
Carlo is an efficient sampling tool for
crowded systems. Nonequilibrium candidate
Monte Carlo (NCMC) offers the advantages
of barrier crossings present in traditional MC
moves, but with much higher acceptance rates.9
Unlike MC where move proposals are instanta-
neous, NCMC move proposals involve a finite-
time process where the system is driven through
a nonequilibrium protocol to a proposed state.
NCMC protocol includes a series of pertur-

bation or propagation steps involving chosen
degrees of freedom and/or thermodynamic pa-

rameters. The switching steps allow the envi-
ronment surrounding the perturbed region to
relax around the proposed state, thereby reduc-
ing the chances of steric or electrostatic clashes
which are common in MC move proposals. As a
result, NCMC move proposals have higher ac-
ceptance rates in condensed solvated systems
compared to MC.
The proposed NCMC move is accepted or re-

jected based on the total work w[X] done dur-
ing the nonequilibrium process X, given as –

w[X] =
T∑
t=1

[ut(xt)− ut−1(xt)] + wshadow[X]

where xt is a microstate at switching step t
and ut is the reduced potential energy. The
first term in the above equation is the “pro-
tocol work” wprotocol and the second term is
the “shadow work” which accounts for the er-
rors introduced by the use of finite-time-step
Langevin integrators.20 The acceptance prob-
ability A[X] is determined using a modified
Metropolis-Hastings criterion21 to maintain de-
tailed balance,

A[X] = min{1, e−w(X)}

2.4. We introduce torsional moves
with NCMC for sampling flexible lig-
ands via BLUES software package.
In this work, we use the BLUES frame-
work8(https://github.com/MobleyLab/blues)
for implementing NCMC move proposals. The
BLUES framework uses a combination of MD
and NCMC and is designed specifically for sam-
pling ligand conformations in dense systems.
In BLUES, the NCMC move proposal is de-

fined as a series of alchemical steps where
the protein-ligand electrostatic and steric in-
teractions are turned off gradually, followed by
proposing a new ligand orientation and then,
restoring the interactions. The NCMC switch-
ing steps allow the protein and water (if any)
surrounding the ligand to relax around the pro-
posed ligand conformation and decreases the
chance of clashes.
BLUES uses the BAOAB integrator22 for

Langevin dynamics, which can sample the con-
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Figure 1. NCMC move for twisting a rotatable bond
of a ligand. Circles with black outline represent the re-
gions of the ligand at various levels of interaction with
its neighboring atoms: black – fully interacting, white
– non-interacting, and gray – intermediate level. The
blue circles are for the surrounding protein and water
molecules. A) The ligand is fully interacting. B) The
atoms of the ligand which are translocated because of
the rotation of the rotatable bond is selected as the al-
chemical region. The non-bonded interactions of the
ligand are slowly decreased only for the alchemical re-
gion. This allows the atoms surrounding the alchemical
region to relax. C) The alchemical region of the lig-
and is fully non-interacting. D) The rotatable bond is
randomly rotated leading to a new orientation of the
alchemical region. E) The alchemical region is slowly
turned back on. The surrounding atoms relax around
the new configuration of the ligand to relieve clashes if
present. F) The whole ligand is fully interacting. The
total work done in performing steps A-F is calculated
and the NCMC move is accepted or rejected based on
it.

figurational space with high accuracy and the
shadow work wshadow can be neglected without
introducing any significant errors. Thus, the
total work w is approximated to be only the
protocol work wprotocol, which is the work done
to propagate the system during the NCMC pro-
tocol.
In between the NCMC move proposals,

BLUES performs conventional MD steps to
capture some of the natural protein dynam-
ics by general sampling of the system’s motion.
Thus, BLUES samples the system using succes-
sive NCMC moves and MD propagation steps.
Previously, BLUES has been successfully used

to study multiple binding modes of rigid frag-
ments – toluene binding to T4-lysozyme8 and
caffeine binding to metabolizing enzyme Cy-
tochrome P450 1A2.23 The NCMC protocol
used random ligand rotation around the centre
of mass of the ligand to sample different binding
modes. However, simple rigid-body rotational

moves are not sufficient to sample the binding
modes of drug-like molecules, which can have
conformational degrees of freedom in the bind-
ing pocket in addition to rotational and trans-
lational ones.
In this work, we extend the NCMC move

classes in BLUES by introducing torsional
moves for flexible ligands to facilitate transi-
tions between binding modes resulting due to
rotation of rotatable bonds. Figure 1 shows the
different steps involved in the NCMC protocol.
We identify a region connected to the chosen ro-
tatable bond of the ligand which is able to move
freely and only this region of the ligand is al-
chemically turned off and on during the NCMC
move proposal. In the middle of the NCMC
protocol after the alchemical region is annihi-
lated, the rotatable bond is randomly rotated,
followed by restoring the interactions of the al-
chemical region.
Apart from proposing random torsion rota-

tions of the rotatable bonds in ligands where
any amount of rotation (small or large) can be
proposed, we also developed another new move
class – flip moves where the rotatable bond is
randomly rotated only by large amounts, specif-
ically between 160◦–200◦.

