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Abstract

The minimum mode following method can be used to find saddle points on an energy
surface by following a direction guided by the lowest curvature mode. Such calculations
are often started close to a minimum on the energy surface to find out which transitions
can occur from an initial state of the system, but it is also common to start from the
vicinity of a first order saddle point making use of an initial guess based on intuition or
more approximate calculations. In systems where accurate evaluations of the energy and
its gradient are computationally intensive, it is important to exploit the information of
the previous evaluations to enhance the performance. Here, we show that the number of
evaluations required for convergence to the saddle point can be significantly reduced by
making use of an approximate energy surface obtained by a Gaussian process model based
on inverse inter-atomic distances, evaluating accurate energy and gradient at the saddle point
of the approximate surface and then correcting the model based on the new information.
The performance of the method is tested with start points chosen randomly in the vicinity
of saddle points for dissociative adsorption of an H2 molecule on the Cu(110) surface and
three gas phase chemical reactions.

1 Introduction

In systems characterized by a smooth potential energy surface, the transition state between the
initial and final state of an atomic rearrangement event is, within the harmonic approximation
to transition state theory, placed using information about a first-order saddle point on the
energy surface, i.e., a location with zero gradient and exactly one negative eigenvalue of the
Hessian matrix. Finding first order saddle points is then the essential task when identifying
the mechanisms and estimating the rates of transitions. The transition state is taken to be a
hyperplane going through the saddle point with normal parallel to the eigenvector corresponding
to the negative eigenvalue.
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In chain-of-states methods, such as the nudged elastic band method,1,2 saddle points are
found by calculating a minimum energy path between the initial and final state and identifying
the energy maximum along the path. There, both the initial and final state of the transition are
specified. In another type of algorithms, only the initial state is specified and the saddle point
found by climbing up the energy surface without specifying the final state of the transition.
Such calculations are often started from the vicinity of the initial state minimum to find out
which transitions can occur, but it is also common to start from somewhere close to the saddle
point with an initial guess obtained from intuition or from approximate minimum energy path
calculations.3,4 Early algorithms of this sort required the evaluation of the full Hessian, the
matrix of the second derivatives of the energy with respect to the coordinates, and calculation of
all the eigenvalues and eigenvectors (see ref 5 for a review). In a more efficient formulation, the
minimum mode following method, only the eigenvector corresponding to the lowest eigenvalue
is found and used to guide the search for the saddle point(s) without a need to evaluate the
Hessian matrix.6–8

In this article, we choose to find the minimum mode using the dimer method.6,9–11 A dimer
is here a pair of points in a configuration space, separated by a small fixed distance. The dimer
is first rotated around its midpoint to find the orientation that gives the lowest total energy of
the two configurations. This gives the direction of the lowest curvature mode of the Hessian,
the minimum mode.12 The dimer is then translated towards the saddle point by reversing the
force (negative energy gradient) component in this direction. The movements are based only
on the energy and the gradient of the energy and thus do not require calculation of the Hessian
matrix.

In systems where accurate evaluations of energy and its gradient are computationally expen-
sive, it is important to exploit the information in previous evaluations to enhance the perfor-
mance. Here, we show that Gaussian process (GP) regression13–16 can be used to significantly
reduce the number of evaluations required for convergence to saddle points. The basic scheme
is similar to the one used for nudged elastic band calculations in the GP-NEB method:17–19 a
regular minimum mode following calculation is performed to find a saddle point on an approx-
imate surface obtained by a Gaussian process model, accurate energy and gradient are then
evaluated at that point, and the model is subsequently refined based on the new evaluations.
If no information about the energy surface is available in the beginning, it is useful to perform
initial rotations with accurate evaluations before starting to translate the dimer. We show that
GP regression can be used also to reduce the number of evaluations required for finding the
lowest curvature mode in this initial rotation phase.

A similar general scheme for saddle point searches starting from a configuration close to a
saddle point has been presented by Denzel and Kästner who use a stationary Matérn covariance
function to build the GP model.20 Here, we use a more expressive covariance function based
on inverted inter-atomic distances, coupled with a robust stopping criterion, as suggested in
ref 19 and compare the performance to stationary covariance functions. The inverse-distance
covariance function makes the method more robust especially when the calculation is started
far from the saddle point where the atomic forces are large.

The performance of the GP-dimer method is tested with start points up to 3 Å away from
saddle points for dissociative adsorption of an H2 molecule on the Cu(110) surface and three gas
phase chemical reactions. With the largest start distances, the number of energy and gradient
evaluations is found to be reduced by an order of magnitude compared to the regular dimer
method.
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2 Dimer method

In this section, we review the principles of the dimer method for finding the minimum mode6,9–11

and present details for two variants of the algorithm, here referred to as CG-dimer10 and LBFGS-
dimer.11 They are used as references for comparing the performance with our GP-dimer method.
The LBFGS-dimer algorithm is used also as a part of the GP-dimer method as described in the
following section.

