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We present a protocol based on unitary transformations of molecular orbitals to reduce

the number of non-vanishing coefficients of spin-adapted configuration interaction expan-

sions. Methods that exploit the sparsity of the Hamiltonian matrix and compactness of

its eigensolutions, such as the FCIQMC algorithm in its spin-adapted implementation, are

well suited to this protocol. The wave function compression resulting from this approach is

particularly attractive for anti-ferromagnetically coupled polynuclear spin systems, such as

transition metal cubanes in bio-catalysis and, Mott and charge-transfer insulators in solid

state physics. Active space configuration interaction calculations on the stretched N2 and

square N4 compounds, the chromium dimer, and a [Fe2S2] model system are presented as

a proof-of-concept. For the Cr2 case large and intermediate bond distances are discussed,

showing that the approach is effective in cases where static and dynamic correlation are

equally important. The [Fe2S2] case shows the general applicability of the method.
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1 Introduction

Poly-nuclear transition metal and f-element systems play central roles in bio-chemical pro-

cesses and as building blocks of Mott and charge-transfer insulators. Understanding their

electronic structure is of paramount importance to control their properties. At the atomic

level, these compounds have complex electronic structures, with several unpaired electrons

per metal center distributed among near-degenerate valence d (or f) orbitals. Orbital de-

generacies are partially lifted by ligand-field effects, at the price of even more complex elec-

tronic structures characterized by charge-transfer excitations between metal centers and

ligands (consider the super-exchange mechanism in solids as an example1) and degeneracies

between metal and ligand orbitals. These systems also exhibit multiple quasi-degenerate

low-lying spin-states whose relative order is easily altered by small external perturbations.2

Locally (at each metal center) Hund’s rules suggest that the unpaired electrons have parallel

spins. However, kinetic-exchange interactions, including direct exchange and super-exchange

mechanisms, favor electrons residing in adjacent metal centers to couple with anti-parallel

spins, thus, inducing anti-ferromagnetism.3–9 Computational investigations of these systems

require advanced multi-configurational electronic structure methods, such as the complete

active space self-consistent field approach, CASSCF.10–14 However, for these methods even

the determination of the spin of the ground state is computationally demanding, and pre-

dictions of reaction mechanisms and electronic properties are in practice limited to systems

containing at most two transition metal atoms.15–18 When studying systems with numerous

unpaired and low-spin coupled electrons the limiting step is the exponential scaling of the

Hilbert space size with respect to size of the chosen active space.

This limitation is exemplified by the {Mn4CaO5} cluster of photosystem II. In its relaxed

form, the S1 state, the cluster consists of two d4-Mn(III) and two d3-Mn(IV) ions. The min-

imal active space for this system is the CAS(14,20), consisting of the valence orbitals and

electrons of the four metal centers. In the low-spin (singlet, S = 0) the configuration inter-

action (CI) vector contains ∼ 6× 109 Slater determinants (SDs) and ∼ 1× 109 configuration
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state functions (CSFs), quickly reaching the present computational limits. A more adequate

active space would also contain orbitals and electrons of the bridging oxygens, CAS(44,35),

largely exceeding the current computational limits.

In recent years, a number of methods have been developed to circumvent the exponential

scaling of CAS wave functions, that use algorithms such as DMRG19–28 or FCIQMC29–35 as

CI eigensolvers. Within the framework of the novel Stochastic-CASSCF approach36 active

spaces containing up to 38 electrons and 40 orbitals have been reported.37,38 In FCIQMC, a

finite number of “walkers” is used to stochastically sample CAS (or FCI) wave functions and

information is stored only for those SDs that are populated by walkers at the given instan-

taneous imaginary-time step. For a fixed number of walkers, the stochastic representation

of the wave function is generally more accurate for sparse wave functions than for dense

ones. Thus, it seems relevant for methods that benefit from wave function sparsity, such

as FCIQMC, to ask whether techniques exist that can reduce the number of non-vanishing

coefficients in CI wave functions.

The graphical unitary group approach (GUGA)39,40 is a technique that constrains multi-

configurational wave functions to a chosen total spin, S. The method has been pioneered by

Paldus, Shavitt, and others39,41–47 and it has been used for decades in conventional MCSCF

methods. Since 2011, the GUGA approach has also been adapted to generalized active space

SCF wave functions (GASSCF)48 and to the GASPT2 approach.49 Recently, a spin-adapted

version of the FCIQMC algorithm based on GUGA has also been developed in our labo-

ratories.50 When used in conventional CI procedures, GUGA represents the most compact

way of storing CI expansions, as it contains a much smaller number of parameters (the CSF

coefficients) than the ones in Slater determinant expansions. However, SD representations

are more effective in direct-CI driven procedures, as the evaluation of the sigma vector,

σ = HC, only relies on the Slater-Condon rules and vectorization is possible.51,52 The ad-

vantage of both expansions, Slater determinants for computing the σ vector, and CSFs for

storing the wave function parameters, can be combined at the extra cost of efficient ways
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of transforming the wave function between the two bases. Already in 1976, Grabenstetter53

suggested one of such methods. This method is currently used in many chemistry software

packages, including MOLCAS,54 LUCIA55 and DALTON.56 More recently, an algorithm has

been suggested by Olsen57 that avoids the large spin-coupling transformation matrix and the

operation count can be reduced for systems featuring a large number of low-spin coupled

unpaired electrons.