3. Computational methods
Full details of the methods used in this work can
be found in the associated GitHub repository. If
we have any updates to the tools/scripts, they
will be made available on GitHub. We provide
a brief overview of some of the key details of
our methods here.
3.1. System preparation.We used four lig-
ands to validate our MD/NCMC protocol (Fig-
ure 2). Ligands 1-3 bind to JNK1 and have
the same scaffold but with different substitu-
tions in the terminal phenyl group. Their bind-
ing free energies were studied extensively by
other groups both experimentally24 and com-
putationally.7 In the previous computational
study with a different force field than that em-
ployed here, the ligands exhibited two distinct
binding modes with equal probability of occur-
rence. We modeled the binding mode for these
three ligands based on the PDB 2gmx.25 The
different aromatic ring substitutions were added
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to the ligand present in the co-crystal structure
using Chimera 1.12.26

For ligand 4, PDB 2r3i27 was used. Miss-
ing residues were modeled using Modeller
9.19.28 The partial charges of the ligand
atoms were assigned based on the AM1-BCC
model29 using Antechamber, included with
the Amber 16 package30 and the protona-
tion states of the protein residues using H++31

(http://biophysics.cs.vt.edu/H++).
The simulation box was built using tleap,

also a part of the Amber 16 package. We used
the protein and ligand force field parameters
from the Amberff14sb32 and GAFF 1.833 force
field respectively. Each protein-ligand complex
was solvated using TIP3P waters34 in a cubic
box with 10 Å padding. Two Na+ ions and four
Cl- ions were added to neutralize the JNK1 and
CDK2 protein-ligand complexes respectively.
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Figure 2. Structure of the four ligands used to validate
our MD/NCMC protocol. Ligands 1–3 bind to JNK1,
while ligand 4 binds to CDK2. The grey boxes show the
regions selected as the alchemical regions for the NCMC
moves. The arrows indicate the bonds rotating freely
in the bound form of the ligands. The remainder of the
ligand forms an anchor or core which (roughly speaking)
retains its pose in the binding site as the remainder of
the ligand rotates.

3.2. Equilibration and production MD
simulation details. The MD simulations were
performed using OpenMM 7.1.135 . We used
a Langevin integrator with 2 fs time step and
a friction coefficient of 1 ps−1. A cutoff of 10
Å was used for real-space electrostatics and
Lennard-Jones forces, while long-range electro-

statics was calculated using the particle mesh
Ewald method.
Each system was first minimized for 4000

steps with 500 kcal/mol/Å2 positional re-
straints on the heavy atoms present in the
protein-ligand complex, followed by another
4000 steps of minimization with 50 kcal/mol/Å2

positional restraints only on the protein atoms.
Next we performed MD simulations in the NVT
ensemble to slowly heat the system and to re-
lease the restraints on the protein atoms using
the following steps: i) 20 ps of simulation with
25 kcal/mol/Å2 restraints at 10 K, ii) grad-
ual heating of the sytem from 10 to 300 K
for 40 ps with 5 kcal/mol/Å2 restraints, iii)
20 ps of simulation with 5 kcal/mol/Å2 re-
straints at 300 K, iv) 40 ps of simulation with 1
kcal/mol/Å2 restraints, v) 40 ps of simulation
with 0.1 kcal/mol/Å2 restraints, and vi) 40 ps
of simulation without any restraints. In a final
phase of equilibration, we ran the system in
the NPT ensemble using a Monte Carlo baro-
stat for 5 ns to get the correct density at 1
atmospheric pressure.
The MD production run was for 100 ns in

