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Abstract

The quantum mechanical bespoke (QUBE) force field is used to retrospectively

calculate the relative binding free energy of a series of 17 flexible inhibitors of p38α

MAP kinase. The size and flexibility of the chosen molecules represent a stringent

test of the derivation of force field parameters from quantum mechanics, and enhanced

sampling is required to reduce the dependence of the results on the starting structure.

Competitive accuracy with a widely-used biological force field is achieved, indicating

that quantum mechanics derived force fields are approaching the accuracy required to

provide guidance in prospective drug discovery campaigns.
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Introduction

Free energy perturbation (FEP) based on molecular mechanics (MM) simulations can be

an effective guide during the hit-to-lead stages of a drug design campaign as it provides

a formally rigorous means to compute protein-ligand binding free energies.1–3 In practice,

the predictive ability of such simulations is effectively limited by two major factors, 1) the

accuracy of the underlying MM force field that is used for the rapid calculation of the

system energy, and 2) finite simulation times that can limit the conformational space ex-

plored.4 In the expectation of making such calculations routinely reliable, the development

of enhanced sampling methods is an active area of research,5,6 yet virtually all FEP simu-

lations employ transferable biological force fields, such as AMBER, OPLS, GROMOS and

CHARMM, all with quite similar functional forms and parameter fitting strategies.7 These

biological force fields, alongside their small molecule counterparts, have had wide success

to-date thanks to meticulous fitting of parameters to reproduce quantum mechanical (QM)

and experimental properties of sets of small organic molecules. However, there is room for

improvement.8–10 It is widely acknowledged that atomic point charges are sensitive to their

(local and long-ranged) environment, which is why small molecule force fields typically em-

ploy atomic charges that are fit to the molecular electrostatic properties (e.g. ESP or CMx

charges11), on a case-by-case basis. Interestingly, this leads to a disconnect between protein

and small molecule force fields, in which the former sets of atomic charges are read from a

transferable library, and the latter are derived using methods that are not always consistent

with the underlying biological force field. Also, standard libraries of parameters describing

torsional rotation about flexible bonds are often blamed for observation of unphysical con-

formations in MM simulations, and these parameters are often re-derived specifically for the

molecule under study.12–15

With regards to these issues, there has been recent interest in molecule-specific, or be-

spoke, force fields in which the parameters that govern the dynamics of the system are not

assigned from a library based on predetermined atom types, but instead are inferred directly
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from QM calculations specifically for the molecule of interest.15–18 One such example is the

QUantum mechanical BEspoke (QUBE) force field,18 which has a particular focus on scal-

ability to large system sizes and applications in the condensed phase.19,20 The QUBE force

field shares its functional form with OPLS, so that it retains the favorable computational

efficiency of transferable force fields, but differs in that as many parameters as feasible are

derived directly from routine, molecule-specific QM calculations. The ground state elec-

tron density of the molecule under study is first computed in a weak implicit solvent to

simulate the effect of environmental polarization.19 The density is then partitioned into a

set of approximately spherical atom-centered basins via the density derived electrostatic

and chemical (DDEC) atoms-in-molecule (AIM) approach,21,22 from which we compute the

environment-specific non-bonded parameters, including (atom-centered and off site) atomic

charges and Lennard-Jones parameters.18,19 Since the DDEC method is implemented in the

linear-scaling density functional theory code, ONETEP,23 we can derive these parameters

consistently for both small molecules and also systems comprising thousands of atoms, such

as proteins.24,25 QUBE bond and angle force field parameters are derived directly from the

QM Hessian matrix of small molecules, as described previously,26 and flexible torsions may

be parametrized by fitting to constrained one-dimensional QM dihedral scans.18 Parameter

assignment is automated by the QUBEKit software package.18

To date, the first generation of the QUBE force field has undergone extensive bench-

marking against established performance metrics, such as the prediction of the condensed

phase thermodynamic properties (density, heat of vaporization and free energy of hydration)

of over 100 small organic molecules.18 A custom library of bonded parameters for protein

simulations has been developed and validated via the comparison of molecular dynamics

trajectories with NMR observables.20 In all of these cases, QUBE performed to a similar

standard as established and optimized transferable force fields. In the context of FEP calcu-

lations, QUBE has been applied to the study of the benchmark L99A mutant of T4 lysozyme,