A dimer is defined as a pair of points in a configuration space, referred to as image 1, R1,
and image 2, R2. The small distance between R1 and R2 is kept constant, and half of this
distance is referred to as the dimer separation, ∆R (here 10−2 Å as recommended in ref 9).
The middle point of the dimer is denoted by R0, and the orientation vector N̂ is a unit vector
that points from R0 towards R1. The dimer energy is defined as the sum E1 + E2, where E1

and E2 denote the energy of the system at R1 and R2, respectively. The direction of lowest
curvature of energy at R0 corresponds to the orientation of minimum dimer energy, which is
obtained by rotating the dimer around R0 so that the rotational force is zeroed. Denoting the
force (negative energy gradient) acting on Ri by Fi and the component of Fi perpendicular to
the dimer by F⊥i = Fi − (Fi · N̂)N̂, the scaled rotational force acting on R1 is defined by

Frot = (F⊥1 − F⊥2 )/∆R. (1)

As suggested by Olsen et al.,9 it is more efficient to evaluate the force at the middle point R0

instead of R2 and extrapolate the force at R2 as F2 = 2F0 − F1.
Each rotation iteration is performed within a plane spanned by unit vectors N̂ and Ω̂,

where the steepest descent direction of rotation for image 1 is Ω̂ = Frot/||Frot||. In CG-dimer
and LBFGS-dimer, Ω̂ is modified based on previous rotation iterations according to nonlinear
conjugate gradient21,22 or limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)23,24

algorithms, respectively. According to the approach of Heyden et al.,10 a rough estimate for
the optimal rotational angle is first calculated based on F0 and F1 as

ω∗ =
1

2
arctan

(F1 − F0) · Ω̂
∆R |C|

, (2)

where C = (F0 − F1) · N̂/∆R is the curvature of the energy along the dimer. After the
preliminary rotation of ω∗, the orientation vector of the dimer is given by

N̂∗ = N̂ cosω∗ + Ω̂ sinω∗ (3)

and the rotation direction by

Ω̂∗ = −N̂ sinω∗ + Ω̂ cosω∗. (4)

After evaluating the force F∗1 at R∗1 = R0 + ∆RN̂∗, the optimal rotational angle based on a
local quadratic approximation to the energy surface is given by

ω =


1

2
arctan

b1
a1
, if

b1
a1
≥ 0

1

2
arctan

b1
a1

+
π

2
, if

b1
a1

< 0,

(5)

where
b1 = (F0 − F1) · Ω̂/∆R (6)

and

a1 =
b1 cos(2ω∗)− (F0 − F∗1) · Ω̂∗/∆R

sin(2ω∗)
. (7)
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The orientation vector of the dimer after the rotation is then given by

N̂new = N̂ cosω + Ω̂ sinω (8)

and the new location of image 1 by

Rnew
1 = R0 + ∆RN̂new. (9)

The rotation direction in the end of the rotation, needed for the following rotation iteration in
CG-dimer, is given by

Ω̂end = −N̂ sinω + Ω̂ cosω. (10)

Here, the rotation iterations are stopped if the preliminary rotational angle ω∗ is estimated to be
below five degrees,11 if the actual rotational angle ω is below this threshold, or if a prescribed
maximum number of consecutive rotation iterations is reached. In the two latter cases, the
curvature of energy along the new orientation vector N̂new can be estimated as

Cnew ≈ C + a1(cos(2ω)− 1) + b1 sin(2ω). (11)

After the rotation phase, the middle point of the dimer is translated in order to advance
towards the saddle point. The translational force is obtained by inverting the component of F0

parallel to the dimer:

Ftrans = F0 − 2F
‖
0, (12)

where F
‖
0 = (F0 · N̂)N̂. This allows the dimer to climb upwards on the energy surface in the

direction of the minimum mode while moving towards lower energy in directions perpendicular
to the minimum mode. In CG-dimer and LBFGS-dimer, also the translations are modified
according to conjugate gradient and L-BFGS algorithms, respectively. If the curvature along
the dimer is positive, the dimer is assumed to be in a convex region where all eigenvalues of the
Hessian matrix are positive. In this case, a step of a predefined length is taken in the opposite

direction of F
‖
0 to make the dimer climb up from the energy basin as quickly as possible. Here,

this step length is set to 0.1 Å, which is also the maximum step length for the translation
iterations.9 The calculation is considered to have converged when the maximum component
of force F0 at the middle point of the dimer is below a threshold T0, which is here set to
T0 = 0.01 eV/Å.

2.1 CG-dimer

The first of the two reference algorithms, referred to here as CG-dimer, follows mainly the
details presented by Heyden et al.10 In this algorithm, only one rotation iteration, if any, is
performed between translations. Thus, each rotation phase includes two or three energy and
force evaluations. Since the initial orientation of the dimer is chosen randomly in our test cases,
a larger maximum number of rotations, equal to the number of degrees of freedom in the system,
is used in the first rotation phase to stabilize the algorithm.