NVT ensemble with frames being written after
every 10 ps. Chimera and CPPTRAJ 16.1636

was used for molecular visualizations and MD
trajectory analysis respectively.
3.3. MD/NCMC implemented using
BLUES software package.We implemented
our MD/NCMC protocol using BLUES version
0.1.3. The MD simulations were performed
using OpenMM, while the NCMC part used
openmmtools 0.14.037 for turning the ligands
on and off alchemically. Only the flexible re-
gion of the ligand (Figure 2) was selected as the
alchemical region. During the NCMC move,
all atoms more than 5 Å away from the lig-
and were frozen to increase move acceptance
rates.8 OpenEye Toolkits 3.0.8 (OpenEye Sci-
entific Software) was used to set the selected
torsion angles (shown in Figure 2) to random
values during NCMC move proposal.
Each iteration consisted of 1000 MD steps

and 3400 NCMC switching steps, except in sec-
tion 4.3 where we varied the number of NCMC
switching steps. During the NCMC protocol,
the ligand interactions are varied by scaling
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the λ parameter which control the strength of
the non-bonded interactions. The NCMC steps
were not evenly distributed across the λ sched-
ule. For λ values between 0.2 to 0.8, we per-
formed additional four perturbation steps for
each alchemical step as shown in Figure S1.
For example, for 3400 switching steps, 200 steps
were used for λ values 0.0 to 0.2, 3000 steps for
λ values 0.2 to 0.8, and 200 steps for λ values
0.8 to 1.0. Only the MD steps contributed to
the final trajectory, thus each iteration corre-
sponded to 1000*0.002 fs/step = 2 ps worth of
production run.
We performed a single MD/NCMC simula-

tion for each protein-ligand system and NCMC
parameter settings. The uncertainties were cal-
culated based on blocking.38 We chose the num-
ber of blocks in such a way that the standard
deviation was maximized across the blocks. For
probabilities of the modes, we divided the sim-
ulation into smaller pieces of 1 ns length for
MD/NCMC (10 ns for MD) and then calculated
the uncertainties for each chunk of simulation.
3.4. Umbrella sampling performed by
sampling different orientations of the ro-
tatable bond. OpenMM was used to carry out
the umbrella sampling simulations. We used
the same MD simulation parameters described
in section 3.2. The rotatable bond of the ligand
was harmonically restrained to sample specified
dihedral regions in each window. We tried three
different parameter settings for the umbrella
sampling simulations -i) 72 windows each with
200 kcal/mol/Å2 force constant, ii) 128 win-
dows each with 200 kcal/mol/Å2 force constant,
and iii) 152 windows with different force con-
stants - 400 or 600 or 800 kcal/mol/Å2. Each
window was simulated for 10 ns.
While restraining the rotatable bond at differ-

ent dihedral values in each window, we observed
that sometimes it altered the binding mode of
the ligand (Figure S2). Ideally, we would like to
sample only a single degree of freedom in um-
brella sampling simulations – different orienta-
tions of the rotatable bond with the same con-
figuration for the rest of the ligand in our case.
Hence, we applied 250 kcal/mol/Å2 positional
restraint on the fixed part of the ligand (atoms
outside the grey box in Figure 2) during simu-

lations with parameter settings (ii) and (iii) to
ensure that the protein-ligand interactions are
the same for the rest of the ligand.
The one-dimensional free energy profile or

the potential of mean force (PMF) was com-
puted using the multistate Bennett acceptance
ratio (MBAR) method39 available through the
pymbar package. The population pi of binding
mode i can be back-calculated using the follow-
ing equation:

pi =
∑
wi

e−PMF/kBT/
∑
wi,wj

e−PMF/kBT

where wi corresponds to the windows sam-
pling dihedral angles associated with the bind-
ing mode i and wj corresponds to all other win-
dows.

ORIG FLIP 

Figure 3. Binding modes of ligand 1. The rotation of
the rotatable bond leads to two distinguishable binding
modes in molecular simulations -‘orig’ and ‘flip’. The
black atom in the phenyl ring represents a carbon atom
and is colored black for reference only.

4. Results
4.1. MD/NCMC is more efficient
than MD for sampling the two binding
modes. In this work, we developed a hybrid
MD/NCMC method to enhance the sampling
of binding modes of flexible ligands. We first
tested our MD/NCMC method using ligand 1.
Ligand 1 has a rotatable bond which can ro-

tate even in the bound configuration, giving rise
to two different binding modes separated by a
180◦ rotation of the rotatable bond. We refer
these two binding modes as ‘orig’ and ‘flip’ (
short for ‘original’ and ‘flipped’, shown in Fig-
ure 3). The two phenyl ring orientations are
chemically indistinguishable, but distinguish-
able in simulations because we can number the
individual atoms and track which orientation it
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Figure 4. Comparison of the sampling efficiency of MD and MD/NCMC simulations for ligand 1. Torsion angles
(corresponding to the two binding modes) sampled during the course of the simulations as a function of time (left).
The number of transitions between the two binding modes per million force evaluations (transitions/million f-ev) is
also reported. Probability of the two binding modes, namely ‘orig’ and ‘flip’ as a function of time (right). MD/NCMC
increases the rate of transition between the two binding modes compared to classical MD simulations, resulting in
faster convergence of the population of two binding modes to the ‘ideal’ distribution.

