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Despite their enormous potential, machine learning methods have only found limited application 

in predicting reaction outcomes, as current models are often highly complex and, most 

importantly, are not transferrable to different problem sets. Herein, we present the direct 

utilization of Lewis structures in a machine learning platform for diverse applications in organic 

chemistry. Therefore, an input based on multiple fingerprint features (MFF) as a universal 

molecular representation was developed and used for problem sets of increasing complexity: First, 

molecular properties across a diverse array of molecules could be predicted accurately. Next, 

reaction outcomes such as stereoselectivities and yields were predicted for experimental data sets 

that were previously evaluated using (complex) problem-oriented descriptor models. As a final 

application, a systematic high-throughput data set showed good correlation when using the MFF 

model, which suggests that this approach is general and ready for immediate adoption by 

chemists. 

 

Introduction 

While chemical intuition, based on experience, expertise and mechanistic understanding, has driven the 

discovery of new transformations in organic synthesis, the accurate prediction of the outcome of a single 

chemical reaction remains a major challenge for both, man’s instinct and computer-based models.1 In 

this regard, the optimization of an organic transformation therefore requires the collection of large 

amounts of empirical data. Even for well-established methodologies, experienced chemists frequently 

fail to predict whether a (complex) substrate might undergo the desired transformation, making the field 

of chemical synthesis highly challenging and laborious.2,3 Whereas qualitative estimations based on 

mechanistic understanding can be accurate, the quantitative prediction of chemical reactivity is almost 

impossible with chemical intuition alone, mainly because of the enormously complicated correlation 

between structure and reactivity (Figure 1a). 

Due to this complexity, chemists have tried to simplify the overall problem by correlating (known or 

easily accessible) molecular properties with a compound’s reactivity. In this quantitative approach 

towards reactivity prediction, linear free energy relationships (LFER) are identified and solved using 

multivariate linear regression (MLR) models.4,5 This statistical approach, which has been established by 

Sigman and co-workers, relies on physically meaningful parameters to represent the structures of 

interest.6–8 These molecular descriptors are electronic or steric parameters, which can be determined by 
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experimental or computational means (mainly DFT calculations). Parameter selection and model 

development are typically carried out in a lengthy iterative workflow until good correlation is achieved. 

The major strong point of this process is that, in many cases, valuable information on the underlying 

mechanism can be obtained.9,10 Furthermore, after the successful identification of mechanistically 

relevant descriptors, the amount of datapoints required for a MLR prediction model can be 

comparatively small. However, this requires a representative set of training data, which has to be 

carefully considered.6 

A more general approach to predict reactivity building on a given data set is machine learning. Due to 

their ability to recognize complex patterns, machine learning algorithms have been widely used in many 

scientific fields.11 In the context of chemoinformatics, they were applied for use in drug discovery,12–14 

computer-aided synthesis planning15–18 and the prediction of possible organic reaction products.19–22 

However, the quantitative prediction of chemical reactivity with machine learning algorithms has not 

been approached until very recently, primarily due to the lack of available data.23 In general, the 

generation of datapoints in chemistry is traditionally rather expensive. While molecular properties can 

usually be obtained by density functional theory (DFT) calculations, there is no other cheap alternative 

for the generation of reaction-specific data better than physically going to the lab and running the 

experiment. Thus to generate this data, technical solutions for high-throughput experimentation under 

batch and flow conditions have been developed to carry out thousands of reactions in a short time using 

just a few milligrams of material.24–26 These tools, combined with in vitro and in silico compound 

libraries, have recently opened the field of reaction development to machine learning models.27–29 In 

pioneering work, Dreher, Doyle and co-workers were able to predict the reaction yields of C–N cross 

coupling reactions using a data set of more than 4000 reactions.30 Furthermore, Denmark and co-workers 

could predict enantioselectivities using chiral phosphoric acid (CPA) catalysts based on a data set with 

more than 1000 experiments.31 Similar to MLR studies, these methods rely on physically meaningful 

molecular descriptors (Figure 1b). In a thorough analysis, steric and electronic parameters are selected 

based on the underlying mechanism of the transformation and relevant properties of each reactant. In a 

next step, these parameters are determined by means of DFT calculations, as uniform sets of 

experimental values are not usually available for such a large number of molecules. However, while 