In CG-dimer, we apply separate nonlinear conjugate gradient algorithms21,22 to choose the
rotational plane and translational search direction, as suggested previously.6 Given a rotation
direction Ω̂, the rotation proceeds as presented above. For translations, a preliminary step is
first taken and the middle point of the dimer moved to

R∗0 = R0 +
Γ̂ · Ftrans

2 |C| Γ̂, (13)
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where Γ̂ is a unit vector parallel to the search direction.10 After evaluating the force F∗0 at R∗0,
the middle point of the dimer is then moved to the estimated zero point of the translational
force component parallel to the search direction:

Rnew
0 = R0 −

Γ̂ · Ftrans

Γ̂ · (F∗trans − Ftrans)
(R∗0 −R0), (14)

where F∗trans = F∗0 − 2(F∗0 · N̂)N̂.
In the conjugate gradient algorithm for the translations, the search direction Γ̂ is parallel

to a conjugated force vector Γ, which is a linear combination of the current and previous
translational force vectors. Γ can be expressed recursively as

Γ = Ftrans + βΓold, (15)

where Γold is the conjugated force vector in the previous translation iteration and the coefficient
βtrans is here given by the Polak-Ribière formula:22

βtrans = max

{
0,

(Ftrans − Fold
trans) · Ftrans

Fold
trans · Fold

trans

}
, (16)

where Fold
trans is the previous translational force vector. In the first iteration, Γ is set equal to

Ftrans. As noted previously,6 increasing translational force in the search direction would lead
to a step backwards against the search direction, which indicates that the dimer may still be in
a convex area in spite of negative estimated curvature C in the direction of the dimer. In this
case, a step of a predefined length (here 0.1 Å) is taken in the search direction. Without further
restrictions, however, a negative step against the search direction may occur also if the search
direction itself is opposite to the current translational force vector. This would as well trigger
the predefined step and might lead to a trap where the dimer bounces between two locations.
To prevent this kind of situations, we set βtrans to zero when the correction vector βtransΓ

old in
eq 15 becomes longer than the current translational force vector Ftrans. In addition, we reset the
memory of conjugate directions when the number of conjugated iterations reaches the number
of degrees of freedom in the system or if a predefined step length is used due to positive C,
negative step against the search direction or excessive step length.

Analogously to the conjugate gradient algorithm described above for the translations, the
rotation direction Ω̂ is parallel to a conjugated force vector Ω defined recursively based on the
current rotational force vector Frot, the previous rotational force vector Fold

rot and the previous
conjugated force vector Ωold. The only difference is that Ωold needs to be rotated on the
previous rotational plane to be aligned with Ω̂old

end, which is the rotation direction in the end of
the previous iteration (eq 10).6 Thus, the recursive expression for Ω is given by

Ω = Frot + βrot||Ωold||Ω̂old
end, (17)

where

βrot = max

{
0,

(Frot − Fold
rot) · Frot

Fold
rot · Fold

rot

}
. (18)

The coefficient βrot is set to zero when the correction vector βrot||Ωold||Ω̂old
end in eq 17 becomes

longer than the current rotational force vector Frot, and the memory of rotational conjugate
directions is reset when the number of conjugated rotation iterations reaches the number of
degrees of freedom in the system or if rotational convergence is reached.
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2.2 LBFGS-dimer

The second reference algorithm, referred to here as LBFGS-dimer, follows mainly the details
presented by Kästner and Sherwood.11 In this algorithm, the rotations are continued until
convergence unless the maximum of ten consecutive rotation iterations is reached. If the number
of degrees of freedom is less than ten, we use this number as the maximum. To reduce the
number of evaluations between the consecutive rotation iterations to one, the force Fnew

1 at the
new location of image 1 is estimated as

Fnew
1 ≈ sin(ω∗ − ω)

sinω∗
F1 +

sinω

sinω∗
F∗1 +

(
1− cosω − sinω tan

ω∗

2

)
F0. (19)

In LBFGS-dimer, the rotational plane and translational search direction are chosen using
separate limited-memory BFGS algorithms.23,24 Given a rotation direction Ω̂, the rotation
proceeds similarly as in CG-dimer. For translations, the L-BFGS algorithm gives also a step
length in addition to the search direction, and thus no preliminary step is needed.

The L-BFGS algorithm approximates an inverse Hessian matrix implicitly based on infor-
mation stored from previous iterations. The memory of L-BFGS includes displacement vectors
δix, i = 1, 2, . . . ,M , between the locations and δiF, i = 1, 2, . . . ,M , between the effective forces in
the ith and (i−1)th last iteration counting backwards from the current iteration. The size of the
memory, M , is here limited to the number of degrees of freedom in the system, and the inverse
Hessian is initialized to an identity matrix scaled by λ = (δ1F · δ1x)/||δ1F||2.24 If the memory is
empty, the scaling factor is set to λ = 0.01 Å2/eV. The optimal displacement vector δx for the
current iteration is obtained by the following recursive procedure,23 where Ψ is initialized to
the effective force vector:

For i = 1, 2, . . . ,M :

Set αi ← Ψ · δix
δiF · δix

.

Set Ψ← Ψ− αiδiF.
Set δx ← λΨ.

For i = M,M − 1, . . . , 1 :

Set δx ← δx +

(
αi − δiF · δx

δiF · δix

)
δix.

In the L-BFGS algorithm for the translations, δix are displacements of the middle point R0

and the effective force is the translational force Ftrans. The new location of R0 is simply given
by Rnew

0 +δx. The memory of L-BFGS is reset, if a predefined step length is used due to positive
C or excessive step length.

