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Abstract 

Quantum coherence of S = ½ transition metal-based quantum bits (qubits) is strongly influenced 

by the magnitude of spin–phonon coupling. While this coupling is recognized as deriving from 

dynamic distortions about the first coordination sphere of the metal, a general model for 

understanding and quantifying ligand field contributions has not been established. Here we derive 

a general ligand field theory model to describe and quantify the nature of spin–phonon coupling 

terms in S = ½ transition metal complexes. We show that the coupling term for a given vibrational 

mode is governed by: 1) the magnitude of the metal-based spin–orbit coupling constant, 2) the 

magnitude and gradient in the ligand field excited state energy, and 3) dynamic relativistic 

nephelauxetic contributions reflecting the magnitude and gradient in the covalency of the ligand–

metal bonds. From an extensive series of density functional theory (DFT) and time-dependent DFT 

(TDDFT) calculations calibrated to a range of experimental data, spin–phonon coupling terms 

describing minimalistic D4h/D2d [CuCl4]2- and C4v [VOCl4]2- complexes translate to and correlate 

with experimental quantum coherence properties observed for Cu(II)- and V(IV)-based molecular 

qubits with different ligand sets, geometries, and coordination numbers. While providing a 

fundamental framework and means to benchmark current qubits, the model and methodology 

described herein can be used to screen any S = ½ molecular qubit candidate and guide the discovery 

of room temperature coherent materials for quantum information processing. 
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1. Introduction. 

The coupling of electron spin to phonons/vibrations plays important roles in the dynamical 

properties of transition metal complexes and materials. For example, spin–phonon coupling plays 

a major role in the photophysical and photochemical properties of transition metal complexes, 

including ultrafast spin state switching and intersystem crossing, wherein it provides a strong 

influence on nonequilibrium dynamics.1–5 It is also a major factor in the magnetization dynamics 

of single molecule magnets6–9 and coherent materials for quantum information science.10–16 

Beyond molecular systems, spin–phonon coupling also plays important roles in extended solids 

and condensed matter (e.g., transition metal oxides) by giving rise to emergent phenomena such 

as colossal magnetoresistance and high TC superconductivity,17–22 including vibrational or optical 

control of these properties.23–26 Thus, fundamental studies of spin–phonon coupling can provide 

insights into a variety of research areas, and there are fascinating intersections between the nature 

of spin-phonon coupling in molecular systems (e.g., mononuclear, binuclear, and multinuclear 

transition metal complexes) and extended solids to be explored. 

 Recent research has focused on the use of S = ½ transition metal complexes as quantum 

bits (qubits), as the magnetic field split electron spin sublevels (Ms = ± 1/2) provide a two-level 

system in which a coherent superposition state can be formed. This coherent superposition state, 

often initiated with a well-defined microwave pulse sequence in an electron paramagnetic 

resonance (EPR) spectrometer (~9 or 35 GHz for X- or Q-band, respectively), can be leveraged to 

satisfy DiVincenzo’s criteria for the physical implementation of a quantum computer.27 However, 

the lifetime of this state must be significantly longer than the gate operation time, and a significant 

challenge in the domain of molecular qubits is to understand the principles controlling coherence 

lifetimes. This understanding can then be leveraged for the synthetic design of new transition metal 

complexes with long-lived coherent states. 

The quantities of measure to gauge different complexes are the spin–lattice relaxation time, 

T1, the spin-spin lattice relaxation time, T2, and the phase memory time, Tm, which serves as an 

“effective” T2 often measured instead. Recent work has demonstrated the remarkable increase in 

T2 when minimizing the quantity of nuclear spins in the environment of the complex, inclusive of 

both solvent and the ligand set.28 In these nuclear spin-free environments, T1 has proved to be the 

upper bound to coherence lifetimes, which further motivates efforts to better understand 

contributions to T1, including the role of the geometric and electronic structure of the transition 
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metal complex.28–44 Recent works in this area by Sessoli et al.13,44, Coronado et al.14,15, and 

Freedman et al.33 have highlighted specific ligand field contributions to spin–phonon coupling and 

coherence dynamics. Additionally, T1 relaxation times will also play a major role when molecular 

qubits are entangled in dimers,45–49 higher order complexes, or spin-dense arrays,36 which will be 

required for the realization of quantum computing applications. 

 While progress has been made experimentally in elongating T1 and Tm relaxation times of 

transition metal complexes at low temperatures (<80 K), very few metal complexes exhibit 

coherence properties up to room temperature. For example, vanadyl phthalocyanine (VOPc) 

diluted in a diamagnetic titanyl matrix exhibits room temperature coherence with a Tm of ~1 𝜇s at 

300 K, even in the presence of a nuclear spin containing environment.37 Spin echoes have also 

been observed up to room temperature in the benzene-1,2-dithiolate (bdt) ligated 

(Ph4P)2[Cu(C6H4S2)2]33 (Cu(bdt)2) and the maleonitriledithiolate (mnt) ligated 

(Ph4P)2[Cu(mnt)2]50 (Cu(mnt)2) complexes diluted in diamagnetic Ni lattices. At lower 

temperatures (~< 80 K), relaxation is dominated by the direct, Raman, and Orbach mechanisms, 

while a mechanism involving spin–phonon coupling and the modulation of the energy gap between 

the Ms = ± ½ sublevels dominates at higher temperatures.51,52 Thus, in order to achieve room 

temperature coherent materials, spin–phonon coupling and its contribution to T1 must be better 

understood. Doing so will allow for direct manipulation of geometric and electronic structure to 

overcome this barrier. Furthermore, while achieving room temperature coherence is of great 

technological interest for quantum information processing, these room temperature coherent 

materials will also provide exciting opportunities for the fundamental studies of spin–phonon 

coupling and will complement studies of single molecule magnets and photoactive transition metal 

complexes. 

Many of the highest performing S = ½ qubit candidates feature similar structural motifs: 

1) a four coordinate square planar Cu(II), or 2) a four coordinate vanadyl moiety featuring a triple 

bond between the V(IV) and oxo ligand. Comparisons between 1) and 2) and six coordinate, 

pseudo Oh V(IV) complexes have also been made to highlight structural and electronic 

contributions to T1.13,33,53 As shown below, multiple contributions need to be accounted for in order 

to make direct comparisons between S = ½ molecular qubits and thus to understand the origins of 

their coherence times. 
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Given coherent superposition states are generated within the MS = ± ½ sublevels of a metal 

complex, coherence properties are expected to be influenced by the same contributions governing 

g-values. Ligand field theory (LFT) has provided expressions for understanding geometric and 

electronic structure contributions to the g-values of Cu(II) complexes.54 Here this model is 

extended more generally to a dynamic regime, which allows for the direct understanding of spin–

phonon coupling contributions to the g-values of S = ½ transition metal complexes. Using the 

ORCA program,55,56 the LFT expressions are further supported by a range of spectroscopically 

calibrated density functional theory (DFT) and time-dependent DFT (TDDFT) calculations on the 

well-studied D4h and D2d [CuCl4]2- and C4v [VOCl4]2-.57,58 The correlations between experiment 

and LFT, DFT, and TDDFT calculations have elucidated the key factors that contribute to the 

nature of spin–phonon coupling terms in S = ½ transition metal complexes, thus providing a 

detailed orbital and bonding picture for the first time. The model presented here indicates spin–

phonon coupling terms are governed by the magnitude of the metal-based spin–orbit coupling 

(SOC) constant, excited state mixing of orbital angular momentum into the ground state, and 

dynamic relativistic nephelauxetic contributions. The latter contribution is directly related to the 

covalencies of ligand–metal bonds and can modify the metal-based SOC constant from that of the 

free ion in a dynamic manner. Also, correlations between dynamic ground state orbital angular 

momentum and excited state coupling terms and their relations to spin–phonon coupling terms are 

drawn for the first time. Specific group theoretical correlations between high and lower symmetry 

point groups further provide a means to evaluate spin–phonon coupling terms across transition 

metal complexes and molecular qubits featuring different ligand sets, geometries, and coordination 

numbers. The model is in excellent agreement with a wide range of experimental quantum 

coherence properties of Cu(II)- and V(IV)-based molecular qubits and therefore provides a means 

to rapidly evaluate spin–phonon coupling terms in any S = ½ transition metal complex, including 

new qubit candidates. 

 

2. Results. 

2.1. Dynamic Ligand Field Theory of Cu(II) g-values. 

D4h [CuCl4]2- has a 2B1g (x2-y2) ground state (Figure 1). In the absence of SOC, the 2B1g ground 

state contains no orbital angular momentum and thus would exhibit a g-value of 2.0023 (e.g., ge 

of the free electron) in the presence of a magnetic field. However, SOC provides a means for 
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excited states to mix into the 2B1g ground state and thus introduce orbital angular momentum. This 

is shown in Figure 1 for D4h [CuCl4]2-. Including SOC, the 2B1g ground state (Γ7) can mix with 

both the 2B2g (Γ7) and 2Eg (Γ6 + Γ7) excited states (Figure 1). From first order perturbation theory, 

the ground state reflecting the contributions of excited state SOC is:54 

 

" 𝐵$%&' ( = |𝑥' − 𝑦'⟩ −
𝜆⟨𝑥' − 𝑦'|𝑳 ∙ 𝑺|𝑥𝑦⟩

𝐸567
|𝑥𝑦⟩ −

𝜆⟨𝑥' − 𝑦'|𝑳 ∙ 𝑺|𝑥𝑧, 𝑦𝑧⟩
𝐸:7

|𝑥𝑧, 𝑦𝑧⟩ 

(equation 1) 

 

where 𝜆 = ±𝜁/2S (–830 cm-1 for Cu(II)), 𝑳 and 𝑺 are the total orbital and spin angular momentum 

operators, respectively, and 𝐸567  and 𝐸:7  are the energies of the 2B2g and 2Eg excited states, 

respectively.54 For greater or less than half-filled electron configurations, either the negative or 

positive components of ±𝜁 are used, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. b-LUMOs and qualitative excited state energy diagrams for transition metal complexes 
considered in the Results sections. The hole formalism is used for [CuCl4]2-, with SOC symmetries 
given for D4h. 
 