Within the GUGA formalism one additional property emerges: Orbital re-ordering im-

pacts the sparsity of the CI Hamiltonian matrix and the number of non-vanishing CI coef-

ficients in the CI eigensolutions. This property is unique to CSF expansions and it is not

present when a SD basis is utilized. This property follows from the way CSFs are constructed

and coupled via the spin-free non-relativistic Hamiltonian operator, and it will be discussed

in great detail in the present document. The wave function compression is here analyzed

in combination with two orbital representations, commonly used in multi-configurational CI

approaches, the active natural orbitals (NOs) produced by diagonalizing the active space

one-body density matrix and, the localized active orbitals (LOs) that are obtained by lo-

calizing occupied and virtual orbital together (a not invariant transformation for HF wave

functions). Split-localized orbitals, obtained by localizing occupied and virtual orbitals sepa-

rately (an invariant transformation for HF wave functions) and mixed localized/delocalized

basis represent alternative routes.

We would like to emphasize that, although we use different orbital representations,

the aim of this work is not to compare between them, but rather to study the effect of

re-ordering schemes on the ground state wave function sparsity in a spin-adapted basis

within them. These re-ordering schemes are based on the occupation numbers for natu-

ral orbitals, real-space orbital separation arguments for localized orbitals, and generalized

active space48,52,54,58 orbital partitionings for both of them. Conventional CAS-CI proce-

dures as well as the spin-adapted FCIQMC algorithm are used to show the wave function

compression effect. The increased sparsity obtained for specific reordering schemes facili-
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tates the convergence of spin-adapted FCIQMC calculations with respect to walker distribu-

tions, and it is strongly recommended for poly-nuclear transition metal complexes with anti-

ferromagnetically coupled metal centers. The stretched N2 and N4 molecules, the chromium

dimer and a model system of the oxidized form of the [Fe2S2] cluster will be used as examples.

We discuss the theoretical foundation of the compression of spin-adapted wave functions

in Section 2, and present numerical examples in Section 3, using conventional CI procedures

and the stochastic FCIQMC algorithm. For the latter, we show that the convergence behavior

with respect to the total number of walkers can be greatly improved by taking advantage of

the wave function compression that follows orbital reordering.

2 Theoretical Details

2.1 Representation of CSFs

CSFs are generally represented by one of the three equivalent tables of Figure 1, known as

Gel’fand, Paldus and Weyl tableaux, respectively.43,59,60 The top row of the Gel’fand tableau
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Figure 1: (a) Gel’fand, (b) Paldus ABC, (c) ∆AC variation and (d) Weyl tableau represent-
ing a distribution of 6 electrons in 8 orbitals with total spin S = 1.

completely characterizes the electronic state of the considered system as it complies with the
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following two conditions

n∑
i=1

m1i = N, and
n∑

i=1
δ1,m1i

= 2S (1)

where n, N and S are the total number of orbitals, electrons and the total spin, respectively.

The m1i elements represent the individual entries of the top-row. The example of Figure 1

represents a system with eight orbitals (n=8, dimension of the top-row) and six electrons

(N=6, sum of the m1i entries) coupled to a triplet spin state (S=1, sum of 1-entries divided

by 2). The other rows in the Gel’fand tableau identify a specific CSF for the given electronic

state, as it will be explained in the following. Considering that Gel’fand tableaux contain

only 0, 1, and 2 entries,43 a more compact “three-column table” can be used, where the

number of 0’s, 1’s and 2’s is counted. This table is referred to as the Paldus ABC tableau

(Figure 1). The sum of the entries in Paldus ABC tableau equal the row index (from bottom

to top),

ai + bi + ci = i, (i = 1, . . . , n), (2)

thus, any two columns are sufficient to uniquely determine the state, and the specific CSF.

Paldus AC tableaux are derived from the ABC tableaux, by excluding the second column,

B. Paldus ABC (or AC) tableaux can be recast in “variation-tables” with ∆xi = xi − xi−1

(x = a, b, c), as shown in Figure 1. Starting from the top-row of Paldus ABC, or ∆ABC

variation tableau, four actions recursively follow to obtain the possible lower rows, and

generate the CSFs for the targeted electronic state:

• remove one empty orbital, ∆ai = 0, ∆bi = 0, ∆ci = 1,

• reduce spin by 1
2 , ∆ai = 0, ∆bi = 1, ∆ci = 0 (negative spin-coupling),

• remove one doubly-occupied orbital and one empty orbital, and increase spin by 1
2 ,

∆ai = 1, ∆bi = −1, ∆ci = 1 (positive spin-coupling), and

• remove one doubly-occupied orbital, ∆ai = 1, ∆bi = 0, ∆ci = 0
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Lexically ordered CSFs are obtained when the steps above are followed in order. While the

∆a and ∆c entries are restricted to 0 and 1 values, the ∆b column may assume 1, 0 and -1

entries. All CSFs for a given state can be constructed by allowing the possible variations of

ai, bi and ci according to the actions given above, decreasing the values of ai, bi and ci down

to (0 0 0). From the ∆AC tableaux, the Weyl representation is promptly obtained by

writing the row-indices of the left 1-entries and the right 0-entries, as indicated in Figure 1.

Each Weyl tableau represents a CSF with a defined total spin, S, and the left and right

columns represent the positively and negatively spin coupled contributions in a cumulative

sense.

The Step-Vector. The four possible actions that lead from the top-row of the ABC

tableaux to the bottom can be expressed in a more compact form via the step-vector, defined

as

di = 2∆ai −∆ci + 1. (3)

Depending on the action that leads to the lower row index, the step-values will assume values

from 0 to 3. Table 1 summarizes the correspondence between the possible step values and

the ∆ai, ∆bi and ∆ci variations.

