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Abstract 

A fully automated, computer-controlled test stand capable of rapidly creating and 

electrochemically characterizing any arbitrary liquid electrolyte solution is described.  

Hundreds of different electrolytes were studied, and the results were used to verify the 

precision and accuracy of the system.    To test the functionality of the approach, several 2-

dimensional co-solvated electrolyte solutions containing blends of aqueous sulfates and 

nitrates were rapidly created and examined automatically.  The test stand took less than a 

day to conduct these searches, while conventional manual methods would have taken much 

longer. The demonstrated standard error of the test-stand was 0.5 mS/cm on conductivity 

and 0.02 V for voltage stability window measurements, and several of the combinations 

studied revealing surprisingly high voltage stability and conductivity values.   The 

demonstrated success of the test-stand in a 2-dimensional search spaces shows the promise 

of conducting high speed co-optimization studies of liquid electrolytes  in particular when 

used in concert with a machine learning-based real time/in-loop data assessment 

computational package.    

 

  



 2 

 

Introduction 

There have been multiple reports of experimental methods for the rapid assessment of 

materials for energy applications, with an increase in high-throughput combinatorial 

techniques in the 1990’s.[1]  Specifically, materials for catalysis,  photocatalysis,  solid state 

photonic conversion, and energy storage have all been explored, at times with success.[2] 

Commonly, these studies have focused on solid phase functional materials, with far fewer 

efforts being devoted to the study of liquid phase materials such as electrolytes for batteries.  

At the same time, many of the electrolyte systems used, especially for lithium-ion batteries, 

have multiple co-solvents and additives (along with at least one salt species).[3, 4]  With 

this level of complexity, comprehensively assessing the full range of combinations of 

constituents and identifying optimal combinations, even with high 

throughput/combinatorial techniques, is not practical.  This is especially true as the number 

of electrolyte constituents grows, and the problem becomes a nearly untenable many-

dimensional co-optimization exercise.     

 

Concurrently, the emergence of data-intensive methodologies such as predictive machine 

learning and other related computational techniques that leverage heretofore unexplored 

computational power,  provide a new opportunity to use data sets that are one or more orders 

of magnitude larger than have been contemplated by prior generations of researchers.   The 

ongoing work around the materials genome project/movement has also sped up the 

applications of computationally intensive techniques to the functional materials domain.[5-

8]  Recently there has been growth in the field of integrating a high throughputs data 

acquisition test stand to a data-intensive computational node such that subsequent 

experimental iterations are based on the data collected and are controlled autonomously. 

These approaches have found success in the nano/biological where the rapid screening and 

selection of novel pharmaceuticals or functional molecules has been demonstrated by 

several groups[9, 10].  To our knowledge, however, there has never been a test stand 

disclosed that is capable of mixing a completely arbitrary electrolyte solution and assessing 

various attributes (both physical and electrochemcical) of that liquid in a real time,  semi-

continuous fashion.   
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Such a test stand needs to be able to create an electrolyte solution that is arbitrary in 

composition, rapidly test multiple characteristics, and then publish the collected data to a 

server for integration.   As such,  we have designed and assembled an electrolyte 

metering/mixing/assessment test stand capable of making and evaluating any liquid 

electrolyte with up to n distinct constituents, where n is 10 in this case but is, in principle, 

unlimited.  Our first demonstration focuses on the measurement of three key parameters; 

pH, conductivity, and electrochemically functional voltage stability window, though the 

addition of many other measurement such as viscosity, electrolyte/electrolyte charge 

transfer capability, and corrosion currents (to name a few) may be implemented (and will 

be explored in future work).   To demonstrate function and prove out this system, we have 

chosen to focus on aqueous solvated systems containing salts with differing cations and 

anions;  Na and Li cations and NO3/SO4.  We do these because there is virtually no data 

concerning the range of possible  behaviors of mixed cation/anion aqueous solution 

chemistries (though there is interest in this approach); only several studies with a few data 

points having been collected to date.[11-14]  We also note that the system is completely 

compatible with organic solvent solutions and we intend to apply this to the study of lithium 

ion battery electrolytes in the near term.  