An applied magnetic field will project out different components of 𝑳  (e.g., 𝑳𝒙,𝒚,𝒛 ). 

Consequently, the magnitude of orbital angular momentum mixing into the ground state is 

anisotropic. The resulting perturbed ground state wavefunction can be modified to include covalent 
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ligand–metal interactions. For H || z and taking the covalency of the b1g and b2g orbitals into 

account, the expression for g|| (gz) becomes:54 

 

𝑔|| = 𝑔@ −
ABCD6ED6

:F67
, 

(equation 2) 

 

where 𝛼1 and 𝛽1 	are the coefficients reflecting the amount of d(xy) and d(x2-y2) character, 

respectively. With H || x,y and considering covalent interactions, equation 2 for g⊥ becomes: 

 

𝑔K = 𝑔@ −
'BLD6ED6

:M7
. 

(equation 3) 

 

where 𝛾1 is the coefficient reflecting the d(xz,yz) orbital contribution. From equations 2 and 3, 

increasing the covalency of the ligand–metal bonds will decrease the deviation from 2.0023 

through a relativistic nephelauxetic effect.59 

The splitting between the ground state Ms = ±½ sublevels and the resulting coherent 

superposition lifetime is thus sensitive to dynamic behavior of the ligand field excited states and 

the covalencies of ligand–metal bonds. Fluctuations in the energy gap of a two-level system result 

in decoherence, and a coherence lifetime has been previously related to the variance in the energy 

gap by an inverse square root dependence.60 As the gz-value and the Ms = ±½ energy gap are 

directly proportional to one another, the variance in the energy gap can be monitored by proxy of 

the g-value. Therefore, a descriptor to reflect such fluctuations is the variance in gz (equation 5). 

To describe the 𝑀 vibrational modes denoted by 𝑄Q, we separate the total harmonic vibrational 

wave function, ΨSQT, as a product of harmonic vibrational wave functions of each mode, ΨQ, with 

the vibrational quantum numbers 𝑁 = {𝑛$, … , 𝑛Y}. 

 

ΨSQT[ (𝑄$, … , 𝑄Y) =^Ψ_
`a(𝑄Q)

b

Qc$

 

(equation 4) 
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The variance in gz can then be expressed as: 

 

Var[𝑔h] = 	 〈𝑔h'〉 − 〈𝑔h〉' ≈
ℏ
2𝜋

pq
𝜕𝑔h
𝜕𝑄Q

s
@
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tc$

q𝑛Q +
1
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s +
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y
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𝑣Q'𝑚Q
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Y

tc$

 

(equation 5). 

 

In equation 5, ({%|
{}a

) and ({
6%|
{}a

6 ) are the equilibrium values of {%|
{}a

 and {
6%|
{}a

6  when 𝑄Q = 0, 

respectively, 𝑣Qare the harmonic frequencies, and 𝑚Q  are the reduced masses. To simplify the 

treatment of gz, which depends on the position along a vibrational coordinate 𝑄Q, we separate the 

normal modes into two types under the harmonic approximation: even modes, where 𝑔h(𝑄@S@`) =

	𝑔h(−𝑄@S@`) and odd modes, where 𝑔h(𝑄���) = −𝑔h(𝑄���). For the former, at the equilibrium 

geometry, {%|
{}����

= 0 and {
6%|

{}����6 ≠ 0. For the latter, {%|
{}���

≠ 0 and {
6%|

{}���
6 = 0.  

Under the harmonic approximation, the first term in the expansion (equation 5) is non-zero 

for odd modes, while the second term is non-zero for even modes. It is clear from this expression 

that odd modes have a larger impact on the variance of gz and consequently the coherence lifetime. 

𝜕𝑔h
𝜕𝑄𝒊
� and 𝜕

'𝑔h
𝜕𝑄Q'
�  at the equilibrium geometries can be directly related to ligand field 

parameters in equations 2 and 3. Taking the partial derivative of equation 2 with respect to a 

vibration coordinate 𝑄Q gives: 

𝜕𝑔h
𝜕𝑄Q
� = 8𝜉

𝜂 y
𝜕𝐸567

𝜕𝑄Q
� z − 𝐸567 �

𝜕𝜂
𝜕𝑄Q� �

�𝐸567�
'  

(equation 6) 

 

where 𝜂 = 	𝛼$'𝛽$'	and provides adjustments due to covalency. We make the assumption that 𝛼$' 

and 𝛽$' change linearly with one another at minimal displacements about the equilibrium position 

and can therefore be represented by a single “covalency” parameter, 𝜂 . In the regime where 

𝜂 y
𝜕𝐸567

𝜕𝑄Q
� z ≫ 𝐸567 �

𝜕𝜂
𝜕𝑄Q� � , 𝜕𝑔h 𝜕𝑄Q

�  will have an inverse square dependence on 𝐸567 . 
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Conversely, when 𝜂 y
𝜕𝐸567

𝜕𝑄Q
� z ≪ 𝐸567 �

𝜕𝜂
𝜕𝑄Q� �, 𝜕𝑔h 𝜕𝑄Q

�  will have an inverse dependence 

on 𝐸567 and a linear dependence with covalency, 𝜂. In both cases, the role of the transition energy 

is clear: The higher the energy separation from the ground state, the lower the 𝜕𝑔h 𝜕𝑄Q
�  term by at 

least an inverse dependence. However, as shown below, the complexes considered here are largely 

in the regime corresponding to an inverse square dependence on 𝐸567. 

For even modes under the harmonic approximation and at the equilibrium geometry, 
𝜕𝐸567

𝜕𝑄Q
� 	= 𝜕𝜂 𝜕𝑄Q� 	= 0. To describe the variance in the energy gap for even modes, a second 

partial derivative of gz with respect to the vibrational coordinate is needed. 

 

𝜕'𝑔h
𝜕𝑄Q'
� = 	8𝜉

(𝐸567)(−
𝜕'𝜂

𝜕𝑄Q'
� ) 	+ 𝜂 y

𝜕'𝐸567
𝜕𝑄Q'
� z

�𝐸567�
'  

(equation 7). 

 

The spin–phonon coupling terms 𝜕𝑔h 𝜕𝑄𝒊
� and 𝜕

'𝑔h
𝜕𝑄Q'
�  for odd and even modes, respectively, 

are therefore related to spectroscopic observables and quantities that are easily calculable. It should 

be noted that the treatment above has been generated with respect to gz of D4h Cu(II), but can be 

done analogously for any S = ½ system. At the very least, the equations above can be used as 

screening tools to estimate relative coherence lifetimes of molecular qubits by estimating 

parameters such as the relevant d-d transition energies and covalencies of the ligand–metal bonds, 

which can be obtained from quantum chemical calculations. The spin–phonon coupling terms in 

equations 6 and 7 have been computed for a large scope of S = ½ transition metal qubits reported 

in the literature to establish ligand field principles for manipulating coherence lifetimes. 

Below, we utilize D4h and D2d [CuCl4]2- as structural models to quantitatively evaluate this 

LFT model using DFT and TDDFT calculations and to define the nature of spin–phonon coupling 

terms in Cu(II) complexes. This analysis is then translated to C4v [VOCl4]2- and finally to a variety 

of Cu(II)- and V(IV)-based molecular qubits reported in the literature. 

 



 9 

2.2. Spin–Phonon Coupling Terms in [CuCl4]2-. 

2.2.1. D4h [CuCl4]2-. 

Depending on the counterion, [CuCl4]2- can exist in a series of distorted Td geometries along the 

D4h to D2d coordinate. This distortion coordinate is governed by the Cl–Cu–Cl angle, 𝛼. A broad 

range of spectroscopic methods have defined the electronic structures of D4h and D2d [CuCl4]2-. By 

correlating calculations to these data, Solomon et al.57,58 have developed a spectroscopically 

calibrated DFT-based methodology that accurately reproduces the experimental data and thus the 

bonding (e.g., covalency). Key to this description is the incorporation of 38% Hartree-Fock (HF) 

exchange into the DFT exchange correlation functional.57,58 This methodology has been used for 

calculations presented in this section. As discussed in the Methods (see Supporting Information), 

a calibrated amount of HF exchange is determined independently for each case considered in 

subsequent sections. 

The DFT calculated g-values and excited state energies for an idealized D4h [CuCl4]2- 

structure are compared to experiment in Tables 1 and 2, respectively. Note for both D2d and D4h 

[CuCl4]2-, idealized structures give nearly identical results to those resulting from crystal 

structures61; for a more direct comparison to group theory, only results from the idealized 

structures are presented here (see Methods in Supporting Information and Table S1a/b for bond 

distances and angles). Experimentally, the D4h gz- and gx,y-values are 2.221 and 2.040, 

respectively.62,63 The calculated values for an idealized geometry based on the X-ray 

crystallographic structure are 2.204 and 2.056, respectively, in agreement with experiment. The 

HF dependence of the gz-value for this structure is given in Figure S1. 