Table 1: Mapping between step-vector values, di, and the four possible variations of ai, bi,
ci and the equivalent nomenclature, d′i, chosen in this manuscript.

di ∆ai ∆bi ∆ci d′i
0 0 0 1 0
1 0 1 0 u
2 1 -1 1 d
3 1 0 0 2

Step-values, di, of 0, 1, 2 or 3 values correspond to empty, singly occupied orbitals increasing

the total spin by 1/2 (positive spin-coupling and referred to as u in this work), singly occupied

decreasing the total spin by 1/2 (negative spin-coupling and referred to as d) or doubly

occupied ith-orbital, respectively. d′i in Table 1 corresponds to the more intuitive step-value

naming convention used to specify CSFs in the rest of this manuscript.
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The Graphical Unitary Group Approach, GUGA. When constructing the CSFs

of a given multi-configurational wave function, rows in Paldus ABC tableaux repeat for

different CSFs. Repetitions can be avoided by listing only non-equivalent rows. The table

collecting all the non-equivalent rows is referred to as a distinct row table (DRT) (Table 2),

introduced by Shavitt.39 Each row of a DRT is identified by a pair of indices, (i, j), with

i = ai + bi + ci being the level-index, and j the lexical row-index, a counting index, such

that j < j′ if ai > a′i or if ai = a′i and bi > b′i. CSFs are generated by connecting rows

with decreasing level-index. Allowed connections between rows are indicated by downward

chaining indices. For a given lexical row the downward chaining indices define the connected

rows of the lower level row after the action of the four possible step-values, d0, d1, d2 and d3.

Table 2 summarizes the DRT of a CAS(6,6) wave function, coupled to a singlet spin state.

A more compact representation of DRT tables is obtained by means of graphs (Figure 2).

Each vertex of the graph represents one distinct row of the DRT. Arcs connect only vertices

linked by downward chaining indices. Vertices are labeled by the lexical ordering index, j,

and arcs by the corresponding step-value. The head-node correspond to the top-row and the

tail-node to the bottom-row (0 0 0) of the corresponding DRT table. Vertices with same

i-value are aligned horizontally. Vertices are also left-right sorted with respect to the a and

b values of the DRT. The left-right ordering ensures that the slope of each arc corresponds

to its step value. Direct walks through the graph, following only vertices connected by arcs,

lead to all possible CSFs of the given multi-configurational wave function. In Figure 2,

three CSFs have been highlighted. The step-vector string associated to the orange path,

d = |111222〉, corresponds to the CSF |uuuddd〉 (u = positively spin-coupled, d = negatively

spin-coupled), the green path to the CSF |ududud〉 and the blue path corresponds to the

closed shell |222000〉 CSF (color online).

GUGA representation of GAS wave functions. When the GUGA representation

of CSFs is used for generalized active space (GAS) wave functions,48 a number of direct

walks in the GUGA graph are not permitted by the occupation number constraints of the
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Table 2: Distinct row table for N=6, n=6 and S=0. Zeroes under d0–d3 columns repre-
sent not allowed downward chaining. Paldus ABC representations of CSFs are obtained by
selecting one row for each level index, i, according to the downwards chaining indices.

a b c i j d0 d1 d2 d3
3 0 3 6 1 2 0 3 4
3 0 2 5 2 5 0 6 7
2 1 2 5 3 6 7 8 9
2 0 3 5 4 7 0 9 10
3 0 1 4 5 11 0 12 13
2 1 1 4 6 12 13 14 15
2 0 2 4 7 13 0 15 16
1 2 1 4 8 14 15 17 18
1 1 2 4 9 15 16 18 19
1 0 3 4 10 16 0 19 20
3 0 0 3 11 0 0 0 21
2 1 0 3 12 0 21 0 22
2 0 1 3 13 21 0 22 23
1 2 0 3 14 0 22 0 24
1 1 1 3 15 22 23 24 25
1 0 2 3 16 23 0 25 26
0 3 0 3 17 0 24 0 0
0 2 1 3 18 24 25 0 0
0 1 2 3 19 25 26 0 0
0 0 3 3 20 26 0 0 0
2 0 0 2 21 0 0 0 27
1 1 0 2 22 0 27 0 28
1 0 1 2 23 27 0 28 29
0 2 0 2 24 0 28 0 0
0 1 1 2 25 28 29 0 0
0 0 2 2 26 29 0 0 0
1 0 0 1 27 0 0 0 30
0 1 0 1 28 0 30 0 0
0 0 1 1 29 30 0 0 0
0 0 0 0 30 0 0 0 0

GAS specifications. A GAS6(6,6) is considered as an example, that contains six active

electrons and six active orbitals, each orbital in a separate GAS sub-space. The six GAS

sub-spaces are populated by only one electron and thus referred to as disconnected spaces

(inter-space electron excitations are not allowed). This GAS wave function corresponds

to a configurational space where only spin re-couplings via exchange-driven spin-flips are

permitted. As a guide for the eye, the cumulative occupation number, Nelec, associated

to each vertex is shown in Figure 2. Some of the arcs of Figure 2 are not permitted for

this GAS6(6,6). For instance, the arc connecting vertices (30) and (27) corresponds to
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Figure 2: (Color online) Graph representing the DRT of Table 2. The different step-values,
di, connecting the nodes of the highlighted paths are shown.

populating the first orbital with 2 electrons, which is not permitted by the chosen GAS. The

paths permitted by the GAS6(6,6) restrictions are visualized in Figure 3. The filled black

circles indicate the allowed vertices within the GAS restrictions. The thin black lines and

circles of Figure 3, represent CSFs of the auxiliary space, a space that is forbidden by GAS

rules, but necessary for the coupling of permitted CSFs via double excitations. The gray

lines and circles are prohibited by GAS rules and not necessary for the auxiliary space.