is in. We should clearly see two distinct and
equally populated binding modes in molecular
simulations. This is a trivial test but it is a
good proof-of-principle because we know what
the right answer is and we can test whether we
recover this quickly/accurately.
As a point of comparison, we ran a stan-

dard 100 ns MD simulation and also moni-
tored the orientation of this ring. Figure 4
shows the binding modes sampled during the
MD and MD/NCMC simulations and the prob-
ability of the two binding modes as a function of
time. We saw only a single transition between
the two binding modes during the entire course
of the MD simulation, while with MD/NCMC
there were frequent transitions between the two
binding modes. Since there were not enough
transitions in the MD simulations, the popu-
lations of the two binding modes did not con-
verge to the ‘ideal’ 50/50 probability. On the
other hand, the populations of the two binding
modes converged to the expected values in the
MD/NCMC simulations. Thus, MD/NCMC
was not only able to increase the transition rate,
but it also sampled correctly from the Boltz-

mann distribution.
It is not straightforward to do a di-

rect efficiency comparison between MD and
MD/NCMC simulations since we incur addi-
tional computational costs during the NCMC
alchemical steps, which are not counted towards
the final trajectory length. Force evaluations
are the most expensive calculation in simula-
tions and we are interested in sampling more
transitions between different binding states.
Hence, we compared the two methods based on
the observed number of transitions per million
force evaluations (transitions/million f-ev).
NCMC requires one force evaluation for each

switching step. Thus, for N switching steps and
M MD steps, total number of force evaluations
performed per iteration is N + M . Standard
MD executes one force evaluation per step.
Using the calculation described above, we ob-

tain 15.73 ± 0.08 transitions per million f-ev
with MD/NCMC, which is about a three or-
der of magnitude improvement over standard
MD. We obtain an acceptance rate of 12.7 ±
0.7% for the NCMC moves, which is similar
to 11% obtained by Gill et al.8 in previous
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MD/NCMC work on rigid fragments. Unlike
standard Monte Carlo, the ideal efficiency rate
is not close to 23% in NCMC but instead is a
strong function of the size/importance of the
moves. Particularly even low acceptance of im-
portant moves can provide dramatic sampling
enhancements, as discussed in the prior NCMC
paper.
4.2. Choice of alchemical region impor-
tant for increasing acceptance rates. Dur-
ing the NCMCmove proposal, we preselect only
the part of the ligand that moves due to rota-
tion of the rotatable bond. We alchemically
turn on and off only this region. However in
previous work by Gill et al.,8 the whole ligand
was specified as the alchemical region. Hence,
we investigated the effect of different alchemi-
cal regions on move acceptance rates, which in
turn affects the convergence time.
We compared the work w distribution for

just turning ligand 1 on and off in the binding
pocket without any random torsion rotation for
two different alchemical regions – i) the whole
ligand (Figure 5-a), and ii) only the moving part
of the ligand as shown in Figure 2 (Figure 5-b).
Ideally we want βw values to be less than or
close to zero. This increases the likelihood of
moves getting accepted.
When the whole ligand is selected as the al-

chemical region, the work values are too high
(in fact, always significantly unfavorable, here),
resulting in every move getting rejected. This is
probably because the whole binding pocket un-
dergoes changes when the ligand alchemically
disappears (or appears) resulting in high work
values. When we designate only the moving
part of the ligand as the alchemical region, the
work distribution gets shifted to lower values
which results in reasonable move acceptance
rates.
Thus, in general, we believe that the alchemi-

cal region should be selected in such a way that
the surrounding protein and water molecules
are perturbed only to the extent needed to ac-
commodate the new orientation of the ligand.
It is to be noted that, when a random tor-

sional move is attempted in the halfway point
of an actual NCMC move proposal, the work
values are overall higher than the case we have

looked at in this section since the degree of per-
turbation in the binding pocket is larger.
4.3. Acceptance rates and actual tran-
sitions vary with different amounts of
NCMC relaxation. In previous MD/NCMC
work,8 move acceptance rates were dependent
on the NCMC protocols. Hence, we decided
to explore how variations in the NCMC pro-
tocol, in particular the total amount of NCMC
switching steps affect the move acceptance rates
(Figure 6).
We see a general trend that with more NCMC

