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ABSTRACT: A dual catalytic sp3 a C–H arylation & al-
kylation of benzamides with organic halides is described. 
This protocol exhibits excellent chemoselectivity and ex-
quisite site-selectivity, offering a complementary reactiv-
ity mode to existing sp3 arylation or alkylation events via 
either transition metal catalysis or photoredox events. 

Transition metal-catalyzed cross-coupling reactions have 
streamlined the synthesis of valuable molecules from 
simple precursors while offering a reliable solution to se-
lectively forge C–C bonds at prefunctionalized sites.1 
However, the ability to rationally and predictably switch 
the site-selectivity pattern of these endeavors still remains 
a problematic, yet highly rewarding, scenario.2  

Scheme 1. Site-Selective sp3 Functionalization of Amides. 

 

The prevalence of aliphatic amines in a myriad of mole-
cules displaying biological activities3 have prompted 
chemists to develop mild, non-invasive and site-selective 
sp3 C–H functionalization techniques as a platform for 
structural diversity.4 In this vein, photoredox catalysis has 
recently offered new tactics for the sp3 C–H functionali-
zation of aliphatic amines via single-electron transfer 
(SET) or hydrogen-atom transfer (HAT) pathways due to 
their favorable redox profile.4,5 Although the lower oxi-
dation potential of aliphatic amides might a priori pre-

clude the implementation of related sp3 C–C bond-for-
mations, independent work by Rovis6 and Knowles7 es-
tablished a new photochemical rationale for enabling d 
sp3 C–H alkylation of aliphatic secondary amides through 
[1,5]-HAT (Scheme 1, path a).8 Recently, a site-selectiv-
ity switch could be obtained with particularly activated 
trifluoromethansulfonamides (path b);9 however, this 
technology remains confined to activated electron-defi-
cient olefins and stoichiometric HAT-mediators, reinforc-
ing a change in strategy.10,11 In view of the foregoing, a 
catalytic blueprint aimed at expanding the boundaries of 
sp3 a-functionalization of aliphatic secondary amides 
with broadly applicable counterparts might provide an 
opportunity to explore inaccessible chemical space while 
offering new strategic bond-forming reactions. As part of 
our interest in site-selective Ni catalysis,12 we report 
herein the successful realization of this goal (Scheme 1, 
bottom). Our dual catalytic platform13 is distinguished by 
its mild conditions, broad applicability and exquisite a-
selectivity pattern, offering a complementary reactivity 
mode to existing sp3 a-arylation and alkylation tactics. 

Table 1. Optimization of the Reaction Conditions.a 
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a 1a (0.20 mmol), p-CF3C6H4Br (0.10 mmol), NiBr2·diglyme 
(10 mol%), L1 (15 mol%), PC1 (1 mol%), K3PO4 (0.15 
mmol), dioxane (0.50 mL) at rt. b NMR yields using mesity-
lene as internal standard. c Isolated yield.  

We started our investigations by studying the sp3 a-aryla-
tion of 1a with 4-trifluoromethyl bromobenzene (Table 1). 
After systematic evaluation of all reaction parameters,14 a 
regime based on NiBr2·diglyme (10 mol%), L1 (15 
mol%), PC1 (1 mol%), K3PO4 in dioxane under Blue-
LED irradiation provided the best results, affording 2a in 
70% yield with an exquisite a-selectivity pattern. As ex-
pected, the nature of the ligand had a non-negligible im-
pact on reactivity (entries 2-5). Indeed, a seemingly trivial 
modification at 4,4’- or 5,5’-position had a deleterious ef-
fect (entries 4-5). Similarly, Ni(COD)2 provided lower 
conversions to 2a, suggesting that COD might compete 
with L1 for binding at the Ni center (entry 6). Notably, 
stronger reducing photocatalysts such as fac-Ir(ppy)3PF6 
or related Ir(ppy)2(dtbpy)PF6 did not afford even traces of 
2a (entries 7 and 8).15 Equally important was the nature 
of the base and solvent; indeed, inferior results were 
found for K2HPO4 and Cs2CO3 or ethereal solvents other 
than dioxane (entries 9-11), thus showing the subtleties of 
our protocol.16 As expected, control experiments revealed 
that all variables were critical for success (entry 12).17 

Table 2. sp3 a-Arylation of Benzamides.a,b 

 

a As Table 1 (entry 1), 0.20 mmol scale. b Isolated yields, 
average of two independent runs. b 3 equiv of 1 were used. 

Next, we turned our attention to investigating the gener-
ality of our dual catalytic sp3 a-arylation. As shown in 
Table 2, compounds bearing esters (2d, 2l), nitriles (2e), 
sulfonamides (2k), ketones (2h, 2i, 2n) or amides (2l) 
could all be well-accommodated. Similar results were 
found independently whether substituents were located at 
either meta or para position. Note, however, that electron-
deficient arenes generally provided better yields of the 
targeted sp3 a-arylated products. The method showed a 
strong preference for aryl bromides, as the corresponding 
aryl chlorides (2q) or aryl fluorides (2c, 2o, 2r) remained 
inert, thus providing ample room for further derivatiza-
tion via conventional cross-coupling reactions. Albeit in 
slightly lower yields, the method was shown to be com-
patible with heteroaryl bromides (2s, 2t). The exclusive 
formation of 2l bearing two seemingly similar ben-
zamides is particularly noteworthy; indeed, not even 
traces of sp3 C–H functionalization adjacent to the ester 
motif were found in the crude mixtures. Although tenta-
tive, this result is consistent with C–C bond-formation oc-
curring at the more hydridic sp3 C–H bond that is more 
susceptible to HAT by electrophilic radical species.4,5 No-
tably, similar results were found for benzamides pos-
sessing electron-rich or electron-deficient arenes (2x-2z) 
regardless of the length of the alkyl side-chain (2u-2w).  