A vibrational frequency analysis was carried out using the idealized D4h [CuCl4]2- structure. 

The energies, symmetry labels, and scaled vector displacements for all nine normal modes of 

vibration are given in Table S2a. Using these vibrations, full spin–phonon analyses using the 

calculated g-values were carried out as described in the Methods section. The coupling terms for 

gz (g||) are first described, followed by analyses of gx,y (g⊥). Briefly, the coupling term for a given 

g-value and vibrational mode is determined by calculating the g-value along positive and negative 

distortions about a given normal mode, and the magnitude of the coupling term can be qualitatively 

estimated by the magnitude of the slope (for odd modes) or curvature (for even modes). The spin–

phonon coupling term calculations for the gz-value of idealized D4h [CuCl4]2- are given in Figure 

2A, and their fits are given in Table S3a. Note these fits are reported for the scaled vibrational 
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displacements and are converted for comparison purposes when possible to Å-1 or °-1. The largest 

coupling term is observed for the totally symmetric a1g breathing mode (mode 7, 296 cm-1), which 

shows a strong linear dependence between the gz-value and the vibrational coordinate. Note the 

calculated frequency for the a1g mode is in fairly good agreement with experimental vibrational 

energy (276 cm-1).58 For the a1g mode, a linear fit along the vibrational mode, Qi, provides a slope 

of -0.241 gz/Qi (0.482 gz/Å). Interestingly, the spin–phonon coupling terms for the totally 

symmetric stretch exhibit insightful trends when compared to D2d [CuCl4]2- and C4v [VOCl4]2-, 

while also correlating with experimental coherence properties as discussed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Evolution of the gz-values along each normal mode of vibration for idealized structures 
of (a) D4h and (b) D2d [CuCl4]2-. Insets provide zoomed in views for positive distortion and pictorial 
representations of the respective molecules. 
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Of the other vibrational modes, 1 (b2u, –86 cm-1), 2 (a2u, 140 cm-1), 3/4 (eu (1a, 1b), 172 

cm-1), and 8/9 (eu (2a, 2b), 342 cm-1) are even modes with quadratic coupling terms. The a2u and 

eu (2a, 2b) modes exhibit the largest coupling terms (0.119 and -0.272 gz/Qi, respectively) and 

involve motion of the metal out-of-plane and in-plane, respectively (Table S2a). For the a2u mode, 

the slope can be better quantified by using the amount of metal displacement and gives 0.216 gz/Å. 

The coefficients for the b2u and eu (1a, 1b) modes are -0.063 and -0.056 gz/Qi, respectively. While 

the quadratic spin–phonon coupling terms of the eu (2a, 2b) modes are the largest, they also have 

the highest calculated frequencies (342 cm-1) and are therefore not considered in detail here, as 

these modes will not be as thermally populated past their zero-point energies at practical 

temperatures. Finally, modes 5 (b2g, 183 cm-1) and 6 (b1g, 198 cm-1) exhibit negligible spin–phonon 

coupling terms with the gz-value (Table S3a). Note, however, the corresponding coupling terms 

are substantially smaller when the magnetic field is oriented along 𝑳� or 𝑳� (i.e., for gx,y-values). 

Also, the spin–phonon coupling term for the b2u mode is increased substantially in the D2d 

structure. These observations are discussed further below. 

 

Table 1. Comparisons between a variety of experimental and calculated g-values for D4h and D2d 
[CuCl4]2- and other Cu(II) complexes. 

Molecule gz gy gx 
 Exp. Calc. Exp. Calc. Exp. Calc. 

D4h [CuCl4]2- a 2.221 2.204 2.040 2.057 2.040 2.054 
D4h [CuCl4]2- b 2.221 2.204 2.040 2.056 2.040 2.056 
D2d [CuCl4]2- a,c 2.435 2.304 2.079 2.123 2.079 2.065 
D2d [CuCl4]2- b  2.435 2.309 2.079 2.095 2.079 2.095 
[Cu(mnt)2]2- d 2.091 2.085 - 2.039 - 2.036 
CuPc e 2.199 2.163 2.052 2.026 2.052 2.026 
CuN4 (H) f 2.19 2.196 - 2.055 - 2.063 
CuN4 (Me) f 2.205 2.218 - 2.053 - 2.078 
CuN4 (t-Bu) f 2.28 2.273 - 2.049 - 2.141 
[Cu(bdt)2]2- g 2.085 2.047 2.019 2.015 2.019 2.016 
[Cu(bds)2]2- h 2.082 2.089 2.018 2.053 2.018 2.031 

a Crystal structure from ref. 61, g-values from ref. 62. 
b Idealized structure from crystal structure. 
c g-values from ref. 63. 
d Crystal structure and g-values from ref. 14. 
e DFT optimized structure, g-values from ref. 72. 
f DFT optimized structure, experimental g-values from ref. 69. 

g Crystal structure from ref. 73, g-values from ref. 33. 
h Crystal structure and g-values from ref. 33. 
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Table 2. Comparisons between experimental and calculated ligand field transitions for D4h and 
D2d [CuCl4]2-. 

Exp. 
(cm-1)c 

Assignment Calc. 
(cm-1)a 

Calc. 
(cm-1)b 

Exp. 
(cm-1)c 

Assignment Calc. 
(cm-1)a 

Calc. 
(cm-1)b 

D4h    D2d    
12000 2B1g → 2B2g 14470 14475 5500 2B2 → 2E 6470 6825 
13500 2B1g → 2Eg 14525 14610   7360 6825 
  14685 14610 8000 2B2 → 2B1 10465 10440 
16500 2B1g → 2A1g 15485 15485 9400 2B2 → 2A1 9130 9005 

a X-ray crystal structure from ref. 61. 
b Idealized structure from crystal structure. 
c Experimental d-d transitions from ref. 64. 
 

Given the ligand field origin of the SOC induced mixing of orbital angular momentum into 

the 2B1g ground state (Figure 1), an analysis of the excited state energies was also carried out. 

Comparisons between experimental and calculated ligand field transitions are given in Table 2. 

Experimentally, the 2B2g, 2Eg, and 2A1g ligand field transitions of D4h [CuCl4]2- are observed at 

12000, 13500, and 16500 cm-1, respectively.64 From equation 2, the 2B2g excited state can introduce 

ground state orbital angular momentum through SOC, and the gz-value is inversely dependent on 

the ligand field energy. A TDDFT calculation gives an energy of 14470 cm-1, in fairly good 

agreement. 

The vibrational analysis of the 2B2g ligand field excited state is given in Figure 3a, and their 

fits are given in Table S3a. Note the calculation of the ligand field energy along a given vibrational 

mode provides the excited state coupling term, which takes into account the displacement between 

the ground and excited state potential energy surfaces (Figure 4a). This displacement of the excited 

surface relative to the ground state results in a distorting force along a normal mode, Qi, in the 

excited state. This distorting force can be estimated by evaluating the effect of electron-nuclear 

coupling on the total energy of the excited state, EES:54 

 

𝐸@�@��`��@ = �𝜓@@�@��
𝜕𝐸:�
𝜕𝑄Q

�𝜓@@�@�� 𝑄Q 

(equation 8) 
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For non-zero values of this integral, the excited state will distort along Qi by a value 𝛥Qi; 

the excited state coupling term is determined by calculating the energy change in the electronic 

transition to 𝜓e with a change along the coordinate Qi. This is shown qualitatively for D4h and D2d 

structures in Figure 4a. The partial derivative (𝜕E/𝜕Qi) reflects the relative curvature of the excited 

state potential energy surface near the ground state equilibrium geometry (i.e., in the vicinity of 

the Franck-Condon region). The excited state coupling term therefore provides a means to quantify 

the change in excited state orbital angular momentum that can SOC into the ground state along a 

given vibrational coordinate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3. Evolution of the d(x2-y2) → d(xy) transition energies for (a) D4h and (b) D2d [CuCl4]2-. 
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Figure 4. Qualitative potential energy surfaces of [CuCl4]2-. (a) Excited state linear coupling terms 
for the totally symmetric Cu–Cl stretch, and (b) change in the excited state linear coupling term 
upon distorting from D4h to D2d. To simplify (a), the ground state potential energy surfaces of D4h 
and D2d are overlaid even though their Cu–Cl bonds do not have the same equilibrium distance. 
 

As with the gz-value analysis, the totally symmetric a1g mode exhibits the largest coupling 

term for the 2B1g excited state (Figure 3a). The slope of the a1g mode is 12405 cm-1/Qi, which gives 

-24940 cm-1/Å. That is, the energy of the 2B1g state decreases as the ligand–metal bonds are 

elongated and vice versa. The quadradic terms for the a2u mode are -6700 cm-1/Qi and -12230 cm-

1/Å. Note the slopes and curvatures of the 2B2g energy are inverted relative to those for the gz-value 

slope (Figure 2a). This behavior is consistent with equation 2 and the inverse energy dependence 

on SOC. The other modes discussed above that exhibit spin–phonon coupling terms with the gz-

value also exhibit inverted behavior. For example, the a2u and b2u modes exhibit positive quadratic 

behaviors in Figure 2a and negative ones in Figure 3a. Note the b1g mode does not exhibit a 

substantial coupling term for the gz-value but does with the 2B2g energy. This is due to the nature 

of the b1g vibrational distortion (see Table S2a), which lowers the symmetry from D4h to D2h by 

making two of the Cu(II)–Cl bonds, and thus the x- and y-axes, inequivalent. This turns on a small 

mixing between a forbidden (in D4h) 2A2g charge transfer state and the 2B2g ligand field state. Both 

of these states transform as 2B1g upon lowering symmetry to D2h. The energy of the forbidden 2A2g 

state exhibits a strong dependence on the b1g mode distortion. Thus, we ascribe the energy shift of 
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the 2B2g state observed in Figure 3a to this mixing. Also, other than eu (2a, 2b) modes, no other 

modes exhibit this distortion induced mixing, and they maintain their original ligand field 

compositions observed for the D4h structure. Thus, the excited state coupling term (equation 8) for 

the 2B1g → 2B2g excitation provides a means to evaluate the vibrationally induced change in ground 

state orbital angular momentum and its effect on the gz-value. 