relaxation, there is an increase in the accep-
tance rate. This is expected since more relax-
ation means more time for the binding pocket
to adjust itself around the proposed orientation
of the ligand and to relieve any bad contacts.
However, this increase in acceptance rate is

deceptive since more NCMC switching steps re-
quire more computation. If instead we com-
pare moves accepted per million force evalua-
tions, we see it initially increasing and reaching
its maximum value at 3400 NCMC switching
steps, after which it decreases. Thus, having
more relaxation steps is not always computa-
tionally efficient. 3400 switching steps is the
optimal amount of relaxation for our current
test system.
4.4. Random flip moves increase effi-
ciency of the NCMC protocol. Thus far,
we have explored random torsional rotations,
which may not be optimal. Particularly, our
random torsion rotations can take any value
between 0◦ to 180◦. As a result, small rota-
tions are often suggested and accepted, often
even within the same binding mode. Not every
accepted move thus results in a successful tran-
sition between the two binding modes (Figure
S3 and S4).
Move proposals within the same binding

mode require additional computation without
facilitating transitions between binding modes,
thus decreasing the efficiency of MD/NCMC
simulations.
An alternative strategy could be to ensure

only larger moves are proposed, which could in-
crease efficiency. To test this, we we decided to
propose only larger moves. Instead of propos-

9



0 20 40 60 80 100
w

0

0.02

0.04

0.06

0.08

0.1

0.12
pr
ob
ab
ilit
y

0 20 40 60 80 100
w

0

0.02

0.04

0.06

0.08

0.1

0.12

pr
ob
ab
ilit
y

(a)                                          (b)     

Figure 5. Distribution of work w done in turning ligand 1 on and off in the binding pocket without proposing any
random torsion rotation. The alchemical region is specified as follows: a) the whole ligand; b) only the flexible part
of the ligand. β is the inverse of the product of the Boltzmann constant kB and the temperature T . Proposed moves
with smaller values of βw (close to or less than zero) are more likely to be accepted. Thus, defining only the flexible
part of the ligand as the alchemical region is better for move acceptances as seen from the work distribution.

ing any random value, we designed flip moves,
where moves are still randomly chosen but be-
tween 160◦ to 200◦ values (and thus are suit-
able only for cases where a torsional angle is
expected to have only two stable conformations
that differ by roughly 180 degrees).
Figure 7 shows the probability of state as

a function of time for MD/NCMC simulation
with flip moves for ligand 1. The moves still
sample from Boltzmann distribution and the
population converges to the ideal 50/50 pop-
ulation distribution. The number of moves ac-
cepted per million force evaluations ( 30 ± 2
) and transitions per million force evaluations
(28.4 ± 0.4) are very close in value, whereas
for our previous random torsional move propos-
als, about half of the moves resulted in actual
transitions (29 ± 2 moves accepted per million
force evaluations and 15.72 ± 0.08 transitions
per million force evaluations). The efficiency of
flip moves is also evident from the shorter con-
vergence time (∼2 ns or 1000 iterations) com-
pared to random torsional moves (∼5 ns or 2500
iterations from Figure 4).
Note that even with flip moves, there are some

accepted moves that do not result in an actual
transition, as seen from the difference between
the number of accepted moves accepted and the

number actual transitions. This is probably be-
cause during the NCMC relaxation for a small
percentage of moves, the ligand is able to relax
back to its previous binding mode with accept-
able work values.
4.5. MD/NCMC method gives reason-
able population estimates for different
JNK1 and CDK2 inhibitors. After optimiz-
ing and validating our protocol with ligand 1,
we decided to test our MD/NCMC method on
additional ligands. Figure 8 shows the probabil-
ity of the two binding states during the course
of MD/NCMC simulations for ligands 2-4.
Ligands 2 and 3 are from the same chemi-

cal series as ligand 1 and differ only by methyl
substitutions in the terminal phenyl ring. The
populations of the binding modes take differ-
ent amounts of time to converge for the two
ligands – 10 ns or 5000 iterations for ligand 2
and 40 ns or 20000 iterations for ligand 3. The
additional methyl group in ligand 3 decreases
the transition rate by almost a factor of seven.
Thus, ligands or substituents with bulkier sub-
stitutions or large alchemical regions need to be
simulated longer to achieve convergence.
Next, we compare our results with popula-

tion estimates based on AFE calculations by
Kaus et al.7 For ligand 2, our population es-
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Figure 6. Acceptance rate of NCMC moves (in blue)
and moves accepted per million force evaluations (f-
ev) (in orange) as a function of the number of NCMC
switching steps for ligand 1. The acceptance rate in-
creases with more NCMC steps. However, the number
of moves accepted per million force evaluations initially
increases and then decreases with the number of NCMC
switching steps.

