
 

  

Enantioselective Olefin Hydrocyanation Without Cyanide 
Alexander W. Schuppe,† Gustavo M. Borrajo-Calleja,† Stephen L. Buchwald* 

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 
02139, United States 

 Supporting Information Placeholder

ABSTRACT: The enantioselective hydrocyanation of ole-
fins represents a conceptually straightforward approach 
to prepare enantiomerically enriched nitriles.  These, in 
turn, comprise or are intermediates in the synthesis of 
many pharmaceuticals and their synthetic derivatives. 
Herein, we report a cyanide-free dual Pd/CuH-catalyzed 
protocol for the asymmetric Markovnikov hydrocya-
nation of vinyl arenes and the anti-Markovnikov hydro-
cyanation of terminal olefins in which oxazoles function 
as nitrile equivalents. After an initial hydroarylation pro-
cess, the oxazole substructure was deconstructed using a 
[4+2]/retro-[4+2] sequence to afford the enantioenriched 
nitrile product under mild reaction conditions.  

Nitriles are a ubiquitous class of compounds present in many 
pharmaceuticals,1 secondary metabolites,2 and polymers.3 Owing 
to their unique chemical reactivity, nitriles often serve as precursors 
to numerous additional important functional groups in organic syn-
thesis, including N-heterocycles, carbonyl compounds, and 
amines.4 Although nitriles can be accessed by many methods, the 
conversion of olefins to alkyl nitriles via transition metal-catalyzed 
olefin hydrocyanation represents one of the most conceptually 
straightforward processes. While hydrocyanation of feedstock ole-
fins is conducted on a million-metric ton scale annually to produce 
nitrile precursors to polymers,3 these protocols employ hydrogen 
cyanide and form almost exclusively achiral products. Despite the 
numerous improvements in the racemic hydrocyanation of olefin 
feedstocks5 and fine chemicals,6 the reaction conditions and sub-
strates employed in the analogous asymmetric variant of this trans-
formation have advanced minimally since the seminal work by 
Jackson7a and RajanBabu.7b–7d,7g    

Asymmetric olefin hydrocyanation is typically achieved through 
the formal addition of hydrogen cyanide, either generated in situ or 
employed directly in gaseous form, across an olefin facilitated by a 
chiral phosphine-ligated metal catalyst (Scheme 1A).7–8 Aside from 
the potential safety concerns of working with hydrogen cyanide,9  
many of these asymmetric methods are limited to vinyl arenes and 
employ non-commercially available ligands.7,10–11 Alternative 
methods to access enantioenriched nitriles, including C–H cya-
nation,12 α-arylation of prefunctionalized nitriles13 and enantiose-
lective protonation of silyl ketene imines,14 have also been devel-
oped employing various precursors.15  

Our continued interest in enantioselective alkene hydrofunction-
alization reactions led us to envision the development of a catalytic 
protocol to access enantioenriched α-alkyl-α-arylnitriles, repre-
sented by 3 (Figure 1B).16–18 We proposed that the critical C–CN 
bond of the nitrile could be forged through an initial dual Pd/CuH-
catalyzed asymmetric olefin hydroarylation17 reaction using a N-
heterocyclic compound as a nitrile surrogate, thus obviating the 

 
Figure 1. A. Traditional approaches to asymmetric olefin hydro-
cyanation. B. Our dual Pd/CuH-catalyzed asymmetric olefin hy-
drocyanation using oxazoles as masked nitriles, followed by a ther-
mal deconstruction of 4 to the enantioenriched nitrile. C. Proposed 
dual Pd/CuH catalytic cycles for the hydrofunctionalization pro-
cess involving a 2-halo-oxazole (2).    
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need to employ cyanide  either directly or transiently formed. A 
subsequent thermal-[4+2]/retro-[4+2] sequence with the appropri-
ate dienophile could furnish the enantioenriched nitrile. However, 
at the outset, it was unclear to us which N-heterocycle would best 
serve as a masked nitrile, since pyrimidines, pyrazines, oxazoles 
and several other heterocycles have all been shown to expel nitriles 
as byproducts in cycloaddition reactions with alkynes.19–21 We rea-
soned that an oxazole, despite its limited precedent in forming ni-
triles,19 would be an ideal nitrile precursor for this transformation 
as it does not introduce any regiochemical complications and is an 
electron-rich aza-diene.21  