 

Experimental  

 

Figure 1 contains both a simple control flow diagram and  pictorial representation of the 

system.   The intended use mode of this system is to have a machine learning software 

package that incorporates both data collected on the system and information from 

computational models to inform subsequent experimental steps with the intention of 

discovering optimal performance parameters based on user-supplied objective functions.  

This paper is focused on describing the experimental stand that is able to autonomously 

gather the data and report it back to a shared database, while future publications from our 

group will describe the integration of this experimental set up with the machine learning 

platform.  We break our system down into two parts:  the hardware and software platforms.   
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Hardware Platform: 

As shown in the the simple experimental flow diagram in figure 2(a), up to 10 liquid 

precursors (which are either solvated salt solutions or pure solvents)  are contained in 

individual vessels that feed into a 10-port rotary stream selector valve made by VICI Valco. 

The valve was directly controlled VICI’s universal (USB) power supply/controller. 

Plumbing was constructed of either 1/16” or  ⅛” OD ETFE tubing terminating with ¼-28 

UNF flat-bottom flangeless fittings. The output/common port of the valve connected to a 

high-precision positive-displacement low-volume pump made by Fluid Metering, Inc 

(FMI). The pump’s wetted components were ETFE and alumina and utilized a valveless 

reciprocating piston design. These pumps allow for precise dosing and flow-rate metering 

in both forward and reverse directions consistently over millions of cycles. They were 

controlled via a proprietary Labview module that varied the inputs of pump speed, 

acceleration, direction, and strokes for each ingredient and step. Flow out of this pump 

entered a solenoid-controlled 3-way valve made by Cole-Parmer with all PTFE wetted 

components. Valve switching was mediated by an Agilent 34970a Data Acquisition/Switch 

Unit and controlled through an open source driver in LabView.  

 

The output of this valve went either (a) straight to the waste bottle (when being 

flushed/cleaned) or, (b) into the mix vessel. The waste bottle was a 2L HDPE GL45 bottle 

and the mix vessel was a  10mL polished 316L SS walled cylinder affixed to a Thermolyne 

Maxi-Mix vortex mixer. The outlet port of this mixing vessel taped into the bottom-most 

point of the internal chamber’s conical base ensuring complete extraction of mixed 

electrolytes and connected to second FMI metering pump. Mixed contents were then 

transferred into a series of flow-thru devices which measured and recorded ionic 

conductivity, pH, and voltage stability window.  

 

A Consort C3410 2-channel multi-parameter analyzer performed pH and 

conductivity measurements via a Thermo Fisher Orion 9863BN micro pH probe and a 

Topac K=1.0 4-pole glass/Pt conductivity probe, respectively. A custom PTFE flow through 

housing was made for both probes. Additionally, the entire conductivity probe fixture was 

mounted on a buoyancy assistance mechanism that vertically inverted to ensure the chamber 
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was filled to eliminate air pockets and also ensure complete drainage. The final components 

in the system were a flow-through three-electrode cell connected to a Palmsens 4 

potentiostat. The three-electrode cell contained two Pt 0.5mm wire electrodes (WE/CE) and 

an Ag/AgCl (sat’d KCl) reference. Once again, a Labview VI architecture controlled test 

initiation and data collection using the Palmsens.   

To quickly assess the potentials at which the electrolytes undergo electrolysis under 

anodic and cathodic bias conditions,  the electrolyte fluid is subjected to a stair-case 

potentiometry experiment in the electrochemical test cell; the Palmsens imposed four fixed 

currents on the working electrode, first cathodic then anodic, for a total of eight current 

steps. The Palmsens measures the voltage response at the electrode in one-second 

increments. The fixed current densities are 111, 22.2, 5.55, and 1 mA/cm^2. The first step 

is held longer in both the cathodic and anodic steps to promote formation of bilayer and 

other interface structures. The test runs in a total of 60 seconds, resulting in a fast way to 

experimentally screen for the electrochemical voltage window of a particular electrolyte 

formulation.  We note that different techniques will yield slightly different absolute values, 

however we suggest that our approach provides for accurate comparative assessment.  