timates are same as those obtained from AFE
calculations (50:50), while for ligand 3, we get
63:37 population estimates compared to 45:55
obtained using AFE with ∼7% error bar. It is
to be noted here that the AFE calculations were
performed using a different force field (modi-
fied OPLS 2.1 for the ligands in the Kaus et
al. study), which can give different answers.
The final populations are also very sensitive to
the AFE protocol. Kaus et al. initially ob-
tained 20:80 population estimates, after which
they modified their AFE protocol to obtain a
50:50 estimate for ligand 3.
MD/NCMC simulations have previously been

able to correctly sample binding modes of rigid
fragments8 and side-chain rotamers.10 They
also correctly sampled the binding mode pop-
ulations for ligand 1 in this work. Hence, we
believe that the population distribution we ob-
tained using MD/NCMC for ligand 3 is correct
given the force fields used in this work.
As a final test, we looked at ligand 4, which

also has two distinct binding modes in CDK2.
The occupancies of the two binding modes have
been reported to 60:40 based on electron den-
sity maps by Zundert et al.1 with an error bar
of ∼10%. With MD/NCMC, we obtain an oc-
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  3400 NCMC steps - flip move
 30 moves accepted/million f-ev

 28.4 transitions/million f-ev

orig   0.49
flip    0.51
ideal 0.50

Figure 7. Probability of the two binding states of lig-
and 1 as a function of time sampled using MD/NCMC
with flip moves. The simulation converges around 2x
faster than our previous simulation with random rota-
tional moves in Section 4.1.

cupancy ratio of 53:47, which is within the ex-
perimental error margin.
Overall, we find that MD/NCMC signifi-

cantly improves performance of transition sam-
pling for all three ligands (2-4) which have mul-
tiple chemically distinct binding modes. Par-
ticularly, for all of these ligands, MD did not
allow transitions during the 100 ns long sim-
ulations(Figure S5). The binding modes are
likely separated by large energy barriers, which
is not easy to overcome with standard MD.
Like Monte Carlo moves, the success of NCMC
moves is not dependent on the height of the
barriers and NCMC moves are able to overcome
them. Thus, we see an enhancement in the sam-
pling of binding modes using our MD/NCMC
method.
Instead of using direct MD simulations to ob-

tain populations, an alternate approach would
have been to employ AFE calculations for each
distinct binding mode which, in the best case
scenario, could be roughly comparable in cost to
MD/NCMC implemented via BLUES. Specifi-
cally, standard AFE calculations require sepa-
rate simulations for 12 lambda values with 5 ns
of simulation for each lambda value, resulting
in a total 60 ns worth of simulation (based on

11



0 2.5 5 7.5 10
time (in ns)

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
 o

f s
ta

te

Ligand 2 - MD/NCMC    
 2.0  0.1 transitions/million f-ev

orig   0.51
flip    0.49
FEP  0.50

0 12.5 25 37.5 50

time (in ns)

0

0.2

0.4

0.6

0.8

1

Ligand 3 - MD/NCMC    
 0.31  0.04 transitions/million f-ev

orig   0.63
flip    0.37
orig FEP 0.45
flip FEP  0.55

0 5 10 15 20
time (in ns)

0

0.2

0.4

0.6

0.8

1

Ligand 4 - MD/NCMC   
 3.8  0.3 transitions/million f-ev

orig   0.53
flip    0.47
orig exp 0.6
flip exp  0.4

Figure 8. Probability of the binding states of ligands 2, 3 and 4 as a function of time based on MD/NCMC
simulations with flip moves. The simulations require different amounts of time to converge for the three ligands.
The final population estimates of the binding modes for ligand 2 is close to that obtained using AFE calculations by
Kaus et al.,7 whereas for ligand 3, the converged populations are slightly different from AFE estimates. For ligand
4, the population estimates are similar to those computed by Zundert et al.1 using X-ray electron density data with
an error margin of 0.1.