In addition to excited state SOC, equation 2 indicates covalency contributions are important 

determinants of molecular g-values. Experimentally, the Cu(d) character for D4h [CuCl4]2- is 0.62 

± 0.2.57,58 The 𝛽-LUMO of the model considered here is given in Figure 1 and reflects a total Cu(d) 

character and spin density of 65 % and 0.668 from Loewdin population analysis and spin density, 

respectively. Importantly, as shown below, the measure of covalency at the equilibrium geometry, 

by proxy of the spin density, is a key determinant to understanding its role in spin–phonon coupling 

terms. Thus, the 38 % HF method applied to a complex with known Cu(d) character provides an 

excellent starting point. Fits for the spin-phonon coupling term analyses using Cu spin densities 

are given in Table S3e. The fits for the a1g mode give values of -0.157 SD/Qi and 0.221 SD/Å. As 

observed above for gz-values and the 2B2g energies, the largest coupling term for Cu spin density 

is observed for the totally symmetric a1g mode. For this mode, the change in covalency along the 

a1g coordinate contributes in the same direction/sign to the change in gz-value as the 2B2g ligand 

field energy. This is also the case for the b2u mode. The concerted contribution from ligand field 

energies and covalency is not observed for all modes, however. From example, the Cu spin density 

contribution for the a2u mode opposes the contribution to the gz-value from the 2B1g excited state 

and illustrates an important interplay between excited state SOC and covalency to the resulting 

spin–phonon coupling term for the gz-value. 

The individual contributions to the gz-value from the 2B1g energy and Cu spin density can 

be estimated using equation 2 in combination with the DFT and TDDFT calculations. For example, 

for D4h [CuCl4]2-, using the calculated Cu spin density of 0.668 and the 2B1g energy of 14475 cm-

1, equation 2 predicts a gz-value of 2.205. This is similar to the DFT calculated gz-value (2.204). 

For each mode, the relative change in spin density and/or 2B1g energy can be used to estimate a 

change in gz-value. The gz-value estimated from equation 2 can thus be compared directly to the 

DFT calculated change in gz-value along each vibrational coordinate. These plots for all normal 

modes and each g-value are given in Figures S3-S5; the results for the b2u, a2u, and a1g modes are 

given in Figures 5 (a-c), respectively. From these comparisons for the b2u mode (Figure 5a), the 
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Cu spin density and 2B2g energy both contribute appreciably to the change in gz-value. 

Furthermore, for the a2u mode (Figure 5b), the change in gz-value is largely due to the change in 

the 2B2g energy; as mentioned above, a small component from the Cu spin density component 

actually opposes the change in gz-value determined by the 2B2g energy alone. Lastly, for the a1g 

mode, the change in the gz-value is largely due to the change in 2B2g energy, but the spin density 

component contributes to a small extent. Thus, this analysis (Figure 5 and Figures S3-S5) provides 

a means to qualitatively decompose the spin–phonon coupling term contributions from ground 

state covalency and orbital angular momentum from excited state SOC. 

 

Figure 5. Independent contributions from d-d transition energy and ligand–metal covalency to the 
change in gz for D4h [CuCl4]2-. Comparisons are made between the Δgz as calculated from the LFT 
expression and as computed using ORCA for modes (a) b2u, (b) a2u, and (c) a1g. For these plots, 
the square of the spin density on Cu was used as a proxy for the covalency. Vector displacements 
are provided for each vibrational distortion.  
 

The spin–phonon coupling terms for the gx,y-values for the D4h structure are given in Figure 

S9, with the corresponding fits given in Table S3b and S3c.The coupling terms for the gx- and gy-

values are very similar except for the inversion of the eu modes (e.g., the 1a/2a components switch 

with the 2a/2b components). As with the gz-value, the largest coupling term for the gx,y-values is 

observed for the a1g mode (-0.072 gz/Qi,). However, the coupling term for the gx,y-values is 

significantly less than that observed for gz-values (-0.241 gz/Qi) by a factor of ~3.3. This difference 

reflects the ratio of the prefactors given in equations 2 and 3, as well as contributions from 

anisotropic covalency. The other modes show a similar behavior between gx- and gz-values and 

therefore are not discussed here. However, while the b1g mode exhibited a negligible spin–phonon 
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coupling term for the gz-value (Figure 2a), it exhibits a larger coupling term for the gx,y-values 

(Figures S8a/b). Thus, the main differences between the gz and gx,y regions is the magnitude and 

anisotropy of the spin–phonon coupling terms, with different vibrational modes (e.g., b1g mode) 

being selectively activated in the g⊥ region. 

The corresponding spin–phonon coupling terms of the two components of the 2Eg excited 

state are given in Figure S10. The correlation between the gx,y-values and the excited state SOC is 

similar to that laid out for the gz-value and is therefore not addressed further here. 

In summary for D4h [CuCl4]2-, up to the totally symmetric stretch, the vibrational modes 

that exhibit the largest spin–phonon coupling terms are the a2u and a1g modes, with the b2u and eu 

(1a, 1b) modes having smaller coupling terms. Excited state SOC and covalent contributions are 

both important quantifiers and determinants of spin–phonon coupling terms, and they can either 

work cooperatively or oppose one another (Figure 5). Lastly, the spin–phonon coupling terms are 

anisotropic between the g|| and g⊥ regions, with a general decrease in coupling terms in the g⊥ 

region and an activation of different vibrational modes. This anisotropy may be an interesting way 

to experimentally probe and explore spin–phonon coupling terms in transition metal complexes 

and qubits. 

 

2.2.2. D2d and Comparisons to D4h [CuCl4]2-. 

Experimentally, going from D4h to D2d [CuCl4]2-, the g-values shift from 2.221 and 2.040 to 2.435 

and 2.079, respectively (Table 1). The experimental increase in g-values is reproduced by the DFT 

calculated g-values (2.309 and 2.095, respectively). In addition, the ligand field strength decreases 

significantly upon distorting to D2d, which results in a decrease in the ligand field transition 

energies to 5500, 8000, and 9400 cm-1. The transition at 8000 cm-1 is the 2B2 → 2B1 transition, 

which is predicted at 10440 cm-1 using TDDFT. Note in going from D4h to D2d group theory 

requires the ground state transform as 2B2 (Figure 1).64 While this formally leads to a switch of the 

ground state from x2-y2 to xy, the overall orientation of the orbital with respect to the ligand–metal 

bonds does not change upon lowering symmetry from D4h to D2d, and we therefore retain the x2-

y2 labeling as done previously.54 Translating to the D2d structure decreases the overlap between the 

Cu d(x2-y2) orbital and the ligand p orbitals, which results in a decrease in the covalency of the 

Cu–Cl bonds and thus a larger Cu spin density. As done above for D4h, using the DFT calculated 
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spin density, the 2B1 ligand field energy, and equation 2 predicts a gz-value of 2.361, which is in 

the range of that predicted from the DFT calculation (2.309). 

The spin–phonon analysis for the gz-value of D2d [CuCl4]2- is given in Figure 2B (fits given 

in Table S4a). Note that group theory provides a means to directly correlate the vibrational modes 

between the D4h and D2d structures. These correlations are applied here and are reflected in the 

labels of the D2d figures and tables throughout. As observed for the D4h structure, the largest 

coupling term for the D2d structure is observed for the totally symmetric breathing mode, a1(2) 

(mode 7, Table S3) (a1g in D4h). For the a1(2) mode, a linear fit along the vibrational mode, Qi, 

provides a slope of -0.306 gz/Qi (0.612 gz/Å). These slopes are larger than those observed for the 

a1g mode in the D4h structure (-0.241 gz/Qi and 0.482 gz/Å). Furthermore, while no other modes 

exhibited substantial linear coupling terms in the D4h structure, from the spin–phonon analyses in 

Figure 2B, the a1(1) mode (mode 1 in both D4h and D2d; b2u in D4h) becomes activated and linear 

in the D2d structure. For the a1(1) mode, the linear fit along the vibrational mode, Qi, provides a 

slope of 0.140 gz/Qi. The activation of the a1(1) mode and the observation of linear coupling term 

behavior upon going to the D2d structure is discussed below. 

The quadratic coefficient of the b2(1) mode of the D2d structure (-0.068 gz/Qi) is reduced 

relative to the D4h structure (0.119 gz/Qi) (a2u in D4h). Of the modes with frequencies less than the 

a1(2) totally symmetric stretch, the b2(2) mode has a quadratic coefficient of -0.295 gz/Qi, which 

is activated relative to the D4h structure in which a very small coupling term was observed (b1g in 

D4h). 

The spin–phonon analysis for the 2B1 excited state of D2d [CuCl4]2- is given in Figure 3B. 