DFT calculation of properties is considered fast for a specific compound, the generation of multiple 

descriptors for a library of substrates can be time-consuming, especially so in cases where more complex 

structures are involved. Thus, DFT computations using established methods can easily become time-

limiting, as these methods typically scale with a computation time complexity of O(N4) depending on 

the size (N) of the system.32 

Results and Discussion 

The ultimate goal of machine learning in the context of (organic) chemistry is to “make computers 

develop a quantitative chemical intuition, based on a rationalization of all underlying fundamentals”.1,33–

36 To achieve this goal, the full computational recognition of all involved compounds, i.e. a complete 

translation of the molecular structure into a machine-readable representation, is required.37 In previous 

studies, this was approached by using an array of physicochemical parameters/descriptors (Figure 1b). 

However, (biased) manual selection of experimental or calculated descriptors can oversimplify the 

problem, which can introduce systematic errors in prediction through the loss of seemingly unimportant 

information.38 Moreover, as every molecule and reaction is unique, the selection of a consistent and 

general set of physical properties as universal molecular descriptors is highly challenging. 

Considering this challenge, we proposed that all physical parameters can eventually be traced back to a 

compound’s (2D) Lewis structure, which contains the connectivity of all atoms in a simplified molecular 

topology. For example, DFT calculations require 3D structures as input, which are ultimately generated 
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based on the topological connections given in the Lewis formula. Thus, Lewis structures can be 

considered to be the lowest common denominator in organic chemistry. In fact, human chemical 

intuition has often been based on understanding and rationalizing 2D connectivity. However, while 

human receptivity is limited, machine learning algorithms bear the potential of identifying new and 

unknown patterns within molecular structures.11 Thus, we hypothesized that Lewis structures could 

serve as ideal inputs for the machine-learning-based prediction of chemical reactivity (Figure 1c). 

 

Figure 1. Conceptual sketch of a universal prediction platform for organic chemistry. a) General 

correlation of structure, property and reactivity of organic molecules. b) Property-based prediction for 

specific applications using physical parameters as molecular descriptors. c) Concept of structure-based 

prediction as a universal approach. One model can be used for several applications such as prediction 

of properties, selectivities and yields. ML: machine learning, MLR: multivariate linear regression, DFT: 

density functional theory. 

As a first step towards realizing this goal, we sought to identify a suitable machine-readable 

representation of Lewis structures. Due to their simple and explicit description of a molecular structure, 

string representations (SMILES, InChI, etc.) are commonly used in chemoinformatics.39,40 However, 

algorithm-based pattern recognition is challenging with such strings, as they do not have a fixed length 

or a defined starting point.41 A straightforward solution to this problem is offered by molecular 

fingerprints.42 These bit vectors have been designed for substructure and similarity searches, and have 

been successfully used in virtual screening for drug discovery.43,44 Furthermore, they have been used in 

quantitative structure activity relationship (QSAR) models to correlate biological activity or properties 



 
 

4 
 

with chemical structure.45–47 A number of different fingerprints have been developed, which can all be 

computed efficiently on a subsecond timescale.42 Moreover, independent of molecule size, molecular 

fingerprints are consistent in length. Thus, we considered that they would be well-suited as inputs for 

machine learning models.48 

Herein, we present a structure-based machine learning platform for property and reactivity prediction in 

(organic) chemistry. This approach can be easily adopted and applied to existing problem sets, since it 

relies only on SMILES representations of all involved molecules as inputs, which are automatically 

converted into the corresponding molecular fingerprints. Specifically, for each molecule an array of 24 

diversely configured fingerprints is generated using RDKit as a python package.49 This multiple 

fingerprint feature (MFF) input, matched to the observed experimental data, is used to train a machine 

learning model, which is eventually capable of predicting properties or reactivity beyond the training 

data set (Figure 2). 