In order to describe the current-voltage response curve with a single value (e.g. for 

use in machine-learning driven optimization), we calculate tangent lines of this curve 

joining current steps 2 and 3 (22.2 and 5.55 mA/cm^2) in both the cathodic and anodic 

regions. These tangent lines are extrapolated to the zero-current line (i.e. x-axis  intercept 

on current-voltage response curve), to generate an estimate for cathode and anode voltage 

stability.  The approach is similar to that reported elsewhere, though in this case it is fully 

automated and values are obtained in a matter of minutes.[11]  

 

 

Software platform: The software control architecture of the test-stand is described 

schematically in Figure 2(b). The experimental hardware is orchestrated by Labview that is 

run on a dedicated control CPU. This computer also hosts a web server and HTTP endpoints 

to command the experiment through Labview. All experimental inputs and outputs are 

communicated over HTTP in a JSON format. The web server logs all input and output data, 

as well as all relevant meta-data, including ambient temperature, the identity of the 
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experimenter, chemical inventory and batch identifiers, potentiometry parameters, and 

more. 

 

A Python-based application program interface (API) was developed to interface with the 

web-server, managing all inputs and outputs in a simple manner. Dragonfly, our Bayesian 

machine learning optimization toolkit used to optimize multicomponent electrolytes, also 

interfaces with this same Python API to command the test-stand.   The implementation of 

the Dragonfly toolkit is not disclosed in this work, and will be reported in a future 

publication.  

 

Calibration, Accuracy, and Baseline testing 

 

Comprehensive control studies were completed to assess the accuracy and precision of test-

stand measurements. Potential sources of errors included measurement noise (for both the 

conductivity meter and the electrochemical cell), pumping/volume/metering related errors 

(due to relative effects of priming and viscosity), and contamination errors (due to potential 

electrolyte residue left in the closed volumes of the system’s plumbing).  

 

Contamination studies:  The impact of cross-contamination between contrasting solutions 

was assessed with a study alternating high and low concentration KCl solutions, in sets of 

8 experimental data points. In this case, conductivity measurements were made while 

alternating the concentration between 1.0 and 0.1 M, doing 4 separate metering and 

measurements for each of the concentrations.   

 

Conductivity accuracy testing: To assess how repeatable the system when introducing and 

assessing the conductivities of solutions with contrasting compositions, two concentrations 

of KCl conductivity standards (0.1 M and 1.0 M) as well as K2SO4 standards(.1 M and 0.5 

M) were used.  75 repeats of the following  sequence of concentrations were conducted: 1.0 

M stock solution, 0.1 M stock solution, and finally machine dilution of 0.5 M stock solution 

down to 0.1 M solution, with each run being done twice with the only second being the 

intended recorded value (see contamination study). 
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Volumetric measurement and pumping errors:  The accuracy in delivering repeatable and 

known amounts of liqud was assessed by repeatedly measuring the conductivity of 0.1 M 

KCl made in two different ways:  (a) the as-made 0.1 M lab-standard and (b) an 

autonomously diluted solution starting with a 1.0 M and creating a 0.1 M by mixing with 

de-ionized water in the test-stand.   

 

Demonstration study:   

 

To demonstrate the range and versatility of the system, we selected several proof-of-concept 

aqueous-solvated anion and cation pairs.  Specifically, electrolyte solutions of mixed 

lithium and sodium nitrate and sulfate were automatically created that had a wide range of 

anion and cation ratios.  Conductivity and voltage stability values were then extracted using 

the protocols described above. The full 2-dimensional experimental matrices were measured 

by taking 1 ml increments of each stock solution and mixing them at the corresponding 

steps.  The test matrix also included dilutions of stock solution in1 ml increments to set the 

bounds of the grids. Each individual point measurement took approximately 7 minutes and 

so the hundreds of distinct experiments represented here were completed in a matter of days.  