Both a1(2) and a1(1) modes exhibit oppositely signed slopes between Figure 2B and 3B, indicating 

appreciable contributions to the spin–phonon coupling term from excited state SOC. For the a1(2) 

mode, the linear fit along the vibrational mode, Qi, provides a slope of 7885 cm-1/Qi (-15770 cm-

1/Å). Interestingly, these slopes are smaller than those observed for the a1g mode in the D4h 

structure (12405 cm-1/Qi and -24940 cm-1/Å). The larger slope for the D4h structure might suggest 

it would have a larger spin–phonon coupling term. However, equation 2 and its differentiated 

forms predict important behavior in this regard when comparing the D4h and D2d structures. This 

behavior is addressed below. 

The slope of the a1(1) mode for the D2d structure is -3925 cm-1/Qi, which is roughly half 

that observed for the a1(2) mode (7885 cm-1/Qi). The activation of this mode is a direct 
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consequence of the symmetry about the Cu complex and its effect on the excited state coupling 

term (equation 8). This is shown pictorially in Figure 4b. For the D4h structure, the b2u mode is 

imaginary, representing a saddle point on the ground state potential energy surface. It has also been 

stressed that the D4h [CuCl4]2- structure arises due to crystal packing forces, and the D2d structure 

represents the energetic minimum on the ground state potential energy surface.57 However, the 

symmetry of the complex has important consequence for the excited state coupling term and thus 

the spin–phonon coupling terms. In the D4h structure, the excited state that can SOC with the 

ground state is at an energetic maximum along the b2u (in D4h) mode connecting the D4h and D2d 

structure. Upon distorting along this mode, both the ground and excited state energies are reduced. 

At the ground state minimum the excited state potential energy surface is shifted relative to the 

ground state surface. This offset gives rise to a non-zero excited state coupling term for the D2d 

structure. As discussed above, a non-zero excited state coupling term provides a mechanism for 

the amount of orbital angular momentum mixed into the D2d ground state to change along the 

vibrational mode. This mixing is prohibited in the D4h ground state. In some ways, this 

qualitatively resembles atomic clock transitions that have also been utilized in the development of 

qubits.35,65–68 

The spin density as a function of the vibrational coordinate for the D2d structure is given in 

Figure S2B. The slopes for the a1(2) mode are -0.157 SD/Qi and 0.315 SD/Å. These are larger than 

the values for the a1g mode in the D4h structure (-0.111 SD/Qi and 0.221 SD/Å). As done for the 

D4h structure, the individual contributions to the gz-value from the 2B1g energy and Cu spin density 

can be estimated using equation 2. These results are given in Figures S6-S8. 

The spin–phonon analyses were extended to the gx,y-values of D2d [CuCl4]2-. These results 

are given in Figure S11 and Tables S4b and S4c. The corresponding vibrational analyses are for 

the 2E excited state of D2d [CuCl4]2- are given in Figure S12 and Tables S4b and S4b. Similar to 

D4h, there are new modes that are activated for the gx,y-values. For the D2d structure, these include 

the b2(1) and b2(2) modes. 

In summary, for D2d, in addition to the a1(2) mode, a linear spin–phonon coupling term in 

the a1(1) mode (i.e., the b2u parent mode in D4h) becomes activated. This is anticipated to be 

especially important for local mode contributions to decoherence, as the a1(1) mode is the lowest 

energy mode in these structures and thus can become populated at relatively low temperatures. 

Indeed, all Cu(II)-based qubits in the literature are roughly square planar, D4h. Insightful and 



 20 

quantitative comparisons can be drawn between the vibrational analyses of the total symmetric 

breathing modes of the D4h and D2d structures, with the latter exhibiting a larger spin–phonon 

coupling term. This larger coupling term occurs even though the excited state coupling term 

(Figure 4a) is larger than the D2d structure. The activation of the a1(1) mode for the D2d structure 

and its excited state coupling behavior can be understood via the qualitative potential energy 

surfaces in Figure 4b. Given the ground state structure of [CuCl4]2- in the absence of any structural 

constraints is D2d, going to the D4h structure on the ground state surfaces results in a scenario where 

there is a relatively small gradient in the excited state potential energy surfaces. Thus, for the D4h 

structure, there is little change in the ground state orbital angular momentum upon fluctuations in 

the b2u mode that provides a coordinate between the D4h and D2d structures. However, the excited 

state potential energy surface is offset from the ground state surface near the equilibrium position 

of the D2d geometry, which allows for larger changes in ground state orbital angular momentum 

for the a1(1) mode. 

 

2.2.3. Cu(II) Effective Decoherence Maps and Comparisons to Ligand Field Theory. 

For D2d [CuCl4]2-, the vibrational modes with by far the largest spin–phonon coupling terms were 

those of a1(1) and a1(2) symmetry, and are consequently expected to be the most impactful to the 

quantum decoherence of Cu(II) complexes. The a1(1) mode can be described by the Cl–Cu–Cl 

bond angle, 𝛼, while the a1(2) mode can be described by the Cu–Cl bond distance. Effective 

decoherence maps have been generated spanning this space of [CuCl4]2- geometries (Figure 6 (a-

c)). In Figure 6, the magnitude and direction of gz-value gradients (i.e., effective linear spin–

phonon coupling terms in this space) are represented by the size and directions of the arrows on 

the plot. The horizontal and vertical components of the arrows reflect the relative contributions to 

the a1(2) and a1(1) modes, respectively. It is evident from this representation that, for the D4h 

structure, the gradient in gz-value is small for any linear combination of these two structural 

coordinates. However, upon increasing the angle, 𝛼, the gradient in gz systematically increases. 

This reflects the larger slope of the gz-value vs. Cu–Cl bond length observed for D2d (0.612 gz/Å) 

vs. D4h (0.482 gz/Å) [CuCl4]2-. This map is expected to translate to any four coordinate Cu(II) 

complex. Indeed, previous EPR experiments on a large scope of Cu(II) complexes have concluded 

that spin relaxation rates are faster for tetrahedrally-distorted geometries vs. square planar 

geometries.69 This observation is fully supported by extension of the model derived here (see 
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Figure S19).The 2D maps are also presented for spin density and the 2B2g/2B1 ligand field transition 

energies, wherein the trends in both cases track with expressions in Section 2.1. 

Individual ligand field contributions from the ligand field transition energy and spin density 

are given in Figures 6B and 6C, respectively. Even though the excited state linear coupling term 

of the 2B2g excited state (in D4h) is larger than the 2B1 state (in D2d) (also compare blue lines in 

Figure 4A), the resultant effect on the gradient in gz-value is smaller because the initial 2B2g state 

is higher in energy than the 2B1 state. Furthermore, the effective decoherence map generated using 

the Cu spin density (Figure 6C) shows that the gradient of the change in absolute value of the spin 

density increases with increasing angle, 𝛼. This behavior is similar to Figure 6A for gz. While it is 

clear that the D2d structure has a larger spin–phonon coupling term in the gz-plot alone, the different 

behaviors for the individual contributions from ligand field transition energy (Figure 6B) and spin 

density (Figure 6C) are insightful and in line with the expressions derived in Section 2.1. 

 

 
Figure 6. Effective decoherence maps generated using 225 geometries of [CuCl4]2- spanning 
different bond lengths and angles, 𝛼, and the corresponding gradients (denoted by the size and 
magnitude of the arrows) in the 2D space. (a) gz-value, (b) 2B2g/2B1 ligand field energy (cm-1), and 
(c) Loewdin spin density on Cu. 
 

2.3. Spin–Phonon Coupling Terms in C4v [VOCl4]2- and Comparisons to D4h [CuCl4]2-. 

The analyses presented above for [CuCl4]2- are extended to [VOCl4]2-. The bond metrics of the X-

ray crystal structure and an idealized C4v model structure are given in Table S5. As for [CuCl4]2-, 

the X-ray structure and idealized structure gave essentially identical results and only the idealized 

structure is considered. The DFT calculated g-values and ligand field excited state energies for C4v 

[VOCl4]2- are compared to experiment in Tables 3 and 4, respectively. Experimentally, the gz- and 

gx,y-values of [VOCl4]2- are 1.948 and 1.979, respectively.70 The calculated values are 1.963 and 

1.973, respectively, in fair agreement with experiment. The HF dependence of the gz-value for this 
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structure is given in Figure S13. For overall consistency and accuracy, calculations reported here 

for V(IV) complexes utilize 60 % HF exchange, as this value provides better overall agreement 

across a variety of other V(IV)-based complexes. 

 

Table 3. Comparisons between a variety of experimental and calculated g-values for C4v [VOCl4]2- 
and other V(IV) complexes. 

Molecule gx gy gz 
 Exp. Calc. Exp. Calc. Exp. Calc. 

C4v [VOCl4]2- a 1.979 1.973 1.979 1.973 1.948 1.962 
C4v [VOCl4]2- b 1.979 1.973 1.979 1.973 1.948 1.963 
VOPc c 1.989 1.973 1.989 1.973 1.966 1.963 
VO(acac)2 d 1.975 1.978 1.979 1.980 1.949 1.945 
[VO(cat)2]2- e 1.980 1.976 1.988 1.982 1.956 1.951 
[VO(dmit)2]2- f 1.986 1.979 1.988 1.977 1.970 1.963 
[V(bdt)3]2- g 1.970 1.947 1.970 1.949 1.988 1.962 
[V(bds)3]2- g 1.960 1.872 1.955 1.871 1.950 1.849 

a Crystal structure from ref. 76, g-values from ref. 70. 
b Idealized structure from crystal structure. 
c DFT-Optimized structure. g-values from ref. 75. 
d DFT-Optimized structure. g-values from ref. 77. 
e DFT-Optimized structure. g-values from ref. 43. 
f VO(dmit)2: xtal structure and g values from ref. 53. 
g g-values and xtal structures from ref. 33. 