 

Figure 2. The multiple fingerprint feature (MFF) model. a) Use of fingerprints as a molecular 

representation for machine learning models. The multiple fingerprint feature can be applied to diverse 

problem sets. b) Standard workflow for the prediction model based on multiple fingerprint features 

(MFF). Only features are depicted, and targets are left out for clarity. Model selection is performed by 

5-fold nested cross validation (CV). ML: machine learning. 

A vast number of machine learning algorithms have been developed over the last decades, which can be 

loosely categorized into distance-based and non-distance-based methods.50 Distance-based approaches 

build on the assumption that similar input generates similar output, and vice versa. However, in organic 

chemistry, structural similarity does not necessarily correlate with similar reactivity. Thus, we assumed 

that non-distance-based algorithms, such as random forests or neural networks that rely on (complex) 

decision trees, were best suited for our predictive tool. We selected a multi-parameter random forest 

algorithm, as it offers many advantages such as high robustness and low computational cost. However, 

it should be noted that its extrapolative properties beyond the trained target space are inherently limited. 

We implemented a variational hyperparameter optimization for model selection based solely on the 

training data (nested cross-validation, Figure 2b).51 The implementation was conducted using the Python 

package Scikit-learn.52 
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At the outset of our investigations, we observed that every single fingerprint performed differently for 

each problem set and that no universally applicable fingerprint existed (Figure 2a). Even within a single 

specific data set, the best-performing fingerprint changed for different train/test splittings. Furthermore, 

the selection of a best single fingerprint for the prediction of an unknown (out-of-sample) test set, solely 

based on the training data, could not be achieved in all cases.53 To circumvent this problem, we sought 

to use an array of multiple fingerprints in order to generate a more general and robust input that would 

provide the best possible representation of the Lewis structure. 

Current descriptor-based prediction models typically require molecules that have at least one structural 

motif, atom or functional group – a reactive center – in common. Thus, a model which was originally 

designed to predict yields for reactions of aryl halides, will – without major modifications – not be able 

to assess e.g. chiral catalyst systems (and vice versa). Our fingerprint-based model, however, was 

developed to be applicable to a variety – ultimately any – organic chemical prediction problem. 

Therefore, as a first step, its applicability to a series of structurally different molecules was 

demonstrated. We decided to investigate the HOMO (highest occupied molecular orbital) – LUMO 

(lowest unoccupied molecular orbital) gap, as obtained from DFT calculations (Figure 3a, see SI for 

computational details). For this purpose, we selected a database of more than 2900 small organic 

molecules from our group’s chemical inventory. Here, we were pleased to find that the MFF model was 

capable of predicting HOMO–LUMO gaps with high accuracy: Using a random 70/30 split of the 

abovementioned dataset, very good correlation between observed and predicted HOMO–LUMO gaps 

was obtained, as indicated by an average R2 of 0.89 over ten random cross-validation steps (Figure 3b). 

Since the HOMO–LUMO gap is a property of the overall molecule, the multiple fingerprint feature 

model seems to not only represent and compare local substructures of a molecule, but rather global 

molecular characteristics. This result served to reinforce our original hypothesis, that (computed) 

molecular properties can eventually be traced back to patterns in the (2D) Lewis structure.  

 

Figure 3. Prediction of orbital energies. a) Calculated HOMO–LUMO gaps as an explicit molecular 

property. Calculated HOMO and LUMO geometries shown for 2-fluoro-5-nitroaniline. b) Performance 

evaluation of the MFF model. Plot given for one explicit division. 

It should also be noted that orbital energies have commonly been used as descriptors in MLR and 

machine learning models.6,30 This indicates that our model should also be applicable to more complex 

reactivity-based data sets. More precisely, we aimed to demonstrate this generality by testing multiple 

data sets of increasing complexity available in the literature, that had successfully been applied in 

machine learning studies. It should be emphasized that we do not intend to question the relevance and 

importance of the reported models, but rather wish to present an alternative approach in order to unify 

organic chemical prediction models. 
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The prediction of stereoselectivities of catalytic reactions has been of great interest to the chemical 

community and a major focus of many MLR models.4–10 Recently, Denmark and co-workers described 

a machine-learning based approach for the prediction of enantioselectivity using chiral phosphoric acid 