Figure 1C details our proposed dual Pd/CuH catalytic cycle for 
the aforementioned approach. Enantioselective hydrocupration of 
an olefinic substrate (1) by a CuH catalyst (I), generated in situ 
through the use of a Cu(I) salt, chiral phosphine ligand, and silane, 
would form an enantioenriched Cu(I) alkyl intermediate (II). 
Meanwhile, the Pd catalytic cycle would begin with oxidative ad-
dition of a ligated Pd(0) species (III) into a 2-halo-oxazole (2) 
forming complex IV. Stereospecific transmetallation of II with Pd 
species IV would result in an alkyl Pd(II) complex (V), which fol-
lowing reductive elimination furnishes an intermediate enantioen-
riched oxazole (4). The formed copper(I) halide (VI) could regen-
erate the active CuH catalyst after a s-bond metathesis reaction in 
the presence of an appropriate base and silane.17–18 For this ap-
proach to be successful, the rates of both catalytic cycles would 
need to be well aligned to prevent any deleterious side pathways or 
the racemization of the alkyl copper species II.17 After this hy-
droarylation process, as depicted in Figure 1B, a subsequent ther-
mal [4+2] cycloaddition between oxazole 4 and an alkyne would 
form a highly strained 7-oxa-2-azabicyclo[2.2.1]heptadiene deriv-
ative (5), and upon a retro-[4+2] cycloaddition the nitrile product 
is liberated along with an electron deficient furan (6). Thus, we rea-
soned that the judicious choice of a 2,5-disubstituted-4-halo-oxa-
zole (2) coupling partner would be paramount to achieving both a 
highly enantioselective hydroarylation step and an efficient 
[4+2]/retro-[4+2] sequence.  

Accordingly, we focused on finding a suitable halo-oxazole cou-
pling partner (2) and a set of experimental reaction conditions for 
the asymmetric olefin hydrocyanation using styrene (1a) as a model 
substrate (Table 1). Our investigation of the optimal reaction con-
ditions identified oxazole 2a as an excellent nitrile surrogate and 
the commercially available alkyne 7a as a suitable dienophile. 
When 2a and 7a were utilized in conjunction with [Pd(cin-
namyl)Cl]2, BrettPhos (L3), P1, NaOTMS, and Me2(Ph)SiH, the 
desired nitrile 3a was formed in high yield and enantioselectivity 
(entry 1, 96% 1H NMR yield and 97:3 er), without isolation of the 
alkyl oxazole intermediate (4). Evaluation of a series of Cu salts 
and chiral bisphosphines (entries 1–5) led us to discover the air-
stable Cu(I) precatalyst P1, which enabled the reaction to be set up 
without the use of an inert-atmosphere glovebox.22 Use of the pre-
viously described (S)-DTBM-SEGPHOS-ligated CuCl precatalyst 
P218b formed the desired product in similar yield but with consid-
erably lower enantioselectivity (entry 2). Variation of the biar-
ylphosphine backbone (entries 6–7) or the absence of a Pd-catalyst 
(entry 8) resulted in diminished yield or no product formation re-
spectively. Examination of an alternative to 2a as the nitrile surro-
gate highlighted the crucial role of the oxazole substituents in this 
transformation. Modification of the substituent at the 5-position 
from methyl to phenyl (2b) delivered nitrile 3a in considerably 
lower yield and enantioselectivity, presumably due to the electron-
poor nature of the corresponding alkyl oxazole intermediate (entry 
9). While our previous reports on enantioselective olefin hydroary-
lation18b suggested that a 2-chloro-N-heterocycle was more effi-
cient in the hydrofunctionalization reaction than the corresponding 
hetereoaryl bromide, use of 2c in the current process resulted in 
minimal olefin hydrocyanation (entry 10). A variety of acetylene 
diester derivatives, such as the di-n-octyl substituted ester (7b), 

performed well as dienophiles. Notably, the judicious choice of 
dienophile coupling partner aided in the purification of the nitrile 
products (see below and the Supporting Information for details). 

Having established appropriate reaction conditions for the asym-
metric olefin hydrocyanation reaction, we investigated the scope of 
vinyl arene substrates (Scheme 1). Vinyl arenes bearing a substitu-
ent at the para-position, such as phenyl (3b), isobutyl (3d), or thi-
omethyl (3e), were well tolerated under the reaction conditions, re-
sulting in good yields and enantioselectivity of the nitrile product. 
Facile enantiospecific hydrolysis could convert nitrile 3d and 3g to 
ibuprofen10 and cicloprofen,14 respectively, both of which are non-
steroidal anti-inflammatory drugs (NSAIDs).23 A vinyl arene con-
taining ortho-substitution was effectively converted to the nitrile 
(3c) in high yield and enantiopurity. Moreover, substrates contain-
ing heterocycles, including benzofuran (3f), indoline (3h), N-tosyl-
indole (3i), carbazole (3j), pyrazole (3k), morpholine (3m), and N-
Boc-piperzine (3o), were smoothly transformed to the nitrile prod-
uct with excellent selectivity. Additionally, 1,2-disubstituted al-
kenes (Scheme 1B), a problematic substrate class for complemen-
tary Ni-catalyzed asymmetric olefin hydrocyanation methods,7h 
performed well under our reaction conditions (3l and 3m). How-
ever, cyclic olefins were difficult substrates for this transformation. 
Nitrile 3n was isolated in moderate yield and enantioselectivity 
when 1n was subjected to the standard catalytic system. We hy-
pothesized that this diminished yield may reflect a slower rate of 
transmetallation between the proposed organometallic species II 
and IV, potentially due to a more sterically congested transition 
state, or a slower rate of hydrocupration of 1n. To further highlight 
the applicability of this formal olefin hydrocyanation method to ac-
cess medicinally relevant molecules, we synthesized an intermedi-
ate (3o) en route to 8, a USP28 inhibitor (Scheme 1C). Conversion 
of 3o to 8 could be achieved via reduction of the nitrile (3o) and 
acylation of the resulting primary amine.24 