simulation protocol reported by Kaus et al.7).
We were able to have sufficiently converged sim-
ulations with ∼10-20 ns of MD/NCMC simula-
tions, which is computationally equivalent to
44-88 ns of MD simulations. Thus, the com-
putational cost of MD/NCMC simulations is in
the same order of magnitude of that for AFE
calculations. Note that for n binding modes,
we have to perform n − 1 AFE calculations to
obtain the population distribution, whereas for
MD/NCMC we just need to perform a single
simulation.
Even though AFE calculations and MD/NCMC

may have similar computational cost, at least
in the case of few binding modes, AFE calcu-
lations are not always that straightforward to
implement. For example, the core region of
the ligands might require additional restraints
to prevent them from drifting out of the bind-
ing pocket during the intermediate alchemical
states.7 Additionally, rotatable bonds might
need harmonic restraints such that they sam-
ple only a specific binding modes. Furthermore,
it is hard to converge AFE calculations to a rea-
sonable accuracy of 1.0 kcal/mol.40 In practice,
AFE calculations are popularly coupled with
tempering methods, such as REST/REST2,
for better sampling and convergence. Unlike
AFE calculations, with MD/NCMC we have
not used any restraints with the ligand having

full freedom to move around in the binding
pocket if it wants to do so and were able to
achieve a satisfactory level of convergence.
4.6. Umbrella sampling requires more
computation to converge to the correct
population. As an additional point of com-
parison, we ran umbrella sampling simulations
with ligand 1 to compare the computational
cost with MD/NCMC simulations. Unlike
MD/NCMC simulations, where we were able
to get converged simulations easily (or by run-
ning longer for larger ligands), we had to opti-
mize and tune the umbrella sampling protocol
a number of times to achieve a converged pop-
ulation distribution for the two binding modes
(Figure S6 and S7).
Figure 9 shows the probability of the two

states we obtained using different number of
windows in umbrella sampling simulations. We
had to use 152 windows to achieve convergence.
Additional windows directly increases the com-
putational cost. Umbrella sampling was ∼35
times more expensive than MD/NCMC simu-
lations for ligand 1. While we invested consid-
erable effort initially in developing simpler pro-
tocols with fewer windows which would perform
adequately, we were ultimately unsuccessful —
probably in part because steric barriers associ-
ated with rotating the group between binding
modes often induce ligand and/or protein mo-
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tions as the bond is rotated.
Additionally, we tried using the protocol opti-

mized with ligand 1 to estimate the population
of the binding modes for ligand 2. We found
that same protocol did not work for ligand 2
(Figure S8). Thus, at least for these binding
mode sampling problems, umbrella sampling is
not only expensive, it cannot be used as a reli-
able option for estimating binding modes, espe-
cially when doing a prospective or blind study,
as the protocol employed would require tun-
ing for each individual ligand to ensure correct
populations are obtained – a procedure which
is impossible when correct populations are not
known.

MD/N
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Figure 9. Probability of the two binding modes ob-
tained using MD/NCMC and umbrella sampling (Umb)
with different number of windows. The ideal population
estimate is 50:50 shown by the dotted line. We had to
use 152 windows to get estimates close to the ideal value
with umbrella sampling, which increased the computa-
tional cost considerably.

5. Discussion
In this work, we have studied only multi-
ple binding modes resulting because from ring
flips. However, the torsional moves we designed
here can be used for other categories of alter-
nate conformations, for example enhanced sam-
pling of branched components in linear regions
of ligands or rotations of terminal rotatable
bonds (both are relevant experimentally1). The
NCMC torsional moves can also be combined
with other moves like random ligand rotations8

or translations to have broader applicability.

Apart from sampling multiple binding modes
of flexible ligands, we also tried to simulate flex-
ible ligands in pure water using MD/NCMC to
test its efficiency. But, we found out that for
such cases the energy barriers separating differ-
ent conformers could be overcome by standard
MD with no need for additional sampling en-
hancements.
In its current implementation MD/NCMC

needs human input about which rotatable
bond(s) present in the ligand ought to be ex-
plored via this approach. Future work may
automate this identifying the rotatable bonds
of the ligand and then systematically explor-
ing the binding modes that can arise because
of their multiple orientations. For ligands with
multiple rotatable bonds, binding modes might
differ by multiple torsion angles. For such cases,
we could propose torsional moves of multiple
bonds in a single move. We expect that ran-
domly proposing moves for such cases is not an
efficient option because the number of possible
moves will grow exponentially with increase in
the degrees of freedom of the torsional space.
To increase acceptance rates, we could draw
on exploratory initial simulations of the ligand
in implicit or explicit solvent to identify poten-
tially favorable conformations and then propose
moves in the binding site randomly based on the
explored torsional space.