Table 3. sp3 a-Alkylation of Benzamides.a,b 

 
a As Table 1 (entry 1), 0.20 mmol scale, using L3. b Isolated 
yields, average of two independent runs. c dr = 1.5:1.  

Encouraged by these results, we wondered whether our 
method would be robust enough to forge related sp3–sp3 
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linkages by using unactivated alkyl halides as counter-
parts. A close inspection into the literature data, however, 
indicated that such a protocol might not be particularly 
straightforward, as the available sp3 a-alkylation portfo-
lio of aliphatic secondary amides remains confined to the 
use of particularly activated a,b-unsaturated carbonyls as 
coupling partners.9 In addition, parasitic b-hydride elimi-
nation and the low propensity for sp3–sp3 C–C reductive 
elimination represent important drawbacks to be over-
come.18 Therefore, at the outset of our investigations it 
was unclear whether it would be possible to promote a 
sp3–sp3 bond-formation adjacent to the amide function 
with unactivated alkyl halide counterparts. Gratifyingly, 
we found that the targeted sp3 a-alkylation was within 
reach by using a Ni/L3 regime under otherwise identical 
reaction conditions to those shown in the sp3 a-arylation 
event (Table 2). As shown in Table 3, a host of unacti-
vated alkyl halides possessing b-hydrogens promoted the 
targeted transformation with similar ease. In addition, the 
presence of nitriles (3d), free alcohols (3f), alkyl chlo-
rides (3g), amides (3i), ketones or esters (3j) did not hin-
der the reaction.  

Scheme 2. Orthogonality with 1,5-HAT processes.a 

 

Prompted by the seminal work of Rovis6,8 and Knowles7 
on the d sp3 C–H alkylation of aliphatic secondary amides 
with electron-deficient alkenes  triggered by a photo-
chemical proton-couple electron transfer (PCET) re-
gime,19 we wondered whether our results might serve as 
an orthogonal gateway to forge sp3 C–C bonds at the a-
position with otherwise identical precursors. As shown in 
Scheme 2, this turned out to be the case and a regiodiver-
gent C–C bond-forming scenario could be within reach 
by using 4 as substrate. As expected, d-alkylation with an 
activated a,b-unsaturated compound was obtained by 
subjecting 4 to PC-2 and NBu4OP(O)(OBu)2 under Blue-
LED irradiation,7 whereas exclusive sp3 a-arylation was 
obtained under our optimized reaction conditions based 
on the Ni(L1)/PC-1 couple. Taken together, the results in 
Tables 2-3 and Scheme 2 clearly illustrates the prospec-
tive impact of our dual catalytic platform for forging sp3 
C–C linkages adjacent to benzamide motifs in a site-se-
lective manner. 

Next, we decided to gather indirect evidence about the 
mechanism by deuterium-labelling (Scheme 3, top). As 
shown, a primary kinetic isotope effect (KIE) was ob-
served by exposing a 1:1 mixture of 1a and 1a-D2 under 
our optimized reaction conditions, suggesting that sp3 C–
H bond-cleavage might be involved in the rate-determin-
ing step of the reaction. Aimed at shedding light on the 
subsequent C–C bond-forming event, we turned our at-
tention to study the reactivity of the putative oxidative ad-
dition species Ni-I, readily obtained by reacting 4-trifluo-
romethyl bromobenzene to Ni(COD)2 and L1 in THF 
(middle).14 As expected, Ni-I was found to be catalyti-
cally competent, affording 2a in 32% yield. Although 
speculative, the lower yields of 2a employing Ni-I when 
compared to an in situ protocol based on NiBr2·di-
glyme/L1 can tentatively be ascribed to its inherent insta-
bility in the absence of aryl bromide and its stunning ab-
sorption in the visible light region.20 In addition, the suc-
cessful preparation of 2u and 2v is particularly illustrative, 
arguing against a scenario based on 1,5-HAT followed by 
recombination with Ni-I followed by a chain-walking 
manifold prior to C–C bond-formation at the a-position 
(bottom).21 Whether the key transient radical species ad-
jacent to the amide function are obtained via intermolec-
ular HAT processes or invoke other mechanistic consid-
erations is the subject of ongoing studies.22,23 

Scheme 3. Preliminary Mechanistic Experiments.a 

 

In summary, we have documented a dual catalytic strat-
egy that enables a sp3 a-arylation and sp3 a-alkylation of 
benzamides. The protocol is characterized by its mild 
conditions, wide substrate scope and exquisite site-selec-
tivity, forging the targeted C–C bonds adjacent to the am-
ide function. This new platform offers a complementary 
activation mode to existing sp3–arylation and sp3–alkyla-
tion in the transition metal-catalyzed or metallaphotore-
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dox arena. Further studies to unravel the mechanistic in-
tricacies of the reaction and the extension to other C–C 
bond-forming scenarios are currently ongoing.  
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