(CPA) catalysts.31 The possibility to predict (parts) of this data using MLR models trained with other 

nucleophiles was later demonstrated by Sigman and co-workers.54 In the initial work, Denmark et al. 

chose an asymmetric N,S-acetal formation as a model reaction. The training set included combinatorial 

variations of 43 CPA catalysts, five N-acyl imines and five thiols, resulting in a total of 1075 reactions 

(Figure 4a). A new steric parameter, the average steric occupancy (ASO), based on DFT-computed 3D 

representations of multiple conformers was developed to represent the catalysts. Weighted grid point 

occupancies in combination with calculated electronic parameters were used to train a machine learning 

model in order to predict enantioselectivity (ΔΔG in kcal/mol). A distance-based support vector machine 

algorithm was found to perform best on a random 600/475 split of training and test data (<MAE> = 

0.152 kcal/mol, average over ten random divisions).31 We found that our model performed with slightly 

higher accuracy (<MAE> = 0.144 kcal/mol, average over ten random divisions) using a random forest 

algorithm, while a one-hot encoded model as statistical probe resulted in lower correlation (<MAE> = 

0.163 kcal/mol, average over ten random divisions) (Figure 4b). In their original work, the authors 

divided the data for out-of-sample prediction into a common training set, a test set for substrates (sub), 

a test set for catalysts (cat) and one for both (sub-cat). The same division was analyzed using our MFF 

model, which showed good accuracy in all three test sets. In particular, the performance for the most 

challenging catalyst out-of-sample predictions (cat, sub-cat) stands out. While a one-hot encoded model 

resulted in very low correlation measures, the simple MFF model performed nearly as well as the 

original complex descriptor model. These results further demonstrate the validity of this multiple 

fingerprint feature approach and its transferability to different chemical problems. 

Interestingly, the substrate out-of-sample test set could also be predicted with high accuracy using a one-

hot encoded model, which only contains the information whether a compound is included in the reaction. 

This demonstrates that such models can be powerful for pattern recognition in complex statistically 

correlated data sets, which has also been utilized by Cronin and co-workers.29 
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Figure 4. Prediction of enantioselectivities. a) Asymmetric N,S-acetal formation using chiral 

phosphoric acid (CPA) catalysts by Denmark et al.31 b) Comparison of the original model, a one-hot 

encoded model as statistical probe and the MFF model (mean absolute error (MAE) in kcal/mol given 

as correlation measure). Plots for the MFF model given. 

In comparison to stereoselectivities, the quantitative prediction of yields can be even more demanding, 

since they are influenced by many parameters and not only rely on one elementary step. In a recent 

report, Dreher, Doyle and co-workers described a machine learning approach to predict reaction 

performance in C–N cross coupling reactions.30 The training data, including combinatorial variation of 

four reaction components applying an additive-based approach,55 was collected using high-throughput 

experimentation. All possible combinations of 15 aryl halides, four ligands, three bases and 23 isoxazole 

additives were evaluated in a total of 4140 reactions (Figure 5a). The molecules were represented by 

electronic, atomic and vibrational descriptors that were extracted from DFT calculations. A variety of 

regression models was subjected to a random 70/30 split into training and test data, and a random forest 

model was found to show the best performance in predicting product yields (R2 = 0.92). Pleasingly, we 

found that our simplified model based on a universal input strategy resulted in comparable correlation 

(Figure 5b, <R2> = 0.93, average over ten random divisions).  