For the rotations, δix are given by changes of the orientation vector N̂ during previous
rotation iterations and the effective force is the rotational force Frot. After estimating δx
according to the recursive procedure described above, the rotation direction Ω̂ is given by a
unit vector parallel to

δ⊥x = δx − (δx · N̂)N̂, (20)

which is the component of δx perpendicular to the dimer. The memory of the L-BFGS algorithm
for rotations is reset after each translation step.
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3 GP-dimer method

In this section, the GP-dimer method is described. There, each iteration involves the energy
surface being modeled using Gaussian process regression, dimer calculations performed on the
approximate surface, and the GP model then refined after evaluating the accurate energy and
force at the saddle point determined on the approximate surface. The method can be seen as
a surface walking version of the GP-NEB method.17–19 The dimer calculations on the approxi-
mated surface are performed using LBFGS-dimer11 with some modifications.

3.1 Gaussian process regression

A Gaussian process13–16 model defines the joint probability distribution of the function values
f = [f(x(1)), f(x(2)), . . . , f(x(N))]T at any finite set of input locations X = [x(1),x(2), . . . ,x(N)]T

as a multivariate Gaussian p(f) = N (m,K(X,X)), where m = [m(x(1)),m(x(2)), . . . ,m(x(N))]T

is defined by mean function m(x) and the notation K(X,X′) stands for a covariance matrix
with elements Kij = k(x(i),x′(j)) defined by covariance function k(x,x′). In the applications of
the GP-dimer method presented here, the energy surface is modeled as a function of a 3Nm-
dimensional coordinate vector

x = [x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, . . . , xNm,1, xNm,2, xNm,3]
T

including the coordinates for moving atoms 1, 2, . . . , Nm ∈ Am. The system may also involve a
set atoms with fixed coordinates, denoted by Af , but here those atoms are taken into account
in the GP model only if some of the moving atoms has been within the radius of 5 Å from
the frozen atom during the GP-dimer algorithm. As suggested in ref 19, the prior probability
model of the energy surface is defined here as a GP with mean function m(x) = 0 and covariance
function

k1/r(x,x
′) = σ2c + σ2m exp

−1

2

∑
i∈Am

∑
j∈Am,j>i∨
j∈Af

(
1

ri,j(x)
− 1

ri,j(x′)

)2
l2φ(i,j)

, (21)

where

ri,j(x) =

√√√√ 3∑
d=1

(xi,d − xj,d)2

is the distance between atoms i and j, φ(i, j) is the atom pair type for pair (i, j), and lφ(i,j) is the

length scale for that pair type. Weakly informative prior distributions p(σm) = N (0,max{1 eV2,
(∆y/3)2}) and p(lφ) = N (0,max{1 Å−2, (∆X/3)2}) are set for the magnitude σm and length
scales lφ, φ = 1, 2, . . . , Nφ, with ∆y representing the range of energy values in the training data
set and ∆X representing the maximum difference between the data points based on difference
measure

D1/r(x,x
′) =

√√√√√√
∑
i∈Am

∑
j∈Am,j>i∨
j∈Af

(
1

ri,j(x)
− 1

ri,j(x′)

)2
. (22)

The constant term σ2c is set to the square of the mean of the observed energy values but no
lower than 1 eV2. The only differences to the model suggested for the GP-NEB method in ref
19 are the lower limits for the constant term and for the variances of the prior distributions
of the hyperparameters. Since the initial training data set in the GP-dimer method is focused
around one start point, small ∆X and ∆y would lead to unnecessarily restrictive priors for the
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magnitude σm and length scales lφ in the beginning if no lower limits for the variances were
used.

For comparisons, alternative GP models with stationary covariance functions are also im-
plemented for the GP-dimer method. Following the notation of ref 19, we define the squared
exponential covariance function as

kx(x,x′) = σ2c + σ2m exp

(
−||x− x′||2

2l2

)
(23)

and the Matérn-5/2 covariance function as

kM−5/2x (x,x′) = σ2c + σ2m

(
1 +

√
5||x− x′||

l
+

5||x− x′||2
3l2

)
exp

(
−
√

5||x− x′||
l

)
. (24)

Since the dimer method relies on the curvature properties of the energy surface, Matérn co-
variance functions with a lower smoothness parameter (ν < 2) are not good choices for this
application. The priors of the hyperparameters are defined similarly as for k1/r, but the prior
variance of the length scale is based on the regular distance in the 3Nm-dimensional coordinate
space.