Table 1. Optimization of the enantioselective hydrocyanation of 
styrene (1a).a  

 
aReaction conditions: 0.2 mmol styrene (1.0 equiv), yields were 
determined by 1H NMR spectroscopy of the crude reaction mix-
ture, using 1,1,2,2-tetrachloroethane as internal standard. Enantio-
meric ratio (er) was determined by chiral SFC. nd: not determined  
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   We were interested in extending this chemistry toward the anti-
Markovnikov hydrocyanation of unactivated olefins. In line with 
our previous work,18b we anticipated the anti-Markovnikov hydro-
cyanation to be more challenging due to the higher hydrocupration 
barrier.25 However, we were able to perform the hydrocyanation of 
terminal olefins without significantly modifying the standard reac-
tion conditions (Scheme 2). Overall, this process tolerates the pres-
ence of a variety of important structural elements (10a–10g), in-
cluding an ester (10b), dioxolane (10c), benzothiazole (10e), indole 
(10f) and an amide (10g). Furthermore, the corresponding alkyl 

nitriles were isolated in high yield and regioselectivity. Hydrocya-
nation of terminal alkene (9d) accentuated the degree of chemose-
lectivity for this process, which generated 10d in good yield with-
out any detectable hydrocyanation of the trisubstituted alkene. We 
further demonstrated the utility of this method by synthesizing the 
nitrile derivative (10g) of the cardiovascular drug Cilostazol (11), 
which could conceivably be converted to 11 following deprotection 
and tetrazole formation.26 As previously mentioned, reduction of 
the halo-oxazole (2) and the olefinic coupling partner represents 
potential side reactions for this transformation. Formation of a sig-
nificant amount of reduced 9g was observed when the olefin was 
subjected to the standard reaction conditions. A decrease in the 
amount of P1 utilized, from 6.0 to 4.0 mol%, was necessary to im-
prove the efficiency of the dual CuH/Pd catalytic system and de-
liver amide 10g as the major product.  

Enantioenriched alkyl nitriles (3) often undergo epimerization or 
decomposition under a variety of acidic, basic and oxidative condi-
tions, thus making further manipulation of the resulting nitrile 
product potentially challenging.7f,27 To obviate these degradation 
pathways, we envisioned that the chiral alkyl oxazole (4) may serve 
as a stable masked nitrile in multistep organic synthesis, which 
could be revealed at a later stage under neutral reaction conditions 
(Scheme 3). To illustrate this concept, we employed 1,2-disubsti-
tuted olefin 1p as a simple representative example. An initial asym-
metric olefin hydroarylation reaction installed the oxazole sub-
structure (4p), which was followed by silyl group removal, either 
under acid or fluoride-mediated conditions, and basic functionali-
zation of the resulting phenol to yield oxazole 4p’ without any ero-
sion of the enantioselectivity. A subsequent thermal cycloaddition 
sequence with alkyne 7b revealed the nitrile (3p) with complete 
enantiospecificity. We believe that this strategy will be further 

Scheme 1. Substrate scope of the asymmetric Markovnikov hy-
drocyanation of vinyl arenes. a 

 
aAll yields represent the average of isolated yields from two runs 
purified by silica flash chromatography with 0.5 mmol alkene; al-
kyne (7b) was used unless otherwise noted, enantioselectivity de-
termined by chiral SFC or HPLC. bAlternative purification was 
used, see supporting information for details. cYield was deter-
mined by 1H NMR spectroscopy using 1,1,2,2-tetrachloroethane 
as an internal standard due to the volatility of the product. dAlkyne 
(7a) was used. e Intermediate oxazole 4l was purified, isolated yield 
reported over two steps. f1.5 equiv of 2a and 24 h at 45 ºC  
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aAll yields represent the average of isolated yields from two runs 
purified by silica flash chromatography with 0.5 mmol alkene. bY-
ield was determined by 1H NMR spectroscopy using 1,1,2,2-tetra-
chloroethane as an internal standard c4.0 mol% P1 
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applicable in more sophisticated contexts and numerous reaction 
manifolds that would otherwise result in decomposition of the ni-
trile substructure.  

 In summary, we have developed an asymmetric olefin hydrocy-
anation sequence that relies on an oxazole as surrogate for a nitrile, 
thus avoiding the use of any sources of cyanide in the reaction mix-
ture. These reaction conditions developed were broadened to the 
anti-Markovnikov hydrocyanation of unactivated olefins. We an-
ticipate that this strategy of employing an enantioenriched alkyl ox-
azole as a masked nitrile in multistep synthesis will find further 
utility in a variety of scenarios.  
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