In doing this set of experiments, we have elected to represent the composition of the 

electrolyte in terms of molar fraction.  Defining molar fraction of a specific solute in a binary 

solution was done through recording the volume of each stock solution used for a point 

experiment, the molar mass of each solute, and the molality of each stock solution. These 

values were used along with equation (1) to determine the mass fraction of a solute in stock 

solutions. These mass fractions were used along with equation (2) to determine molar 

fraction of solute in each stock solution.  

 

       (1) 

 



 8 

        (2)  

 

In these equations, Molal is the molal content of a solvated species while µ is the 

molecular weight of the salt in question.  The volume ratios of stock solutions in each binary 

solution was then used in conjunction with the molar fractions of those stock solutions to 

determine specific solute molar fractions for binary solutions. 

 

Table 1 contains a comprehensive listing of the experiments performed in the course 

of collecting the data published in this work.  
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Table1:  Listing of experiments performed to both test system integrity and perform 
simple surveys of mixed anion/cation solutions of varying composition.  

 
 

Results and Discussion: 

        

Precision and Accuracy Assessments 

 

Figure 3 shows the result of experiment #1 listed in table 1.  The data show that as the 

system switches between solutions with significantly different electrolyte concentrations 

(conductivity values), 1 and 0.1 M KCl solution in this case, it takes 3 measurements to 

converge on a steady state value.  The first of four measurement made after changing 

electrolyte type was clearly influenced by residual content in the system from the prior 4 

measurements, however as subsequent electrolyte is automatically introduced to the test 

vessel, the measurement value converges to the anticipated steady state value.  Based on 

these results, we assess that a reported data-point is a set of three experimental runs: the first 

with de-ionized water, the second with the desired fluid blend, and the third being an 
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identical repeat of the second; this third run is recorded as the measured value, though data 

from all experiments are logged and used to assess system behavior retrospectively.  

 

 

The data contained in figure 4 represents experiment #2 as listed in table 1 and shows data 

from repeated conductivity measurements on electrolytes that were either from a pre-mixed 

0.1 M solution or from a 0.1 M solution mixed by the system starting with 1 M and adding 

deionized water.  The lab standard conductivity had a very low variability of 0.2 mS/cm 

(showing the repeatability of the conductivity measurement), while the system-mixed 

solution had a variability of 0.4 mS/c.  This variation was caused by a combination of the 

measurement variability shown using the pre-mixed solution and small differences in 

solution metering that the system introduced. Accounting for the largest ranges of  

error/variability encountered, we are henceforth able to report a standard error in 

conductivity measurement as 0.5 mS/cm, which is very reasonable given that most 

measurements made were in the 10’s or 100’s of mS/cm.   

 

The data in Figure  5 is the outcome from experiment #3 and is similar to that of experiment 

#2 in illustrates volumetric metering error as well as measurement precision, though in this 

case is for the potentiostat-based voltage stability window measurement on K2SO4 solution 

of 0.1 M produced either as a lab standard or automatically by the test stand.  The values 

were bounded by 20 mV on either side. Measurement accuracy is assessed by comparing 

the test-stand’s IV curve to literature results, shown in SI figures. As such we report standard 

error on voltage window measurements as 0.02 V.   

 

Demonstration study 

    The conductivity and voltage window properties of 3 binary salt surveys 

(experiments #4 – 6) are shown in figure 6.  To provide a comparative anchor, LiNO3 was 

present in all three binary surveys. The data show that NO3
- containing solutions, especially 

those with relatively high LiNO3 content, demonstrated superior voltage stabilities when 

compared to all other dilute solutions (fig. 6D). NO3
- containing solutions also demonstrated 
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superior conductivities, additionally the NaNO3 solution proved more conductive than 

LiNO3 solutions (fig. 6C).   