 

Table 4. Comparisons between experimental and calculated ligand field transitions for C4v 
[VOCl4]2-. 

Exp.a 

(cm-1) 
Assignment Calc. 

(cm-1)b 
Calc. 

(cm-1)c 
~12000 2B2 → 2B1 15080 15230 
13700 2B2 → 2E 15925 16325 
  16825 16325 
22000 2B2 → 2A1 29270 19190 

a Ref. 71. 
b X-ray crystal structure from ref. 76. 
c Idealized structure from crystal structure. 

 

A vibrational frequency calculation was carried out on the idealized C4v [VOCl4]2- 

structure. The energies, symmetry labels, and scaled vector displacements for all 12 normal modes 

of vibration are given in Table S6. Spin–phonon calculations for the gz-value of C4v [VOCl4]2- are 

given in Figure 7A, and their fits are given in Table S7a. A strong coupling term for the gz-value 
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is observed for the totally symmetric a1(2) V(IV)–Cl breathing mode (mode 9, 323 cm-1). The 

linear fits provide slopes of 0.068 gz/Qi and -0.130 gz/Å. These slopes are significantly smaller 

than those observed for a1g/a1(2) modes of either D4h (-0.241 gz/Qi and 0.482 gz/Å) or D2d (-0.306 

gz/Qi and 0.612 gz/Å) [CuCl4]2-. The ratios of the C4v [VOCl4]2- and D4h [CuCl4]2- slopes are ~0.27. 

This is very similar to the relative magnitudes of the V(IV) (250 cm-1) and Cu(II) (–830 cm-1) SOC 

constants (0.3). This shows that spin–phonon coupling terms of V(IV) are systematically decreased 

by a factor of ~3.3, largely due to the reduced SOC constant of V(IV) relative to Cu(II). 

For C4v [VOCl4]2-, of the other vibrations with energies less than a1(2), modes 1 (b1(1), –

51 cm-1), 2/3 (e (1a, 1b), 160 cm-1), 4 (a1(1), 166 cm-1), 5 (b2, 187 cm-1), 6 (b1(2), 233 cm-1), 7/8 

(e (2a, 2b), 267 cm-1) all exhibit quadratic coupling terms. From low to high energy, the largest 

quadratic coupling terms are observed for modes b1(1) (-0.016 gz/Qi), e(1a, 1b) (-0.020 gz/Qi), 

a1(1) (-0.018 gz/Qi), b1(2) (-0.016 gz/Qi), and e(2a, 2b) (0.017 gz/Qi). These quadratic coefficients 

are significantly less than the important low-energy quadratic modes in D4h [CuCl4]2-, which 

ranged from 0.056 to 0.118 gz/Qi. When scaled for the different SOC constant of V(IV), the 

quadratic coefficients for [VOCl4]2- range from 0.054 to 0.067 gz/Qi, which are much closer to the 

those for D4h [CuCl4]2-. For more direct comparison, the coefficient of the b2u mode of D4h 

[CuCl4]2- is 0.063 gz/Qi, while for the b1(1) mode of [VOCl4]2- is -0.016 gz/Qi. Also, the coefficient 

of the a2u mode of D4h [CuCl4]2- is 0.119 gz/Qi, while for the a1(1) mode of [VOCl4]2- is -0.018 

gz/Qi. From group theory, these modes correlate between the D4h and C4v point groups. For 

example, the a2u mode involves out-of-plane Cu motion, while the a1(1) mode involves movement 

of the vandyl unit out-of-plane with respect to the chloride ligands. Thus, the spin–phonon 

coupling terms of both linear and quadratic modes are significantly less for the vandyl complex 

relative to the Cu(II) complexes. Scaled for angle change, the absolute values of the b2u and b1(1) 

slopes are 0.98 x 10-4 (gz/°) and 0.28 x 10-4 (gz/°), respectively, with the b2u mode being larger by 

a factor of 3.5. Scaled for metal displacement, the absolute values of the a2u and a1(1) slopes are 

0.216 and 0.077 (gz/Å), respectively, with the a2u mode being larger by a factor of ~2.8. In both 

cases, the difference in slope is strongly influenced by the ratio of the SOC constant. 

Vibrational analyses of the 2B1 excited state energies were also carried out for C4v 

[VOCl4]2-. Comparisons between experimental and calculated ligand field transitions are given are 

Table 4. Experimentally, the 2B1, 2E, and 2A1 ligand field transitions of C4v [VOCl4]2- are observed 

at ~12000, 13700, and 22000 cm-1, respectively.71 The 2B2 → 2B1 transition provides the SOC of 
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orbital angular momentum for gz, while the 2B2 → 2E transition provides SOC for gx,y (Figure 1). 

A TDDFT calculation gives the energies of these transitions at 15080 and 16325 cm-1, respectively, 

in fairly good agreement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. LFT parameters along the vibrational coordinates of the first nine vibrational modes of 
[VOCl4]2-. (a) gz-value, (b) ligand field excited state transition energy. 
 

The vibrational analysis of the 2B1 ligand field excited state is given in Figure 8b, with fits 
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largest coupling term. The slope of the a1(2) mode is 13945 cm-1/Qi (-26450 cm-1/Å). These values 

are similar to those of D4h [CuCl4]2- (12405 cm-1/Qi or -24940 cm-1/Å). However, despite having 

similar ligand field excited state energies (14475 vs. 15080 cm-1) and slopes (-26450 and -24940 

cm-1/Å) for the totally symmetric stretch, the corresponding slopes for the change in gz-value are 

significantly lower for [VOCl4]2- vs. [CuCl4]2- (-0.130 gz/Å vs. 0.482 gz/Å, respectively). This 

difference is due to the different ratio of SOC constants for V(IV) and Cu(II). 

The total Loewdin unoccupied V(IV) d(xy) character and V(IV) spin density for [VOCl4]2- 

are 88 % and 0.98, respectively. As expected, the covalency of the V(IV)–Cl bonds are 

significantly lower than those of D4h [CuCl4]2- (e.g., 88 % vs. 65 % unoccupied metal d character). 

The spin density vibrational analysis for C4v [VOCl4]2- is given in Figure S14, with fits given in 

Table S7e. The fits for the a1(2) mode give values of -0.102 SD/Qi and 0.194 SD/Å. These values 

are smaller than those observed for D4h [CuCl4]2- (-0.157 SD/Qi and 0.221 SD/Å), consistent with 

the 𝜎 overlap in [CuCl4]2- (Figure 1). The spin density change for [VOCl4]2- is due to the 𝜋-type 

interaction between the out-of-plane Cl p orbitals and the V d(xy) orbital. 

The spin–phonon coupling terms for the gx,y-values for the C4v structure are given in Figure 

S15, with the corresponding fits given in Table S7b and S7c. Both gx and gy give similar results, 

and only gx is considered. As observed for D4h [CuCl4]2-, the spin–phonon coupling terms are 

different in the g⊥ region relative to g||. For the most part, the magnitudes of the spin–phonon 

coupling terms are decreased going from g|| to g⊥. For instance, the slope of the a1(2) mode 

decreases from 0.068 to 0.005 gz/Qi, and the slopes of the b1(1) and a1(1) modes go from -0.016 

and -0.018 gz/Qi to -0.002 and -0.007 gz/Qi, respectively. The b2 and e(2a, 2b) modes exhibit an 

increase in coupling term (0.017 to -0.032 gz/Qi). These changes in spin–phonon coupling terms 

are correlated to the changes in the slopes of the ligand field transitions. The vibrational analyses 

of the 2E ligand field excited state energies are given in Figure S16. For instance, for the b2 mode, 

the excited state slope changes from -565 to 3775 cm-1/Qi. For the e(2a, 2b) modes, the slopes go 

from 1370 to -5945/-9620 cm-1/Qi. 

In summary, the totally symmetric a1(2) mode exhibits a strong spin–phonon coupling term 

for C4v [VOCl4]2-. This makes for an insightful comparison to the a1g mode of D4h [CuCl4]2-. The 

magnitude of the spin–phonon coupling term is significantly less for [VOCl4]2-. This difference in 

spin–phonon coupling terms could be quantified to a factor of ~0.27, which is ascribed here to the 

difference in SOC constants for V(IV) vs. Cu(II). Importantly, [VOCl4]2- and [CuCl4]2- have 
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similar ligand field excited state energies and similar excited state coupling terms, and [VOCl4]2- 

has a smaller slope in covalency, which is due to different relative orbital overlaps for the two 

complexes. These observations further support that the reduced SOC constant reduces the spin–

phonon coupling terms. Also, as observed for [CuCl4]2-, the spin–phonon coupling terms in 

[VOCl4]2- are anisotropic, with different modes being activated in the g|| and g⊥  regions. 

Nonetheless, the spin–phonon coupling terms of [VOCl4]2-, even when scaled for degree of 

distortion, are significantly reduced relative to [CuCl4]2- in either g|| and g⊥ directions. The reduced 

spin–phonon coupling terms will play a major role in the room temperature coherence properties 

of vanadyl complexes relative to Cu(II) complexes. 

 

3. Discussion. 

Transition metal complexes are being explored as qubits for quantum computing. In addition to 

significant hurdles related to the eventual quantum entanglement of molecular qubits, spin–phonon 

coupling in transition metal complexes often prohibits the observation of room temperature 

coherence properties. This has inspired resent research efforts to better understand the nature of 

spin–phonon coupling in transition metal complexes and how it might be tuned and controlled by 

variations in the ligand set and thus the ligand field environment.13–15,33,44 As highlighted in the 

Introduction, spin–phonon couplings also play important roles in single molecule magnets and 

photophysics, and studies directed at fundamental understanding will have broad impact. 