However, such a random 70/30 split of the entire combinatorial data, consisting of only 46 different 

molecules, results in a training set which contains all molecules at least once. Consequently, a one-hot 

encoded model as statistical probe showed slightly lower but still very good performance (<R2> = 0.89, 

average over ten random divisions).56 The appropriate test to prove the relevance of chemical features 

in such models is out-of-sample prediction, i.e. the prediction of reactivity for molecules which were 

not included in the training data set. Thus, the authors split the isoxazole additives into a variety of 

representative training and test sets and could prove good performance of the chemical feature model in 

these cases.57 The same division for out-of-sample prediction using multiple fingerprints features (MFF) 

as input, showed comparable correlation in three of four test sets.58 It should be emphasized that the one-

hot encoded models performed significantly worse (Figure 5b).  
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Figure 5. Prediction of yields. a) C–N cross coupling reactions of 4-methylaniline with various aryl 

halides by Dreher, Doyle et al.30 b) Comparison of the original model, a one-hot encoded model as 

statistical probe and the MFF model (R2 given as correlation measure). Plots for the MFF model given. 

As a last – and most demanding – application, we aimed to use an experimental data set which had 

neither been specifically designed nor used for machine learning. In 2015, Cernak, Dreher et al. 

performed an automated high-throughput screening on a nanomole scale in order to find suitable 

coupling conditions for C–heteroatom bond forming reactions.24 In a Pd-catalyzed reaction, coupling of 

one electrophile, 3-bromopyridine, with 16 different nitrogen, oxygen, carbon, phosphorus and sulfur 

nucleophiles was evaluated (Figure 6a). For this, 16 catalysts and six bases were investigated, giving a 

total of 1536 reactions which were carried out on nanomole scale using around 0.2 mg of material per 

reaction in less than one day. The relative conversion, determined by liquid chromatography–mass 

spectrometry (LC–MS) analysis, was used for quantification. This exemplifies a “real-world problem”, 

as for unknown complex molecules an accurate yield determination can hardly be carried out before the 

synthesis of the compound. Thus, we aimed to directly predict the relative conversion using our MFF 

model in a similar manner to the previously reported yield prediction. Encouragingly, a random 70/30 

split of the data set resulted in good correlation for reactivity prediction (Figure 6b, <R2> = 0.76, average 

over ten random divisions). In contrast, a one-hot encoded model as the statistical probe showed 

significantly lower performance (<R2> = 0.59, average over ten random divisions), demonstrating the 

generalizability of the MFF approach. Moreover, out-of-sample prediction for catalysts could be 

achieved. Therefore, the data of twelve catalysts was used to predict the reaction outcomes of the 

remaining four catalysts (test cat). While a one-hot encoded model gave no correlation at all, the MFF 

model showed satisfactory performance (R2 = 0.64), further underlining its abilities to learn chemical 

structures and potential to predict chemical reactivity. 



 
 

9 
 

 

Figure 6. Prediction of reactivity. a) Nanomole-scale reactivity evaluation of C–heteroatom coupling 

reactions by Cernak, Dreher et al.24 b) Comparison of a one-hot encoded model as statistical probe and 

the MFF model (R2 given as correlation measure). Plots for the MFF model given. 

Conclusion 

In summary, we report a machine-learning-based prediction platform for diverse applications in organic 

chemistry. A numerical representation of 2D Lewis structures, the multiple fingerprint feature (MFF), 

was developed, which can be computed efficiently in seconds for a large number of molecules. Since 

this model is based on the assumption that reactivity can be directly derived from molecular structures, 

it should be applicable to any problem related to (small) organic molecules. Its generalizability was 

demonstrated on four examples of increasing complexity using a random forest algorithm. First, the 

ability of the MFF input to represent and compare diverse molecular structures was demonstrated by the 

prediction of HOMO–LUMO gaps as an explicit molecular property. Furthermore, prediction of 

reaction performance, enantioselectivities and yields could be achieved with similar accuracy to 

established descriptor-based models, which rely on problem-oriented parameter selection. It should be 

noted that the generation of the simple and intuitive structure-based model is several orders of magnitude 

faster. Finally, the general applicability of this approach was shown on a data set (obtained from high-

throughput experimentation) which had not been used for machine learning before. To aid the rapid 

uptake of this approach, we provide a readily applicable software tool, and the development of an 

extended software package is ongoing in our group. In the light of rapid development of improved 

machine learning algorithms and new molecular representations such as graph-convolutional networks, 

we believe that this generalized structure-based approach will help to rapidly accelerate the adoption of 

machine learning based prediction models in molecular chemistry. 
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