achieving a mean unsigned error (MUE) of 0.85 kcal/mol in the prediction of the absolute
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binding free energies of six benzene derivatives. However, typical hit-to-lead studies in drug

discovery scenarios are significantly more complex than the above study in terms of the sizes

of the ligands, the nature of their interactions, and their conformational flexibility.2,27,28 In

this letter, we therefore retrospectively calculate the relative binding free energies of a series

of 17 drug-like inhibitors of p38α MAP kinase (Figure 1). This represents a typical optimiza-

tion scenario involving both polar and non-polar substitutions around a benzene ring, with

activities that span 2–3 orders of magnitude (Table 1). As we shall discuss, the binding pose

is determined to a large extent by two flexible dihedral angles (φ1 and φ2, Figure 1), which

impose complex sampling requirements on the simulations. This set of transformations has

been the target for a range of activity prediction methods including FEP calculations, which

were used to demonstrate the importance of the initial water placement during Monte Carlo

(MC) simulations using the OPLS force field.29

R1

R2

R3

Cl Cl

O

N N
N S

φ1 φ2

pose 1
φ1 = −1◦, φ2 = 83◦

pose 2
φ1 = 26◦, φ2 = 244◦

Figure 1: (left) Core structure of the p38α MAP kinase inhibitors studied here. Key flexible
dihedrals (φ1 and φ2) are labelled. (right) Snapshots from FEP MC simulations of ligand
12 (yellow) highlighting binding poses 1 and 2.

Here, we begin by parametrizing molecule-specific force fields for the 17 p38 kinase in-

hibitors (plus compound 18, which does not have experimental data for comparison but is a

useful FEP intermediate) using the QUBEKit software.18 Namely, non-bonded (charge and

Lennard-Jones) parameters are derived using atoms-in-molecule partitioning of the ground

state electron density as described previously.18,19 Parametrization of the protein non-bonded

parameters is performed using the same protocols, while bonded parameters are read in from

5



Table 1: List of p38α MAP kinase inhibitors with their experimentally measured
IC50 activities.29

Compound R1 R2 R3 pIC50

1 H H H 6.602
2 H H F 7.000
3 H H CH3 5.854
4 H Cl Cl 6.097
5 H CH3 H 5.854
6 H CH3 CH3 5.721
7 H F H 6.347
8 CH3 H H 6.699
9 H Cl F 6.301
10 H Cl H 6.553
11 CH3 H Cl 6.745
12 Br H H 6.602
13 CH3 H CH3 6.577
14 OH H H 6.444
15 NH2 H F 6.658
16 Cl H F 7.444
17 F F F 8.046
18 F H H N/A

a custom library.20 Bond and angle parameters of the small molecules (1–18) are derived

using the modified Seminario method computed using the QM Hessian matrix at the opti-

mized geometries.26 Finally, parameters describing rotation about the two flexible dihedral

angles φ1 and φ2 are fit to constrained QM potential energy scans. Figure 2 shows the results

of the torsion parameter optimization for ligand 1. The fit to the underlying QM data is

very good with an average root mean square deviation between sampled QM and QUBE

torsional scans of 0.07 kcal/mol. For comparison, typical errors in excess of 1.5 kcal/mol are

observed using small molecule transferable force fields.30

By deriving the QUBE force field directly from QM, our goal is to provide accurate and

automated molecule-specific parameters that reproduce as closely as possible the full QM

potential energy surface. Figure 3 shows the correlation between QUBE and QM relative

energies of structures 3 and 10 extracted from Monte Carlo simulations (see later). The

correlation between QUBE and QM energetics is similar to that previously reported,18 and
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Figure 2: QUBE and QM potential energy surfaces for ligand 1 upon rotation of flexible
dihedrals φ1 and φ2.
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significantly QUBE does not predict any physically unreasonable structures (either bound

to the protein or in water) whilst retaining the fixed MM functional form that provides us

with a practical method for deployment in free energy predictions. Additional analysis of

torsion scans and correlations between QM and QUBE energetics for the remaining ligands

may be found in the Supporting Information.
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Figure 3: Comparison between QUBE and QM single point energies of structures of 3 (top)
and 10 (bottom) extracted from bound and unbound (in water) MC simulations. The mean
energies of each distribution have been shifted to zero. Also shown are the correlation (r2)
and root mean square errors (rmse, kcal/mol) between the two distributions.