2.2 Coupling of CSFs via the Hamiltonian operator

The coupling of two CSFs (or SDs) via the spin-free non-relativistic Hamiltonian operator

Ĥ =
∑
pq

hpqÊpq +
∑
pq,rs

(pq|rs)
(
ÊpqÊrs − δpsÊrq

)
=
∑
pq

hpqÊpq +
∑
pq,rs

(pq|rs) êpq,rs (4)
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Figure 3: (Color online) Graph representing the DRT of Table 2 with the additional
GAS6(6,6) constraints discussed in the main text. The orange, green and thick black paths
between them represent the allowed CSFs of the GAS wave function, connecting the allowed
vertices, indicated by the filled circles. The thin black lines and circles belong to the aux-
iliary space (see main text) and gray nodes and arcs are prohibited by GAS rules and not
necessary for the auxiliary space.

is given by

〈m′|Ĥ|m〉 =
∑
pq

hpq〈m′|Êpq|m〉+
∑
pq,rs

(pq|rs) 〈m′|êpq,rs|m〉 (5)

where hpq and (pq|rs) are the one- and two-electron integrals and 〈m′|Êpq|m〉 and 〈m′|êpq,rs|m〉

the coupling coefficients between two SDs or CSFs. Of course, the integrals depend on the

shape of the orbitals, while the coupling coefficients depend on the entries in |m〉 and |m′〉

(depending if a SD or CSF basis is chosen). The Slater-Condon rules apply for the coupling

coefficients between SDs, which can be evaluated very efficiently. However, these rules are

not applicable for CSFs and consequently wave function optimizations in CSFs basis have
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been less popular than optimizations in SDs basis. Paldus, Shavitt and others40,41,47 have

demonstrated that efficient evaluation of CSF coupling terms are possible via the GUGA

approach.

One-electron coupling coefficients. One-electron coupling coefficients, 〈m′|Êpq|m〉,

can be computed graphically by first identifying |m〉 and |m′〉 paths in the correspond-

ing GUGA graph followed by their connection via the excitation operator, Êpq. For non-

vanishing coefficients the walks of |m′〉 and |m〉 on the graph must coincide outside the (p,q)

range, defined by the excitation operator, Êpq. The value of the coupling coefficient is inde-

pendent of the overlapping outer regions, and depends only on the shape of the loop formed

by the two CSFs in the range defined by the operator Êpq. At each row level, k, (inside the

range) non-vanishing terms satisfy the conditions

∆bk = b′k − bk = ±1, (6)

2a′k + b′k = 2ak + bk + 1. (7)

Shavitt proved that coupling coefficients can be factorized as

〈m′|Êpq|m〉 =
q∏

k=p

W (Qk; d′k, dk,∆bk, bk) (8)

and values of W (Qk; d′k, dk,∆bk, bk) are tabulated.61 The factors, W , depend on step vector

values, d′k and dk, ∆bk = bk − b′k, and the bk value of |m〉 at the k-level. They also depend

on the k-segment shape, Qk, which indicates the relation of the k-level arcs of the two CSFs,

|m′〉 and |m〉. If the k-arc of |m′〉 is on the left, coincident or on the right of the k-arc of

|m〉, Qk is labeled as raising (R), weight (W ) or lowering (L), respectively. For the segments

where the loop begins (bottom) and ends (top) under-bars and over-bars (R,L and R,L),

respectively, are used as labels. As an example, the 〈2uud0d|Ê15|uuuddd〉 term is promptly
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evaluated using the labeling rules defined above, and Table III of Reference 61:

〈2uud0d|Ê15|uuuddd〉 = R1
31 · +1R2

11 · +1R3
11 · +1R2

22 ·R
1
22 ·W22 (9)

where we have used the ∆bkRbk

d′
k

dk
symbols for each k-level inside the loop.

When orbitals are re-ordered, the graphical representation of any CSF in a GUGA graph

and the couplings between CSFs are altered and thus non-vanishing coupling terms may

vanish after orbital re-ordering.

Two-electron coupling coefficients. Matrix elements of two-body excitation opera-

tors ÊpqÊrs can either be evaluated by introducing a summation over intermediate states,

|m′′〉 (resolution of identity),

〈m′|ÊpqÊrs|m〉 =
∑
m′′
〈m′|Êpq|m′′〉〈m′′|Êrs|m〉. (10)

or directly in factorized form similar to Eq. (8), see Reference 40. Similar to the one-body

coupling coefficients, orbital re-ordering also impacts these terms, thus, it is possible to

increase the number of vanishing coupling terms and produce a more sparse Hamiltonian

matrix and compact representation of the many-body wave function.

3 Applications

This section is dedicated to examples that show how sparsity of spin adapted CI wave

functions is increased by orbital reordering and rotations.