The evaluations of energy and force (negative energy gradient) are regarded as accurate up to
floating point presentation accuracy, and thus Gaussian noise with a small variance is assumed
to be included in both energy (noise variance σ2 = 10−8 eV2) and force evaluations (noise
variance σ2d = 10−8 eV2/Å2) to avoid numerical problems. Given a training data set {X,y},
where y = [y(1), y(2), . . . , y(N)]T includes evaluated energy values from N locations X, and a
noise covariance matrix Σ = σ2IN with IN denoting an identity matrix, the hyperparameters
θ = {σm, l1, l2, . . . , lNφ} can be optimized by maximizing the marginal posterior probability

density p(θ |y,X) ∝ p(θ)p(y |X,θ), where p(θ) = p(σm)
∏Nφ
φ=1 p(lφ) and

p(y |X,θ) = N (y |0,K(X,X) + Σ) (25)

is the marginal likelihood of θ. The GP approximation for the energy f(x∗) at any location x∗

is then obtained by GP regression as the mean of the posterior predictive distribution of f(x∗)
conditional on the optimized hyperparameters θ,

E[f(x∗) |y,X,θ]= K(x∗,X)(K(X,X) + Σ)−1y, (26)

and the approximation for the partial derivative of the energy with respect to coordinate x∗i,d
is given by

E

[
∂f(x∗)
∂x∗i,d

∣∣∣∣∣y,X,θ
]

=
∂K(x∗,X)

∂x∗i,d
(K(X,X) + Σ)−1y, (27)

where the elements of ∂K(x∗,X)/∂x∗i,d are obtained by differentiating the covariance function.
The derivatives of the covariance function are needed also when including the force eval-

uations in the training data set.25–28 When y is extended to include partial derivatives of f
(components of negative force), the training covariance matrix K(X,X) and covariance vector
K(x∗,X) are extended correspondingly to include prior covariances between the energy and
derivative values

Cov

[
∂f(x)

∂xi,d
, f(x′)

]
=

∂

∂xi,d
Cov

[
f(x), f(x′)

]
=
∂k(x,x′)
∂xi,d

(28)

and the covariances between the derivatives

Cov

[
∂f(x)

∂xi1,d1
,
∂f(x′)
∂x′i2,d2

]
=

∂2

∂xi1,d1∂x
′
i2,d2

Cov
[
f(x), f(x′)

]
=

∂2k(x,x′)
∂xi1,d1∂x

′
i2,d2

, (29)
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and the noise covariance matrix Σ is extended to include the noise variances for the force
evaluations (σ2d) on the diagonal. Expressions for the derivatives of covariance functions k1/r,

kx and k
M−5/2
x with respect to the atom coordinates xi,d and the hyperparameters θ can be found

in ref 19. The latter are useful in the hyperparameter optimization, which is here performed
with the scaled conjugate gradient algorithm29 implemented in the GPstuff toolbox.30

3.2 Algorithm description

If no information about the energy surface or the minimum energy orientation of the dimer
is available in the beginning, it is useful to perform initial rotations with accurate evaluations
to find the lowest curvature mode before starting to translate the dimer. These rotations can
be done through a regular rotation scheme using either the conjugate gradient or the L-BFGS
approach, but we choose to utilize GP regression also in the initial rotation phase. A similar
initial phase where the lowest curvature mode is found by GP regression iterations is applied
also in ref 20. With only a middle point and a randomized orientation given for the initial
dimer, the GP-dimer algorithm proceeds as follows:

1. Evaluate accurate energy E0 and force F0 at the middle point R0.

2. Check final convergence using accurate force F0.

3. Evaluate accurate energy E1 and force F1 at R1.

4. Check rotational convergence using accurate forces F0 and F1.

5. Repeat initial rotations until rotational convergence:

(a) Update the GP model based on the energy and force evaluations.

(b) Rotate the dimer until rotational convergence using the GP approximation
of the energy gradient.

(c) Evaluate accurate energy E1 and force F1 at R1.

(d) Check rotational convergence using accurate forces F0 and F1.

6. Repeat GPR iterations until final convergence:

(a) Update the GP model based on the energy and force evaluations.

(b) Rotate and translate the dimer until early stopping or convergence using the
GP approximation of the energy gradient.

(c) Evaluate accurate energy E0 and force F0 at R0.

(d) Check final convergence using accurate force F0.

Figure 1 shows a two-dimensional illustration of the progression of the GP-dimer algorithm
when finding a saddle point for dissociative adsorption of an H2 molecule on a Cu(110) surface
with fixed positions for the copper atoms. This example system is the same as the one used
for testing the GP-NEB algorithm in ref 19. Each of the four graphs present a cut of the GP
approximation to the energy surface based on energy and force data evaluated at the points
marked by + signs. The pink and red bars represent the dimer in the beginning and end of the
initial rotation round or GPR iteration, respectively. Starting from an initial dimer coinciding
with the two-dimensional cut of the coordinate space, the lowest curvature mode of the accurate
energy surface is found after two initial rotation rounds, and the GP model extrapolates a saddle
point close to the correct location already based on the four data points evaluated around the
start point. After one more evaluation at the saddle point found on the approximate energy
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Figure 1: A two-dimensional cut through the energy surface of an H2 molecule in-
teracting with a Cu(110) surface. The H-H molecular axis lies in a plane parallel to
the surface and perpendicular to the close packed rows of Cu-atoms. The upper graphs
present GP approximations to the energy surface for the two initial rotation rounds and
the lower graphs for the two GPR iterations of the GP-dimer algorithm. The training
data points, marked with + signs, include both energy and force evaluations. The pink
and red bars represent the dimer in the beginning and end of the initial rotation round
or GPR iteration, respectively.

surface, the GP approximation is corrected and the middle point of the dimer converges to the
correct saddle point.