Above, we have outlined a general LFT model of spin–phonon coupling terms in S = ½ 

transition metal complexes. This model is derived from the first and second derivatives of the LFT 

expressions of g-values given in Section 2.1.54 While these expressions define the zero temperature 

magnitudes of spin–phonon coupling terms in S = ½ complexes, they can be expanded to consider 

additional dynamic effects through the variance of gz, 〈𝑔h'〉, which highlights the importance of the 

first derivative, {%|
{}a

, and therefore its role in the coherence lifetimes of S = ½ transition metal 

complexes. This suggests that, without considering thermal population, odd modes such as totally 

symmetric stretches will have a more substantial effect on spin-phonon coupling terms and 

decoherence compared to even modes, in which their value of relevance, {
6%|
{}a

6 , only appears in the 

second order term of the Taylor expansion (equation 5). The fundamental behavior of these 

expressions were borne out by an extensive range of DFT and TD-DFT calculations on 
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minimalistic S = ½ models, D4h/D2d [CuCl4]2- and C4v [VOCl4]2-. Together, the results above 

provide a general description of the roles of transition metal geometric and electronic structure in 

spin–phonon coupling. For instance, the magnitudes of spin–phonon coupling terms are strongly 

influenced by excited state SOC of orbital angular momentum into the ground state and are 

predicted to be strongly influenced by the energy of the particular ligand field excited state mixing 

with the ground state (equations 6 and 7) (e.g., 2B2g for a 2B1g ground state in D4h [CuCl4]2-). This 

excited state SOC contribution is governed by the ligand field geometry about the metal complex. 

For example, going from D4h to D2d [CuCl4]2- turns on additional mode coupling terms due to the 

enhancement of excited state coupling terms (Figure 4). Furthermore, the magnitude of spin–

phonon coupling terms are strongly influenced by the covalency of ligand–metal bonds. This 

dynamic effect largely reflects a relativistic nephelauxetic effect, which effectively modulates the 

SOC constant of the metal from that of the free ion. In short, the more covalent the ligand–metal 

bond, the smaller the spin–phonon coupling terms become. Relatedly, a significant overall 

reduction in SOC constant can of course be achieved through the use of different transition metal 

complexes (e.g., V(IV) vs. Cu(II) vs. Cr(V)). As shown below, V(IV), which has a significantly 

lower SOC constant than Cu(II), can still maintain favorable spin–phonon coupling terms despite 

having significantly more ionic ligand-metal bonds than Cu(II) complexes. Complications can also 

arise from trying to quantify spin–phonon coupling terms in different ligand field environments, 

as the nature of the modes can change. However, this can be facilitated to some degree by 

leveraging specific group theoretical correlations as demonstrated here for D4h, D2d, and C4v 

transition metal complexes. The spin–phonon analyses presented above for [CuCl4]2- and 

[VOCl4]2- are now extended to a range of S = ½ Cu(II) and V(IV) molecular qubit candidates. 

 

3.1 Extension to Cu(II)- and V(IV)-Based Qubits. 

The spin–phonon analyses of the Cu(II) qubit complexes and their gz-values are given in Figures 

S17(a-d) and Tables S8(a-d). The spin-phonon analyses of the V(IV) complexes and their gz-values 

for all modes up to at least 400 cm-1 in energy are given in Figures S18(a-f) and Tables S9(a-f). 

Comparisons between all geometry optimized and crystal structures are given in Tables S10(a,b) 

and S11(a-c) for Cu(II) and V(IV) complexes, respectively. Providing quantitative comparisons 

between the spin–phonon analyses for different complexes is a complicated task. This is largely 

because the nature and amount of atomic motions are not necessarily conserved over all vibrations. 
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However, as discussed here, the modes identified above for D4h [CuCl4]2- and C4v [VOCl4]2- that 

exhibited particularly large spin–phonon coupling terms are also those that exhibit spin–phonon 

coupling terms in the qubits. Thus, the parent vibrational modes provide a means to make 

quantitative comparisons across Cu(II) and V(IV) complexes. 

 

Table 5. Spin–vibrational coupling terms, excited state energies, and covalencies across a variety 
of Cu(II) complexes/qubits. 

Complex a1g  
(cm-1) 

(g/Å) a2u  
(cm-1) 

(g/Å) ESa M(d)b M SD 

D4h [CuCl4]2- 296.3 0.482 140.5 0.216 14475 65 % 0.670 
D2d [CuCl4]2- 316.7 0.612 66.9 0.529 10440 70 % 0.760 
CuPc 259.4 0.464 151.7 0.151 22165 72 % 0.734 
Cu(mnt)2 303.4 0.384 141.2 0.102 22305 42 % 0.434 
Cu(bdt)2 387.4 0.232 85.1 0.103 29700 41 % 0.424 
Cu(bds)2 199.3 0.165 97.8 0.039 24390 37 % 0.377 

a Excited state which spin orbit couples into the ground state for gz. 
b M(d) character in unoccupied component orbital from Loewdin population analyses. 
c Loewdin metal spin density. 
 

The experimental and calculated g-values of Cu(II) qubits are given in Table 1,14,33,72,73 

while spin–phonon linear coupling terms and additional computational results are given in Table 

5. Note X-ray crystal structures were utilized for [Cu(mnt)2]2-, [Cu(bdt)2]2-, and [Cu(bds)2]2- (bds 

= benzene-1,2-diselenate) complexes, as their structures were not well reproduced using DFT 

geometry optimization. However, CuPc provided a good agreement and thus the optimized 

structure is used. As outlined above, the totally symmetric stretch (a1g in D4h [CuCl4]2-) and the 

out-of-plane motion of the metal/vanadyl moiety (a2u in D4h [CuCl4]2- and a1(1) in C4v [VOCl4]2-) 

were the main modes to consider. The nature of these modes are well conserved over the 

complexes considered in Tables 5 and 6 and allow for the spin–phonon coupling terms to be 

compared on a Å-1 scale. As elucidated above, the linear coupling terms for the totally symmetric 

modes of D4h and D2d [CuCl4]2- were determined to be 0.482 and 0.612 gz/Å. These modes for 

qubit candidates CuPc,74 Cu(mnt)2,50 Cu(bdt)2,33 and Cu(bds)233 are 0.464, 0.384, 0.232, and 0.165 

gz/Å, respectively. Interestingly, of these qubits, Cu(bdt)2 exhibited spin echoes that persist to 

room temperature, and it has one of the lowest spin–phonon coupling terms of the Cu(II) 

complexes, with only Cu(bds)2 being lower. Note the lack of spin echoes for Cu(bds)2 and its 

comparison to Cu(bdt)2 is discussed further below. For the a2u parent mode, the quadratic 
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coefficients for D4h and D2d [CuCl4]2- were determined to be 0.216 and 0.529 gz/Å, respectively. 

In a similar fashion to the a1g parent mode, the quadratic coefficients of the a2u parent mode 

decrease to 0.151, 0.102, 0.103, and 0.039 gz/Å for CuPc, Cu(mnt)2, Cu(bdt)2, and Cu(bds)2, 

respectively. Thus, there is a systematic decrease in the spin–phonon coupling terms across these 

Cu(II) complexes. These observations can be understood utilizing the LFT model outlined above. 

For example, Cu(bdt)2 exhibits the highest calculated ligand field excited state energy (29700 cm-

1) and has highly covalent ligand–metal bonds (41 % Cu(d)). The decreased slope of Cu(bds)2 is 

due to the increased covalency of the Cu–Se vs. Cu–S bonds (Table 5). Furthermore, the slopes 

and quadratic coefficients of Cu(mnt)2 are larger than those Cu(bdt)2 and Cu(bds)2. From Table 5, 

this is largely reflected by the lower excited state energy (22305 cm-1) (and thus the higher amount 

of ground state orbital angular momentum) and, to a smaller extent, the lower covalency (42 % 

Cu(d)). The slopes and coefficients for CuPc are increased further relative to the other Cu(II) 

complexes, as the Cu–N bonds are significantly more ionic than the Cu–S bonds of Cu(mnt)2, 

Cu(bdt)2 and Cu(bds)2. 

These electronic differences between Cu(bdt)2 and Cu(mnt)2 can be understood from their 

X-ray crystal structures. For example, the Cu–S bond lengths of Cu(mnt)2 are ~2.33 Å, which are 

longer than those for the Cu(bdt)2 complex (~2.15 Å). For Cu(bdt)2, the contraction of the ligand–

metal bonds destabilizes the Cu d(x2-y2) 𝛽-LUMO orbital, which increases the energy of the 2B2g 

ligand field transition and increases the orbital overlap (covalency) of the ligand–metal bonds 

(Figure 1). Thus, the ligand set and Cu(bdt)2 complex exhibits the ideal characteristics for a Cu(II)-

based qubit. Also, while the slopes of the Cu(bds)2 complex would suggest longer coherence times, 

the lack of spin echoes at higher temperatures can be attributed to the significant decrease in the 

vibrational frequency of the a1g parent mode due to the mass effect of the S to Se conversion (e.g., 

387 vs. 199 cm-1, respectively). Interestingly, the fits to the temperature dependence of the T1 for 

these complexes suggest local mode contributions of 488 ± 72 and 344 ± 80 cm-1. Combined with 

the computational results here, these frequencies and their differences provide strong evidence that 

the totally symmetric a1g parent mode contributes to the coherence times of Cu(II) complexes. 