3.1 The Nitrogen Molecule

The nitrogen molecule at dissociation is used to demonstrate how orbital re-ordering impacts

the sparsity of the many-body CI expansion when CSF representations are utilized. Consider

a CAS(6,6) active space, consisting of six MOs formed by linear combination of the 2p atomic

13



orbitals on each atom, and their electrons. The wave function is optimized to a singlet spin

state. Two set of orbitals are considered: delocalized natural orbitals, with bonding and anti-

bonding character, and localized orbitals (atomic-orbital-like). C1 point group symmetry has

been used for all cases. The CAS(6,6) CI expansion contains 175 CSFs. These CSFs are

represented by all possible walks in the GUGA graph of Figure 2. The number and the list

of non-vanishing terms in the optimized CI wave function for each type of orbital shape and

ordering are given in Table 4 and Table 5.

Natural orbitals. Two ordering schemes have been adopted for the natural orbitals of

the CAS(6,6) wave function, the canonical ordering, with bonding orbitals (σ, πx and πy)

preceding the anti-bonding orbitals (σ∗, π∗x and π∗y), and the pair ordering, where orbitals are

sorted in (σ, σ∗), (πx, π
∗
x) and (πy, π

∗
y) pairs. The pair ordering has the effect of reducing the

number of non-vanishing terms in the CI expansion with respect to the canonical ordering,

from 20 to 14 CSFs (Table 4).

In the NO basis there is a strong coupling between bonding and anti-bonding orbital

pairs, i.e. σ ↔ σ∗ and πx/y ↔ π∗x/y. As a consequence, the significant off-diagonal molecular

integrals at dissociation are the exchange-like, (σσ∗|σσ∗) and (πx/yπ
∗
x/y|πx/yπ

∗
x/y), and the

“coherent” combinations of them, i.e. (σσ∗|πx/yπ
∗
x/y) (8-fold permutational symmetry im-

plied). We will explain the increased sparsity of the pair ordering scheme using the example

of three CSFs shown in Table 3.

Table 3: Three exemplary CSFs of the CAS(6,6) of N2 at dissociation in a NO basis.

Canonical order: σ πx πy π∗y π∗x σ∗

|1〉 : 2 2 2 0 0 0
|2〉 : 2 u d u d 0
|3〉 : 2 u u d d 0

Pair order: σ σ∗ πx π∗x πy π∗y

|1′〉 : 2 0 2 0 2 0
|2′〉 : 2 0 u d u d
|3′〉 : 2 0 u u d d
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The coupling between states |1〉 ↔ |2〉 and |1〉 ↔ |3〉 in both ordering schemes is driven by

the large integral contributions (πxπ
∗
x|πyπ

∗
y). In the canonical ordering the coupling coefficient

is non-zero for both 〈2|ê52;43|1〉 and 〈3|ê52;43|1〉. The coupling between states |2〉 and |3〉 is

driven by the exchange contributions (πx/yπ
∗
x/y|πx/yπ

∗
x/y) and the Hamiltonian matrix element

is given by

〈2uudd0|Ĥ|2udud0〉 =
√

3
2 [(34|34) + (25|25)− (35|35)− (24|24)] ,

where (34|34) and (25|25) correspond to the large and identical integrals between the bonding

and anti-bonding π orbitals. Thus in the canonical ordering configurations |1〉, |2〉 and |3〉

are coupled, causing the wave function to be dense.

The coupling coefficient between state |1′〉 and |3′〉 for the pair ordering is zero for the

strong (πxπ
∗
x|πyπ

∗
y) integral contribution and is only driven by the much smaller (πxπy|π∗xπ∗y)

and similar contributions. At the same time, in the pair ordered case, the matrix element

〈20uudd|Ĥ|20udud〉 =
√

3
2 [(45|54) + (36|63)− (36|64)− (35|53)] ,

cancels to zero, as all the involved integrals corresponds to identical—and weak—(πxπy|πxπy)

types.

To summarize, the pair ordering reduces the connectivity within the Hilbert space, by

either vanishing coupling coefficients for strong integral contributions or cancellation of equal

integral contribution, due to the sign structure of the resulting coupling coefficients. This

reduced connectivity within CSFs, leads to a more sparse ground state wave function in a

NO basis with pair ordering.

Localized orbitals. Localization of the natural orbitals produces atomic-orbital like

molecular orbitals. The pair ordering scheme
(
pA

x p
B
x , p

A
y p

B
y , p

A
z p

B
z

)
and the atom separated

ordering scheme
(
pA

x p
A
y p

A
z , p

B
x p

B
y p

B
z

)
, have been considered.

In the pair ordering scheme the wave function contains 5 non-vanishing terms. A single-
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configurational (yet multi-determinantal) wave function is obtained when the atom separated

ordering is adopted. Localization schemes without particular attention on the orbital order-

ing utilized is not a sufficient condition for optimal wave function compression.

The five non-vanishing CSFs, for the pair ordered localized orbitals, are graphically shown

in Figure 2. They are all the ones inside (and including) the orange and green direct walks.

These CSFs share a common property: they all feature singly-occupied orbitals. Thus, a

GAS wave function can be constructed, with each orbital in a separate GAS sub-space, and

the spaces kept disconnected. The graph of Figure 3 represents such a wave function.

Table 4: Number of non-vanishing CSFs in the CAS(6,6) of N2 and the CAS(12,12) of N4
at dissociation geometry.

Shape Ordering N2 system N4 system
Delocalized Canonical 20 2073(a)
Delocalized Pair/Type 14 1100(a)
Localized Pair/Type 5 119
Localized Atom separated 1 20

(a) These values may change as a function of the local rotations of
the px and py orbitals at each site. See main text for details.