Convergence of the GP-dimer algorithm has been reached when the maximum component of
the accurate force F0 is below the final convergence threshold T0 (here 0.01 eV/Å). Rotational
convergence in the initial rotation phase is checked by calculating the preliminary rotational
angle ω∗, given by eq 2, using the accurate forces F0 and F1. If more than one initial rotation
rounds have been performed, also the angle between the converged orientations in the current
and previous round is taken into account as an alternative criterion. The initial rotation phase
is stopped when either of these angles is below Tω (here 5 degrees). The maximum number of
initial rotation rounds is set to the number of degrees of freedom in the system.

During the initial rotation rounds, we use the rotation scheme of LBFGS-dimer with forces
approximated by the GP model to find the lowest curvature mode on the approximate energy
surface. As an exception to LBFGS-dimer, the new force Fnew

1 is not estimated with eq 19 after
the rotation iterations but the GP approximation is used also there. A tighter convergence
threshold TGP

ω = min{0.01 rad, Tω/10} is used for both the preliminary rotational angle ω∗ and
the realized rotational angle ω, given by eq 5. Each initial rotation round is here started from
the same initial orientation.
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The LBFGS-dimer algorithm is used also for dimer relaxation in the actual GPR iterations
where the dimer is both rotated and translated on the approximate energy surface. Again,
the GP approximation of the new force Fnew

1 is used instead of estimating Fnew
1 with eq 19

or estimating the new curvature Cnew with eq 11 after any rotation iteration. The rotational
convergence threshold TGP

ω for ω∗ or ω is now set to 0.01 rad and the convergence threshold
TGP
0 for the maximum component of F0 on the approximate energy surface is set to 1/10 of

the lowest accurate maximum component F0 evaluated so far. Here, dimer relaxation is always
started from the same initial location with orientation obtained from the initial rotation phase.

In ref 19, the GP model based on inverse inter-atomic distances is coupled with an early
stopping criterion constraining relative changes in the inter-atomic distances during the GP-
NEB algorithm. The same early stopping criterion is used here for dimer relaxation inside the
GPR iterations: After each translation iteration, there needs to exist an evaluated configuration
xeval so that

∀i ∈ Am ∀j ∈ Am ∪Af :
2

3
ri,j(xeval) < ri,j(R0) <

3

2
ri,j(xeval). (30)

If this condition does not hold, the last translation iteration is rejected and dimer relaxation
stopped. Another early stopping criterion is based on the regular difference measure Dx: After
each translation iteration, there needs to exist an evaluated configuration xeval so that

Dx(R0,xeval) < Les
x . (31)

This criterion with Les
x = 0.5 Å is applied also when using the stationary covariance functions

kx or k
M−5/2
x .

To guarantee that the early stopping criterion in eq 30 cannot be triggered by a single
translation step taken from an evaluated data point, a following limitation rule is set for the
step length of translation iterations inside the GPR iterations:19 An individual atom i ∈ Am

cannot move more than 99% of
min

j∈Af∪Am\{i}
ri,j(R0)/6,

where the minimum is taken over all inter-atomic distances from that atom to any other atom in
R0. If this limit is exceeded, the whole displacement vector is shortened so that the displacement
of atom i is at the limit. A corresponding limitation rule to accompany the early stopping
criterion in eq 31 is obtained by limiting the displacement vector to 99% of Les

x . If this limit is
exceeded, the displacement vector is simply shortened to the limit.

As in ref 19, an activation distance of 5 Å is applied here for the frozen atoms. This means
that a frozen atom is taken into account in the covariance function of the GP model only if some
of the moving atoms has been within the radius of 5 Å from the frozen atom in the configuration
of the middle point of the dimer during the algorithm. The distances from the moving atoms to
inactive frozen atoms are checked on each translation iteration inside the GPR iterations, and
if new frozen atoms are activated, the GP model is updated.

4 Results

In this section, we present results for tests of the GP-dimer method with start points chosen
randomly within the vicinity of saddle points for a dissociative adsorption of a hydrogen molecule
on a Cu(110) surface and three different gas phase chemical reactions. The performance of
the GP-dimer method with the inverse-distance covariance function k1/r and two stationary

covariance functions, kx and k
M−5/2
x , is reported in terms of the required number of energy and

force evaluations and compared to two variants of the regular dimer method, described above
as CG-dimer and LBFGS-dimer. In addition, we compare the number of evaluations required
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for finding the lowest curvature mode of the energy surface when performing initial rotations
using the Gaussian process regression, conjugate gradient, or L-BFGS approach.

4.1 Application to H2 dissociation on Cu(110)

Our first example transition is a dissociative adsorption of an H2 molecule on the Cu(110)
surface. The same transition has been used in ref 19 for testing the GP-NEB algorithm for
finding the minimum energy path between given initial and final states. In the test system here,
the two H-atoms are allowed to move, whereas the Cu-atoms are frozen. The energy surface
is described in ref 1. The start point of the algorithm is chosen by a random displacement of
0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 1, 2, or 3 Å from the saddle point of the example transition
in the six-dimensional coordinate space. Ten different start points and randomly chosen initial
orientations are used for each distance. Figure 1 illustrates the progression of the GP-dimer
algorithm in an easy example where the start point and the initial orientation coincide with the
same two-dimensional cut of the coordinate space as the saddle point.