           The surveys seen in figure 6 also show the conductivity and voltage stability of 

single salt solutions as a function of concentration. As expected, each solute demonstrated 

enhanced conductivity and voltage stability at higher concentrations.  The NO3
- ion- 

containing solutions had the highest voltage windows and conductivities. NaNO3 solutions 

demonstrated the highest conductivities, as well as the highest solute molar fractions.  To 

compare solutions of  NaNO3 and LiNO3, the molar fraction of each solute was compared at 

a point with a similar conductivity. A NaNO3 solution with a conductivity was 148.1 mS/cm 

represented 6.04 molar%, while a LiNO3 solution with a conductivity of 148.0 mS/cm was 

7.84 molar%, suggesting that NaNO3 solutions are more conductive than LiNO3 solutions 

per mole of solute. Regardless of the molar fraction the NO3
- ion containing solutions were 

more conductive and had larger voltage windows than SO4
2- containing solutions. 

Figure 6A exhibited conductivity values for mixed LiNO3 and Li2SO4 solutions that 

had marked improvements at dilute concentrations of both solutes, while at higher 

concentrations the mixed solutions exhibited conductivities more similar to single solute 

LiNO3 solutions, suggesting that NO3
- is the dominant anion. While the NO3

- ion is more 

prevalent in higher concentration mixed solutions, dilute mixed solutions also exhibited 

conductivities more similar to single solute LiNO3 solutions. 

The binary LiNO3 and NaNO3 solutions shown in figures 6C and 6D exhibited 

increased conductivity with increased solute molar fractions; at higher concentrations of 

solute, the conductivity was dominated by the more soluble NaNO3. At lower 

concentrations, solution conductivities over 140 mS/cm were reached quickly; however, 

conductivities of pure LiNO3 solutions were higher than those of the mixed solutions for 

comparable solute molar fractions. The binary LiNO3 and NaNO3 solutions exhibited 

increases in conductivity and voltage window that appear to emerge from the mixing of the 

solute species in solution. This is most noticeable at the (0.016 LiNO3, 0.106 NaNO3, 2.83 

V, 172.7 mS/cm) peak; only in mass fractions above 0.128 did single solute NaNO3 solutions 

reach above 2.8 V windows, and the highest voltage window reported for the single solute 

LiNO3 solutions was 2.77 V. Other such increases in voltage window are present at the 

points (0.0500 LiNO3, 0.085 NaNO3, 2.81 V, 163.8mS/cm), and (0.066 LiNO3, 0.063 NaNO3, 
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2.84 V, 160 mS/cm).  At total solute molar fractions of around 0.122, 0.135, 0.129 these 

points have higher voltage windows than the corresponding pure NaNO3 stock solution, 

suggesting that ion concentration is not only variable of significance. While the first of these 

peaks mentioned likely falls within the margin of error, the other peaks are highly 

encouraging. These points also illustrate conductivity decreasing with the decreasing mass 

fractions of NaNO3. There appears to be no trend for voltage window among these three 

peaks. 

Binary mixture solutions in figure 6C demonstrated that the performance of the 

LiNO3 tended to be dominate over the Na2SO4. Conductivity values tended to be higher in 

the binary mixed region than for either single solute solution; however, the voltage windows 

were on par with those exhibited by single solute LiNO3 solutions 

 

Summary/Conclusion: 

A novel design was used to build an experimental test-stand that was then controlled by a 

custom software package capable of mixing and electrochemically characterizing 

electrolyte solutions autonomously. Rapid testing of hundreds of different aqueous solutions 

of sodium and/or lithium nitrate and/or sulfate using the stand was used to carry out control 

studies.    The demonstrated standard error of the test-stand was 0.5 mS/cm on conductivity 

and 0.02V on voltage stability window measurements. The test-stand was then used to query 

several 2-dimensional electrolyte search spaces discovering novel binary electrolyte 

solution blends such as aqueous LiNO3 and NaNO3 blends with voltage stabilities 

exceeding 2.8 V. The test-stand took less than a day conduct these searches while 

conventional manual methods would likely have taken much more time. The demonstrated 

success of the test-stand in these 2-dimensional search spaces merits its wider use in 

searching the complex, high-dimensional and expensive to search design space of electro-

chemistry, in particular when used in concert with a machine learning based real time/in-

loop data assessment computational package.    
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Figure Captions 

 

Figure 1: Control flow diagram of full test apparatus. The test-stand is orchestrated by a 

Labview web server on a nearby Control CPU, commanded over HTTP requests by a Python 

API. The machine-learning software plugs into the Python API to order experiments. 