The single configurational character of the CI expansion in the localized orbitals and atom-

separated ordering completely reflects the chemical nature of this system, that is, two non-

interacting nitrogen atoms, each in its ground state, 4S, anti-ferromagnetically coupled to

form a singlet spin-state compound. This information is not promptly accessible when or-

bitals are delocalized or localized and pair ordered.

The GAS Hamiltonian matrix. The single-configurational character of the wave function

in atom separated ordering scheme is bound to the sparsity of the corresponding Hamiltonian

matrix. Only a matrix with vanishing off-diagonal elements can provide a strictly single-

configurational eigenvector. For simplicity and without loss of generality, only the GAS6(6,6)

Hamiltonian matrix is discussed. The GAS6(6,6) wave function contains a total of five CSFs

(listed in the third column of Table 5). The GAS6(6,6) Hamiltonian matrices in the localized

orbital basis and using pair ordering and atom separated ordering are reported in Figure 4.
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Table 5: List of non-vanishing CSFs for the CAS(6,6) wave function of N2 at dissociation.
Natural orbitals and localized orbitals are shown. Natural orbitals in canonical ordering are
sorted as

(
σπxπy, σ

∗π∗xπ
∗
y

)
. Natural orbitals in pair ordering are sorted as

(
σσ∗, πxπ

∗
x, πyπ

∗
y

)
.

Localized orbitals in pair ordering are sorted as
(
pA

x p
B
x , p

A
y p

B
y , p

A
z p

B
z

)
. Localized orbitals in

atom separated ordering are sorted as
(
pA

x p
A
y p

A
z , p

B
x p

B
y p

B
z

)
.

Natural Orbitals Localized Orbitals
Canonical Ordering Pair Ordering Pair Ordering Atom Separated

222000 202020 ududud uuuddd
220200 022020 uduudd
2udud0 200220 uuddud
u2du0d 020220 uududd
202020 202002 uuuddd
ud20ud 022002
022002 200202
2uudd0 020202
u2ud0d uudd20
uu20dd uu20dd
200220 20uudd
ud02ud 02uudd
020202 uu02dd
u0du2d uudd02
0udud2
002022
uu02dd
u0ud2d
0uudd2
000222

uuuddd uududd uduudd uuddud ududud


−107.22
− 0.02 −107.21

0.03 − 0.02 −107.23
0.03 − 0.02 0.04 −107.23

− 0.06 0.04 − 0.07 − 0.07 −107.31

uuuddd uududd uduudd uuddud ududud


−107.44
0.00 −107.19
0.00 0.00 −107.19
0.00 0.00 0.00 −107.19
0.00 0.00 0.00 0.00 −107.19

Figure 4: GAS6(6,6) Hamiltonian matrices on the basis of localized orbitals in pair ordering
(left) and atom separated ordering (right).

As an example, two off-diagonal elements, 〈ududud|Ĥ|uuuddd〉 and 〈uduudd|Ĥ|uuuddd〉 are

evaluated, and it is shown why in the atom separated ordering these terms vanish while in

the pair ordering they do not.
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General one-electron excitation operators, Êpq(p 6= q) applied to any of the CSFs of the

GAS6(6,6) wave function necessarily generate CSFs outside the GAS expansion (CSFs with

doubly occupied orbitals), and no contribution to the off-diagonal elements of the GAS

Hamiltonian matrix can arise from them. Only exchange two-particle operators can con-

tribute to these elements (double spin-flips), namely

〈m′|ĤGAS|m〉 = 1
2
∑
pq

(pq|qp) 〈m′|ÊpqÊqp|m〉. (11)

The resolution-of-identity (Equation 10) is used for their evaluation. The |m′′〉 configurations

of the auxiliary space, that simultaneously couple with |uuuddd〉 and |ududud〉 (or |uduudd〉),

are found by applying conditions (6) and (7). The black thin lines of Figure 3 represent the

CSFs of the auxiliary space that simultaneously couple with |uuuddd〉 and |ududud〉, and

the resulting coupling coefficients are listed in Table 6.

Table 6: Non-vanishing (pq|qp) 〈ududud|ÊpqÊqp|uuuddd〉 terms.

Term Value

(26|62) 〈ududud|Ê62|u2udd0〉〈u2udd0|Ê26|uuuddd〉 −
√

2
2 (26|62)

(15|51) 〈ududud|Ê51|2uud0d〉〈2uud0d|Ê51|uuuddd〉 −
√

2
2 (15|51)

(26|62) 〈ududud|Ê26|u0udd2〉〈u0udd2|Ê62|uuuddd〉 −
√

2
2 (26|62)

(15|51) 〈ududud|Ê15|0uud2d〉〈0uud2d|Ê51|uuuddd〉 −
√

2
2 (15|51)

The coupling terms with the auxiliary |u2ud0d〉, |2uudd0〉, |0uudd2〉 and |u0ud2d〉 CSFs

vanish as the corresponding (25|52) and (16|61) integrals, that are multiplied with, equal

zero in both orbital representations. As a result

〈ududud|Ĥ|uuuddd〉 =
√

2
2 [(26|62) + (15|51)] , (12)

and

〈uduudd|Ĥ|uuuddd〉 =
√

2
3 [(26|62) + (15|51)] + 2

√
2

3 [(24|42) + (35|53)] . (13)
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For the atom separated ordering case, the two-electron repulsion integrals of Equation (12)

and (13) vanish, as the orbitals of the pairs (2, 6), (1, 5), (2, 4) and (3, 5) are spatially sepa-

rated. In the pair ordering case, instead the orbitals of these pairs reside on same atom and

the two-electron repulsion integrals do not vanish, leading to a non-vanishing Hamiltonian

matrix element.