Thus, we propose that the rapidly accessible data in Table 5 can be computed to qualitatively and 

semi-quantitatively evaluate and screen potential Cu(II)-based qubits. 

 Recent work by Sessoli et al.13,53 has highlighted the important role of the vanadyl moiety 

in V(IV)-based qubits. The calculated and experimental g-values of a variety of vandyl and V(IV) 
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qubits are given in Table 3.43,53,70,75–77 Their spin–phonon analyses are given in Figures S18(a-f) 

and Tables S9(a-f), and specific spin–phonon slopes and additional computational results are given 

in Table 6. Note, of the vandyl complexes considered here, VOPc, VO(acac)2, and [VO(cat)2]2- 

were geometry optimized. Similarly to the Cu complexes considered above, X-ray crystal 

structures were used for structures where geometry optimizations resulted in significantly different 

structures (e.g., [VO(dmit)2]2-, [V(bdt)3]2-, and [V(bds)3]2-). Experimentally, long coherence times 

have been observed for a variety of vandyl complexes. However, only VOPc has been directly 

studied in a solid diamagnetic matrix, which has thus far prohibited further investigation of vanadyl 

complexes up to room temperature. From the data given in Table 6, there are currently no clear 

defining characteristics to be observed across the vanadyl complexes. Thus, other vandyl 

complexes, when isolated in similar solid diamagnetic matrices, will likely exhibit long relaxation 

times, with the potential for room temperature coherence.  

The spin–phonon model presents a stark difference for vanadyl vs. six coordinate V(IV) 

complexes. As shown in Sessoli et al.,13,53 six coordinate V(IV) complexes do not exhibit long T1s 

at elevated temperatures. Very recently, Albino et al.13 pointed to the role of increased excited state 

SOC in six coordinate complexes relative to vanadyl complexes. Furthermore, Fataftah et al.33 

compared six coordinate V(IV) complexes to Cu(II) complexes to suggest the role of increased 

covalency in elongating T1 relaxation lifetimes. Here we have extended our LFT model to the 

V(bdt)3 and V(bds)3 complexes studied by Fataftah et al.33 (Table 6). Interestingly, as pointed out 

by Albino et al.13 for other six coordinate V(IV) complexes, the V(bdt)3 and V(bds)3 complexes 

exhibit very low energy calculated ligand field transitions (7935 and 6785 cm-1, respectively). 

Furthermore, the totally symmetric stretches of these complexes were computed at 351.7 and 209.8 

cm-1, respectively. These modes allow for a quantitative comparison between the linear spin–

phonon coupling term of Cu(II) complexes on a Å-1 scale. The linear coupling terms for V(bds)6 

in the g|| and g⊥ regions are -0.420 and -0.357 g/Å, respectively. For comparison, the linear 

coupling term of the totally symmetric a1g parent mode of Cu(bdt)2 is smaller (0.232 gz/Å). Also, 

the calculated vibrational frequency decreases and the linear coupling terms increase going from 

V(bdt)3 to V(bds)3. Thus, the longer spin–lattice relaxation time at higher temperatures for 

Cu(bdt)2 vs. V(bdt)3 is not due to differences in ligand–metal covalency, but rather stems from 

efficient excited state SOC as a result of the relatively low energy ligand field transition energies 

for V(bdt)3. This is further supported by the observation of room temperature coherence in vanadyl 
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complexes,37 despite ionic ligand metal bonding. Together, these DFT/TDDFT calculations are 

consistent with the LFT model derived here and further highlight the importance of considering 

both excited state SOC and ligand–metal covalency when comparing different complexes with 

different metals and/or coordination environments. 

 

Table 6. Spin–vibrational coupling terms across a variety of V(IV) complexes. 
Complex Mode  

(cm-1) 
(gz/Qi) ESa M(d)b M SD 

C4v [VOCl4]2- 166.4 -0.018 15230 88 % 0.983 
 323.5 0.068    
 394.9 -0.313    
 394.9 -0.322    
      
VOPc 177.3 -0.009 22745 85 % 0.985 
 260.0 -0.006    
 317.3 -0.014    
 384.2 -0.063    
 384.2 -0.059    
 393.9 -0.017    
      
VO(acac)2 192.3 0.006 17955 84 % 0.972 
 277.6 0.006    
 295.6 -0.021    
 374.5 -0.029    
 391.0 -0.030    
 475.4 0.022    
      
VO(cat)2 186.1 -0.004 19335 65 % 0.987 
 280.9 -0.017    
 366.3 -0.012    
 388.4 -0.039    
 437.4 -0.066    
      
VO(dmit)2 116.8 -0.003 20120 50 % 0.999 
 178.6 -0.016    
 350.7 -0.053    
 378.5 0.031    
 414.0 -0.022    
 426.6 -0.058    
      
Complex Mode  

(cm-1) 
(g||/Å) (g⊥/Å) ES  

V(bdt)3 351.7 -0.420 -0.357 7935  
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V(bds)3 209.8 -1.744 -0.766 6785  
a Excited state which spin orbit coupling into the ground state. 
b M(d) character in unoccupied component orbital from Loewdin population analyses. 
c Loewdin metal spin density. 
 

3.2 Ligand Field Strain in Qubits. 

As previously highlighted for D4h/D2d [CuCl4]2-, the planar D4h Cu(II) structure represents a saddle 

point on the ground state potential energy surface that can only be stabilized in the presence of 

crystal packing forces.57,58 The formation of this structure in [CuCl4]2- was likened to the 

entatic/rack state in bioinorganic chemistry, where the protein architecture (inclusive of first and 

second sphere contributions, as well as long range H-bonding and electrostatics) can place a metal 

ion in a strained ligand field.78–81 This ligand field strain can generate unique properties. The 

entatic/rack state and ligand field strain is therefore of relevance to molecular qubits. For example, 

Cu(II)-based complexes with the longest coherence times are square planar Cu(II) sites stabilized 

in diamagnetic lattices (e.g., Cu(mnt)250 and Cu(bdt)233). The geometric dependence to T1 was also 

noted in an EPR study of a variety of Cu(II) complexes.69 Here we have shown that the origin of 

this dependence for the square planar Cu(II) geometry derives from the significant minimization 

of excited state coupling terms, which reduces dynamic SOC of orbital angular momentum into 

the ground state (Figure 4). 

 In addition to crystal packing forces, variations in the ligand set can effectively control the 

deviation from planarity in Cu(II) complexes. This can be observed directly in the dependence of 

the electronic energy as a function of the b2u parent mode (in D4h) distortion. For instance, as noted 

above, distortion along this mode will decrease the energy for the square planar Cu(II) complexes 

studied here, which results in the b2u mode being imaginary. However, this is not the case for CuPc. 

Thus, linking the four N-based ligands into the aromatic planar structure of the Pc ligand provides 

an entatic state that can oppose distortions along the b2u parent mode. However, the drawback of 

the Pc ligand arises also from its N-based coordination, which gives rise to fairly ionic ligand–

metal bonds and opposes the effects provided by the rigid and constrained ligand field (i.e., entatic 

state). 

In relation, significant efforts have been guided toward better identifying, understanding, 

and quantifying entatic states,82–84 which have traditionally been used to rationalize electron 

transfer properties. However, given the general nature of this description, it is being extended to 
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other scenarios, including photochemistry and catalysis.85–89 Strain effects have also been 

discussed in the context of both ground and excited states and their contributions to the coherence 

properties in solid state qubits (e.g, vacancies in diamond).10–12,90 Thus, engineering ligand field 

strain and rigidity into covalent environments will be useful for advancing the geometric and 

electronic structural contributions to the quantum coherence of transition metal complexes, and 

the model outlined here can guide these future investigations. 

 

4. Conclusion. 

The spin–phonon coupling terms of minimalized D4h/D2d [CuCl4]2- and C4v [VOCl4]2- complexes 

translate onto Cu(II)- and V(IV)-based molecular qubits and are dominated by three major factors: 

1) the magnitude of the metal-based SOC constant, 2) the initial magnitude and gradient of change 

in ground state orbital angular momentum, which is governed by the ligand field excited state 

energies, and 3) dynamic relativistic nephelauxetic contributions, including the initial magnitude 

and gradient in the covalency of the ligand–metal bonds. Factors 1) and 3) are directly related, as 

covalency further reduces the SOC constant of a metal in a complex relative to that of the free ion. 

LFT expressions derived here predict spin–phonon coupling terms in both odd and even modes 

are important to consider for decoherence times (equation 5). However, odd modes such as the 

totally symmetric stretch play a key role for decoherence times. We have further shown how the 

LFT expressions and thus spin–phonon coupling terms (equations 6 and 7) can be directly related 

to spectroscopic observables and calculable quantities. For Cu(II), key geometric and symmetry 

factors, including ligand field strain, significantly lower excited state coupling terms while 

simultaneously increasing orbital overlap and ligand–metal covalency. Importantly, all factors 

relating to excited state SOC and covalency need to be evaluated when comparing spin–phonon 

coupling terms, including local mode contributions to T1 and Tm relaxation times, of various metal 

complexes. The model outlined here provides a means to quantify spin–phonon coupling terms for 

given vibrational modes for any S = ½ molecule, providing a powerful means to benchmark current 

and future qubit candidates. The further discovery of room temperature coherent materials will 

provide exciting opportunities to develop fundamental structure-function correlations for spin–

phonon coupling in transition metal complexes. 
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