Figure 2 shows the number of energy and force evaluations required for convergence to a
saddle point with the GP-dimer method and the two variants of the regular dimer method,
CG-dimer (orange) and LBFGS-dimer (blue). In addition to the inverse-distance covariance
function k1/r (green), GP-dimer results are shown also for the squared exponential covariance

function kx (red) and Matérn-5/2 covariance function k
M−5/2
x (violet). In almost all cases, GP-

dimer requires less evaluations than the regular dimer methods, and the difference increases
when moving the start point farther away from the saddle point of the example transition.
With start points closer than 0.5 Å to the saddle point, there are only small differences in
the performance between the three covariance functions in the GP-dimer calculations, but
the benefits of the inverse-distance covariance function become visible with larger distances.
Figure 3 shows an example of the behaviour of the GP-dimer method with different covariance
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Figure 2: Number of energy and force evaluations required for convergence to a saddle
point in the H2/Cu(110) example using the regular CG-dimer (red) and LBFGS-dimer
(blue) methods and the GP-dimer method with the squared exponential (red), Matérn-
5/2 (violet), and inverse-distance (green) covariance functions. The distance of the start
point of the calculation from the example saddle point is shown on the horizontal axis,
and the vertical axis represents the number of evaluations in logarithmic scale. The
large dots present the median number of evaluations among ten randomly chosen start
positions. The bars present the interval between the third and eighth largest numbers,
and the two smallest and largest numbers are presented by small dots if not included in
the interval.
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Figure 3: Example of the movement of the two H-atoms (blue and red) during the GP-
dimer algorithm in the H2/Cu(110) example when using the squared exponential (left),
Matérn-5/2 (middle), and inverse-distance (right) covariance functions. The locations
of the atoms are shown as projections on a plane parallel to the Cu(110) surface. The
triangles represent the start configuration, and the double circles represent the saddle
point where the algorithm converges.

functions with a start distance of 3 Å. The blue and red lines present the movement of the
two H-atoms projected on the plane of the Cu(110) surface during the algorithm. When the
inverse-distance covariance function is used (right), convergence is reached after 40 evaluations.
With Matérn-5/2 (middle) and squared exponential (left) covariance functions, convergence to
the same saddle point requires 170 and 228 evaluations, respectively.

4.2 Application to chemical reactions

Another set of test examples studied here involves three chemical reactions (Nm ≤ 14). The
electronic structure computations for the energy and atomic forces are performed using the PM3
semi-empirical approach31 as implemented within the ORCA suite of programs.32 Reaction 1
is a simple addition of N2O and ethylene to form oxadiazole, reaction 2 is the rearrangement
of allyl vinyl ether to form 1-pentene-5-one, and reaction 3 is the removal of sulfurdioxide from
butadiene sulfone.33 The activation energies for the example reactions are relatively high: 1.86
eV, 3.36 eV, and 2.41 eV, respectively. For each of the reactions, the saddle point used as the
center of start points is confirmed to have a single negative eigenvalue of the Hessian. The
reactant, saddle point, and product state configurations of the example reactions are illustrated
in Figure 4 alongside the corresponding result graphs.

Start points for the dimer calculations are chosen by a random displacement of 0.02, 0.05,
0.1, 0.2, 0.3, 0.4, 0.6, or 1 Å from the example saddle point in the 3Nm-dimensional coordinate
space. Ten different start points and randomly chosen initial orientations are again used for
each value of the distance. As shown in Figure 4, the pattern of the results is quite similar for
each of the three test examples. Unlike in the H2/Cu(110) example, the LBFGS-dimer method
performs here clearly better than CG-dimer. The three variants of the GP-dimer method require
again significantly less evaluations than the regular dimer methods, but the difference between
the stationary and inverse-distance covariance functions starts to become appreciable already at
0.1 Å. From some start positions, the algorithms may end up in configurations where the energy
and force evaluations fail. In such cases, the number of required evaluations is considered to be
above 300.
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Figure 4: Number of energy and force evaluations required for convergence to a saddle
point in three test examples using the regular CG-dimer (red) and LBFGS-dimer (blue)
methods and the GP-dimer method with the squared exponential (red), Matérn-5/2
(violet), and inverse-distance (green) covariance functions. The distance of the start
point of the calculation from the saddle point of the example reaction is shown on the
horizontal axis, and the vertical axis represents the number of evaluations in logarithmic
scale. The large dots represent the median number of evaluations among ten randomly
chosen start positions. The bars present the interval between the third and eighth largest
numbers, and the two smallest and largest numbers are represented by small dots if not
included in the interval. The reactant, saddle point and product state configurations
for each example reaction are visualized with the following atom colors: C: dark gray,
H: light gray, O: red, N: blue, S: yellow.
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4.3 Initial rotations

In the GP-dimer method, the initial rotation phase is performed using a Gaussian process
regression approach where the lowest curvature mode at the start point is found by rotating
the dimer on the approximate energy surface and refining the GP model based on accurate
evaluations. To demonstrate the savings as compared to the conjugate gradient or L-BFGS
approaches, we present results from separate tests where the rotations at the start point are
continued until the preliminary rotation angle ω∗, given by eq 2, is below five degrees. If ω∗ is
based on estimated forces, the rotational convergence is confirmed by evaluating the accurate
forces and the rotations are continued if necessary.