3.2 Square N4 System

In this section the square N4 model compound at dissociation and in its singlet spin-state

is discussed. A CAS(12,12) active space that consists of the three 2p orbitals on each atom

and their electrons is chosen. The corresponding CI expansion contains a total of 226512

CSFs in the C1 point group symmetry. Natural and localized orbitals are used as basis for

the CI procedure, using canonical, type, and atom separated orderings. The type ordering

for the localized orbitals is the following:

(2pA
x 2pB

x 2pC
x 2pD

x )(2pA
y 2pB

y 2pC
y 2pD

y )(2pA
z 2pB

z 2pC
z 2pD

z ).

The number of non-vanishing terms for each orbital representation is summarized in Table 4.

As for the nitrogen molecule, the most compact representation of the CI wave function is

obtained when localized orbitals in atom separated ordering are utilized. The correspond-

ing wave function contains only 20 non-vanishing terms. This number can be derived from

a GAS12(12,12) wave function with disconnected spaces and singly occupied orbitals only.

Under these conditions, the first three electrons, residing on the first atom, are coupled to

a quartet, the last three electrons are coupled anti-ferromagnetically to the previous ones,

locally with parallel spins, while the intermediate six electrons couple in all possible ways

with parallel or anti-parallel spin. The resulting CSFs are represented graphically in the

genealogical branching diagram of Figure 5. In the Type ordering the gray paths of Figure 5b
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do not vanish and, instead, they contribute to the CI expansion.

Type order

0
0.5

1
1.5

2
2.5

3

1
1

1
1

1
1

1 2 5 14
2 5 14

3 9 28
4 14

5 20
6

42

48

42

90
132

132

(a)

S

Na Nb Nc Nd

0
0.5

1
1.5

2
2.5

3

1
1

1
1

1
1

0 0 1 0
0 1 4

1 3 10
2 6

3 10
4

0

20

0

20
20

20

(b)

S

Figure 5: Genealogical branching diagram for the N4 model system at dissociation in the
localized orbital basis and considering only spin-flips of singly occupied orbitals with type
ordering (a) and atom separated ordering (b).

3.3 The Chromium dimer, CAS(24,48).

Small active spaces have been considered for the N2 and N4 systems, with wave functions

that can be optimized by conventional methods (Davidson in its Direct-CI formalism). GAS

restrictions, similar to the nitrogen cases, discussed in Sections 3.1 and 3.2, could also be ap-

plied to the valence orbitals of the chromium dimer at dissociation in a localized basis. Con-

sequently the valence only active space for the chromium dimer at dissociation, CAS(12,12),

can be related to the CAS(6,6) of the nitrogen molecule, with the two chromium atoms in

their high-spin, 7S, ground state and anti-ferromagnetically coupled. This CAS(12,12) wave

function would be single configurational if represented by localized orbitals in atom separated

ordering, and will not be discussed further.

Instead, we are interested in a considerably larger active space, CAS(24,48) (see Refer-

ence 17 for details on the active space). Conventional CI optimization procedures are pro-

hibitive, and the spin-adapted implementation of the FCIQMC algorithm has been utilized.

In the CAS(24,28) case, doubly occupied, singly occupied and empty orbitals simultaneously
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occur in the wave function, and a mixture of static and dynamic correlation contributions

characterizes this wave function, independently of the orbital representation chosen. Two ge-

ometries are discussed, one at the dissociation limit and one at a bond distance of 2.4Å—the

“shoulder region” of the potential energy curve—where a more complex wave function is to

be expected.

Dissociation limit. Figure 6 shows four spin-adapted FCIQMC calculations using

(a) delocalized orbitals in canonical ordering, (b) delocalized orbitals in pair ordering, (c)

localized orbitals in pair ordering, and (d) localized orbitals in atom separated ordering. For

case (b), pair ordering was adopted for all orbitals and, orbitals have been reordered such

that orbitals with p and s character (any shell) are in adjacent positions. In case (d), orbitals

have been sorted as

(3p4p5p4f4d5s3d4s)A (4s3d5s4d4f5p4p3p)B (14)

An unstable spin-adapted FCIQMC dynamics is observed for the delocalized orbitals in

canonical ordering even at a population of 20 × 106 walkers (20M). The wave function is

highly multi-configurational in this orbital representation, and walkers are evenly distributed

among the many equivalent configurations. As a consequence the occupation of the reference

CSF drops almost to zero, which in turn caused the energy estimate to diverge. It has been

observed already for the simpler N2 and N4 cases that pair ordering reduces the number of

non-vanishing configurations. In the present case this reduction is sufficient to stabilize the

FCIQMC dynamics. Yet, with a population of 20× 106 walkers the energy is not converged.

The localization schemes improve the dynamics, and the atom separated reordering has a

major effect on the sparsity of the wave function. Already with a population of 1×106 walk-

ers (1M) a satisfactory dynamics is observed with a projected energy estimate ∼ 30 kcal/mol

lower than the case with localized orbitals in pair ordering, and ∼ 40 kcal/mol lower than

the energy estimate obtained with delocalized orbitals and with higher walker population
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Figure 6: Spin adapted FCIQMC dynamics for the chromium dimer at the dissociation
limit, using a (24,48) active space.