6. Conclusions
An important component of structure-based
drug design is to understand how ligands bind
to proteins. However, it is not trivial to de-
termine the binding mode using computational
tools. The problem becomes harder when the
ligand binds in multiple configurations, or when
a new ligand has multiple possible binding
modes which have not yet been characterized.
To aid in the problem of binding mode de-

termination and binding mode sampling, here,
we developed a new simulation technique based
on MD and NCMC to sample binding modes of
flexible ligands, and incorporated this into our
BLUES package for binding mode sampling. In
our approach, we propagate the system using
standard MD with regular NCMC move pro-
posals in between to overcome energy barriers.
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We propose random torsion rotations of rotat-
able bonds of ligands to accelerate transition
rates between different binding modes. How-
ever, instead of instantaneous move proposals
as in MC, NCMC moves relax the surrounding
atoms of the ligand around the proposed ori-
entation to help relax clashes. This helps to
improve the move acceptance rate, and in turn
the sampling efficiency.
Using MD/NCMC, we were able to sample

multiple binding modes of different kinase in-
hibitors and obtain correct occupancy ratio for
the binding modes. The observed transition
rates were much faster than standard MD and
umbrella sampling. We also found that ‘flip’
moves, where we propose large moves or close to
180◦ random rotations of rotatable bonds, was
about two times more efficient than random tor-
sional moves where any degree of rotation can
be proposed. Thus, MD/NCMC has the po-
tential to be a more general and efficient tool
for sampling multiple binding modes of flexible
ligands.
To sum up, we have applied MD/NCMC to

sample binding modes of flexible ligands in this
paper and have successfully determined the oc-
cupancy ratios of the binding modes of four ki-
nase inhibitors at a much lower computational
cost compared to standard MD and umbrella
sampling.

Supporting Information Avail-
able
The Supporting Information is available free of
charge on https://github.com/MobleyLab/blues-
flexible-ligand and includes all the code and
scripts used in this work. An archival copy of
the version of the tools used in the paper is
deposited along with this paper.
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Supplementary Information
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Figure S1. Scaling of the electrostatics and Lennard-Jones forces in the alchemical region of the ligand with respect
to λ during the course of a NCMC move proposal. At λ = 0, the non-bonded interactions are completely turned off,
while at λ = 1, the interactions are fully on. Adapted from Gill et al.8

Figure S2. Orientation of the ligand in the binding pocket in two different windows during umbrella sampling
simulations - i) Blue – window where the flexible bond is restrained to the same value as the stable pose, also the
starting pose in the MD and MD/NCMC simulations. ii) Green – where the flexible bond is restrained to be at an
angle of 90◦ with respect to the starting orientation. The binding pose of the ligand gets altered in the second case.
Hence, we decided to put additional positional restraints on the fixed part of the ligand in all of the windows to
prevent the ligand from exploring other binding modes.
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Figure S3. Moves accepted per million force evaluations (f-ev) during MD/NCMC simulation and transitions
between different binding poses per million force evaluations (f-ev) as a function of the number of NCMC switch-
ing steps for ligand 1. Accepted moves does not always result in a transition, as seen from the lower values of
transitions/million f-ev.

Figure S4. Torsion angles(corresponding to the two binding modes) as a function of time simulated with different
NCMC protocols for ligand 1 - 3400 NCMC steps (top) and 8500 NCMC steps (middle) with random rotational
moves; 3400 NCMC steps with random 180◦ rotational moves (bottom. Black dotted vertical lines show the accepted
NCMC moves. Not all accepted moves result in a transition between the two binding modes for random rotational
moves. For example, during the first 0.1ns of NCMC simulation in middle, moves were accepted, but did not
correspond to a successful transition. However, with 180◦ rotational moves, almost every accepted move resulted in
a transition with almost two times increase in the transitions per million force evaluations (transitions/million f-ev).
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Figure S5. Probability of the binding states of ligands 2, 3 and 4 as a function of time based on MD simulations.
We did not observe any transition between the two states for all of the three ligands.

-200 -100 0 100 200
torsion angle

P
M

F

Figure S6. The ‘ideal’ PMF as a function of the torsion angle of the rotatable bond present in ligand 1. There
should be two basins of same depth corresponding to the two identical, but distinct binding modes.
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Figure S7. PMF as a function of the torsion angle of the rotatable bond present in ligand 1, obtained using
umbrella sampling simulations. The different parameters used are described in the methods section. We had to use
152 windows to obtain a PMF close to the ‘ideal’ one in Figure S6.
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Figure S8. PMF as a function of the torsion angle of the rotatable bond present in ligands 1 and 2, obtained using
umbrella sampling simulations. Ligand 2 should ideally have a PMF similar to the ‘ideal’ one shown in Figure S6,
since the two binding modes are equally populated. The protocol (optimized on ligand 1) failed to reproduce the
expected PMF for ligand 2.
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