Electrolyte models are fed into the machine-learning software as statistical priors. All data 

and meta-data are saved on a cloud database. 

 

Figure 2:  (a) One-line flow diagram of the autonomous liquid electrolyte mixing/test 

system.  (b) Pictorial representation of all system components. 1: Vented glass bottle w/ 

pickup tube (x10), 2: 10 position rotary valve 3: Calibrated positive displacement pump 

(Dosing) 4: 3-way valve, 5: Waste container, 6: Vortex mixer, 7: Calibrated positive 

displacement pump (Transfer), 8: 4-pole ionic conductivity probe w/ flow-thru cell, 9: 

Buoyancy assistance inversion mechanism, 10: Pt-Pt-Ag/AgCl flow-thru e-chem cell, 11: 

Waste container 

 

Figure 3:  

Mixed solution conductivity data for two different concentrations of KCl solvated in 

water.  The experiments conducted consisted of a repeating loop of 8 conductivity 

measurements, four on the 1 M concentration solution followed by four on the 0.1 M 

concentration solution.  The first measurement after changing concentration was an 

expected outlier as some of the solution from the previous run was left in the system.  The 

Blue, dotted lines indicate standard conductivity values for each formulation at 20 C. The 

test-stand converges to within one-standard error (0.5 mS/cm) of true value at the second 

run. 

 

Figure 4 : KCl control study comparing a lab-made 0.1 M solution with a 1.0 M solution 

diluted to 0.1 M by the test-stand. Black, dotted lines indicate confidence bounds of one-

standard-error above and below the mean. The test-stand accurately mixes and measures 

solution conductivity, and with confidence bounds of 0.2 mS/cm. 
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Figure 5: Voltage stability window measurement study results using 0.1 M K2SO4 

solutions that were both pre-prepared  and produced automatically by the test-stand. 

Black, dotted lines indicate confidence bounds of one-standard-error above and below the 

mean. The test-stand accurately mixes and measures the stability window, and with 

confidence bounds of 20 mV. 

 

Figure 6. Results from two-dimensional scattered data of conductivity and voltage window 

vs. electrolyte composition (salt mass fraction) taken by the test-stand. Conductivity is 

represented by the color axis for figures (a), (c), and (e3) on the left. Voltage is represented 

color axis for figures (b), (d), and (f) on the right. The black dots on all figures represent the 

data points as gathered by the test stand, the colored contour map represents interpolation 

of the data. X and Y-axes represent the molar fractions of solutes. (a) - conductivity map of 

the mixed cation case where binary mixtures of aqueous Li2SO4 and LiNO3 solutions are 

used; (b) - voltage stability map of  the mixed cation case where binary mixtures of aqueous 

Li2SO4 and LiNO3 solutions are used; (b) - conductivity map of mixed anion case where 

binary mixtures of aqueous LiNO3 and NaNO3 solutions are used; (d) - voltage stability map 

of the mixed mixed anion case where binary mixtures of aqueous LiNO3 and NaNO3 

solutions are used; (e) - conductivity map of mixed cation and anion case where aqueous 

LiNO3 and Na2SO4 solutions are used; (f)- voltage stability map of mixed cation and anion 

case where aqueous LiNO3 and Na2SO4 solutions are used. The error for voltage and 

conductivity are constant across all test and are ±0.02 V and ±0.5 mS/cm respectively. See 

SI figure  for three-dimensional representations. 

 