(20M). Furthermore, increasing the walker population from 1×106 to 50×106 walkers causes

a marginal lowering of the projected energy, by less than 1 milliHartree, indicating that con-

vergence with respect to walker population has been reached.

Intermediate bond distance. Also at the intermediate bond distance of 2.4 Å the or-

bital representation has an impact on the wave function sparsity (Figure 7). An unstable

dynamics is observed also in this case, when delocalized orbitals in canonical ordering are

used. The dynamics improves when orbitals are ordered in bonding and anti-bonding pairs
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and even more when localized orbitals in atom separated ordering are utilized. The latter

representation lead to a FCIQMC dynamics that, already at 5×106 walker population, is 22

kcal/mol lower than the dynamics on the basis of the delocalized and pair ordered orbitals

and higher walker population (20M).
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Figure 7: Spin adapted FCIQMC dynamics for the chromium dimer at a bond distance of
2.4Å, using the (24,48) active space.

3.4 The Fe2S2 model system.

In this section we show that orbital reordering can lead to higher sparsity in spin adapted CI

wave functions also in practical cases, where no obvious simplifications of the wave function

can easily be predicted. An active space of 22 electrons and 26 orbitals is considered for a

[Fe(III)
2 S2]2− model system (coordinates available in the SI),62 that consists of the 20 valence,
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3d, and double-shell, d′, orbitals on the metal centers, and the 6 3p orbitals of the bridging

sulfur atoms. Formally the sulfur orbitals are doubly occupied (12 electrons, S2−), and the

iron atoms are in their Fe(III) oxidation state (d5 configuration, 10 electrons), for a total

of 22 electrons. The low-spin state (singlet) with anti-ferromagnetically coupled spins at

the metal centers is characterized by a highly correlated wave function (details of the wave

function go beyond the scope of the present work).

Spin-adapted FCIQMC wave function optimizations have been performed on the basis of

the Stochastic-CASSCF(22,26)36 optimized natural orbitals. Two orbital ordering schemes

are discussed for this system, the canonical ordering and the pair ordering.

Similar to the Cr2 case, the spin-adapted FCIQMC dynamics are highly unstable, when

delocalized orbitals in canonical ordering are utilized (see Figure 8). The dynamics becomes

stable after the natural orbitals have been reordered following a qualitative pair ordering

scheme (yellow line in Figure 8). The pair reordering in this case is qualitative due to

the mixing of the sulfur atomic orbitals into the metal centered molecular orbitals. The

horizontal green line in Figure 8 corresponds to the Stochastic-CASSCF(22,26) energy in

a SD basis and using 1 × 108 walkers (100M). The spin-adapted FCIQMC energy estimate

using the same number of walkers is only ∼ 3 milliHartree above. This example shows the

paramount importance of a careful orbital re-ordering to enable stable FCIQMC dynamics.

4 Conclusions and Outlook

We have demonstrated that the sparsity of multi-configurational wave functions expanded

in CSFs depends on the orbital ordering, as well as orbital representation, the former feature

being unique to CSF expansions. Orbital transformations can be applied that greatly reduce

the number of non-vanishing CI coefficients of multiconfigurational wave functions. Bonding

and anti-bonding pair ordering for delocalized orbitals, and atom separated ordering schemes

for localized orbitals maximally increase the sparsity of spin-adapted wave functions for
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Figure 8: Spin adapted FCIQMC dynamics for the [Fe2S2]2– cluster, using a CAS(22,26)
active space. The green line corresponds to the converged Stochastic-CASSCF(22,26) wave
function using 1 × 108 walkers, and lies at -5092.9503 a.u. By increasing the total number
of walkers to 2× 109, the Stochastic-CASSCF calculation in a SD basis converges to a total
energy of -5092.9512 a.u., that can be used for future references.

the examples discussed in this work. The increased sparsity that follows from the orbital

reordering is greatly beneficial for methods that approximate FCI wave functions, such as

FCIQMC. This approach greatly enhances the convergence of the spin adapted FCIQMC

algorithm, and in certain difficult cases is found to be the only viable way to stable dynamics.

The protocol is general and can be applied to molecular systems of practical interest. A

simple reordering of the CAS(22,26) natural orbitals of a [Fe2S2]2− model system has been

discussed.

The aim of this work is to show the effect of re-ordering schemes within a chosen orbital

representation (delocalized or localized), and not to compare between them. However, our

results indicate that for complex molecular systems a mixed delocalized / localized orbital

representation is preferable, using a delocalized and pair ordered representation for orbitals
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that describe covalent bonds, and a localized and atom separated representation for singly

occupied orbitals (which will be investigated more thoroughly in future work). Localization

of covalent bonds can easily lead to unnecessary complications at the level of the wave

function, with new terms appearing to account for the orbital mixing. On the other hand a

localized representation for singly occupied orbitals guarantees the highest sparsity for anti-

ferromagnetically coupled polynuclear spin systems, removing the unnecessary entanglement

of electrons that follows from using delocalized orbitals for unpaired electrons (as already

shown for the simple N2 system).

5 Supplementary materials

The Supplementary Material contains details on: Listing 1: Cartesian Coordinates for the

FeS cluster model. Listint 2: OpenMolcas input for the FeS cluster model. Listint 3: NECI

input in SD basis for the FeS cluster model. Listint 4: NECI input in CSF basis for the FeS

cluster model. Listint 5: OpenMolcas input for the chromium dimer.
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