Figure 5 presents the number of evaluations required for rotational convergence in the
H2/Cu(110) example with the conjugate gradient (red), L-BFGS (blue), and GP regression
approach (red, violet, and green for squared exponential, Matérn-5/2, and inverse-distance co-
variance functions, respectively). For the GP regression approach, the median of the number
of evaluations remains between four and six with any of the three covariance functions. The
median for the L-BFGS approach is 1–3 evaluations and the median for the conjugate gradient
approach 3–11 evaluations larger than for the GP regression approach, but those results include
more outliers. Due to the local nature of the training data set in the initial rotation phase, there
are only small differences between the stationary and inverse-distance covariance functions.

Figure 6 presents corresponding results for the three chemical reaction examples. Again,
the GP regression approach consistently converges with less evaluations than the comparison
methods, although the difference to the L-BFGS approach is small, especially when using the
stationary covariance functions. The performance of the conjugate gradient approach is signif-
icantly worse.
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Figure 5: Number of energy and force evaluations required for rotations to the lowest
curvature mode of energy in the H2/Cu(110) example with the conjugate gradient (red)
and L-BFGS (blue) approaches and with the Gaussian process regression approach using
the squared exponential (red), Matérn-5/2 (violet), and inverse-distance (green) covari-
ance functions. The distance between the location of the middle point of the dimer
and the saddle point of the example transition is shown on the horizontal axis. The
large dots present the median number of evaluations among ten randomly chosen start
positions. The bars present the interval between the third and eighth largest numbers,
and the two smallest and largest numbers are presented by small dots if not included in
the interval.
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Figure 6: Number of energy and force evaluations required for rotations to the lowest
curvature mode of energy in the three chemical reaction examples with the conjugate
gradient (red) and L-BFGS (blue) approaches and with the Gaussian process regression
approach using the squared exponential (red), Matérn-5/2 (violet), and inverse-distance
(green) covariance functions. The distance between the location of the middle point of
the dimer and the saddle point of the example reaction is shown on the horizontal axis.
The large dots present the median number of evaluations among ten randomly chosen
start positions. The bars present the interval between the third and eighth largest
numbers, and the two smallest and largest numbers are presented by small dots if not
included in the interval.
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5 Discussion

The results presented here show that the inverse-distance covariance function suggested for
GP-NEB calculations in ref 19 is beneficial also when applying the Gaussian process regression
approach to minimum mode following calculations. The improved covariance function and the
accompanied early stopping criterion are especially important when the start point for the
calculation is not close to a saddle point. Already when the start point is displaced 0.1 Å from
a saddle point, the GP-dimer method with the inverse-distance covariance function may require
significantly smaller number of energy and force evaluations to reach convergence than when
using a stationary covariance function. Our results show also generally that the GP regression
approach (no matter which covariance function is used) gives advantage also when starting
really close to the saddle point compared to the usual implementations of the dimer method
based on conjugate gradient or L-BFGS algorithms. This applies to the initial rotations as well
as to the translations of the dimer in the climb up the energy surface. Even though stationary
covariance functions give convergence in the examples presented here, similar problems can arise
as seen in GP-NEB calculations where the inclusion of large atomic forces can lead to failure
in calculations based on stationary covariance functions.19 Ultimately, the GP-dimer method
can be used in repeated saddle point searches starting from a given local minimum to map out
relevant low-lying saddle points in long time scale simulations.3,4 We expect the robustness of
the inverse-distance covariance approach will then be even more important.

We have assumed here that no information about the energy surface is available in the
beginning of the minimum mode following calculation, only the coordinates and a random
orientation of the dimer. If other information is available, the initial rotation phase may be
unnecessary. This is the case, for example, if the start point has been obtained from an NEB
calculation on some approximate energy surface, based for example on a lower level of electronic
structure theory, or if an NEB calculation has converged only to a large tolerance. In these
cases, information from the NEB calculation can be utilized when training the GP model, and
that can make the GP regression approach even more useful.

After finding a saddle point, all eigenvalues of the Hessian at the saddle point are typically
required to estimate the transition rate using the harmonic approximation to transition state
theory. This can involve substantial computational effort for large systems. The GP model
learned during the minimum mode following calculation gives a probability distribution for the
energy surface, which can be used to estimate the Hessian and its eigenvalues as well as the
uncertainty of these estimates and the calculated transition rate. If the rate cannot be estimated
reliably enough, new energy and force calculations can be performed in a systematic way to
update the GP model until the required confidence levels have been reached. Uncertainties
of the second derivatives could also be utilized for deciding when to evaluate also image 1
(once or even repeatedly until rotational convergence) during the algorithm, which may become
beneficial when starting far away from a saddle point.
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