Having parametrized the 18 inhibitors, we turn now to the computation of their rela-

tive binding free energies to p38 kinase. Free energy calculations were performed using the
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Figure 4: Two-dimensional dihedral distributions observed during the protein-ligand complex
simulations of ligands 1, 12 and 17. See also Figure 1 for indicative poses.

MCPRO software.31 The ligand binding site is expected to be hydrated, and so the JAWS wa-

ter placement algorithm32 was used to optimize the initial solvent distribution. As reported

previously,29 the majority of the ligands 1-17 are expected to bind in pose 1 (Figure 1).

Hence, we set up the ligands initially in pose 1, but employed the replica exchange with so-

lute tempering (REST) enhanced sampling method with the goal of reducing the dependence

of the computed binding free energies on the starting conditions. Importantly, in MCPRO,

the REST algorithm may be employed alongside the ‘flip’ protocol, in which selected dihe-

dral angles (here, φ1 and φ2) undergo Monte Carlo moves that are much larger than typical.

Figure 4 illustrates the effects of this sampling procedure. Ligand 1 is symmetric under 180◦

flips in φ2, and indeed approximately equal distributions of the two conformers are observed

at φ2 = 40◦ (pose 1) and φ2 = 220◦ (pose 2). Interestingly, despite starting in pose 1, 17

shows a single peak at φ2 = 250◦, indicating a strong preference for pose 2. This agrees with

previous observations using the OPLS force field,29 and x-ray crystal structures of similar

ligands33 (Figure 5). Of note, in that former study, MC simulations were required starting

from both poses 1 and 2 since interconversion between the two is not expected during these

simulations using either standard MC or molecular dynamics. In contrast, the use of the

REST/flip algorithm facilitates binding mode determination and free energy prediction from

a single MC run. Despite being asymmetric, 12 shows similar behavior to 1, with peaks
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around φ2 = 30◦ and φ2 = 210◦ (Figure 4). This is perhaps reasonable, since 12 is similar in

chemistry to 17, but the bulkier Br atom may hinder full inclusion into the pose 2 binding

pocket. Overall, we conclude that using the QUBE force field and REST enhanced sampling

algorithm described here, the asymmetric ligands 4–11 and 13–15 bind in pose 1, ligands

16–18 bind in pose 2, and ligand 12 is intermediate between the two.

Figure 5: Overlay of the crystal structure (PDBID: 3FC1, gray) with the last snapshot
(green) of the MC simulation of 17 bound to p38α MAP kinase.
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Figure 6: Absolute errors in predicted relative binding free energies computed using the
QUBE and OPLS29 force fields, compared to experiment.

Having elucidated the preferred binding poses of the 17 inhibitors, we turn now to the
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prediction of protein-ligand relative binding free energies. Figure 6 compares the errors in

the relative binding free energies computed using the QUBE protein/ligand force field with

experiment. For comparison, the corresponding quantities are also displayed for the OPLS

force field from previous work.29 Full details of the transformations and computed free en-

ergies are given in the Supporting Information. Overall, the mean unsigned error (MUE)

is 0.98 kcal/mol, which is competitive with the generally accepted accuracy of standard

biological force fields for transformations of this type2 and, in particular, with previous cal-

culations using the OPLS force field on this system (0.88 kcal/mol). The largest errors, using

the QUBE force field are for ligands 12–15, which all include bulky and/or polar substituents

at the R1 position (Figure 1), as well as ligand 7. The torsional profiles of these ligands are

all reasonable, and so it seems likely that non-bonded interactions and/or sampling errors

are to blame. We have found previously that QUBE can underestimate hydration free en-

ergies of some molecules containing bulky hydrophobic and hydroxyl functional groups by

up to around 2 kcal/mol.18 Other possibilities, highlighted by Luccarelli et al.,29 are that

changes in solvent distribution in the binding pocket and/or protein side chain conforma-

tional changes are not properly sampled during alchemical perturbation. To investigate the

adequacy of the REST method for sampling the complex binding mode of 12, we re-ran the

12→18 and 18→1 transformations starting with the ligand in pose 2. However, the error in

the relative binding free energy of 12 fell only from 1.8 kcal/mol to 1.5 kcal/mol, indicating

that the binding mode is sufficiently sampled during our simulations.

In summary, we have benchmarked the accuracy of the QUBE force field against rel-

ative binding free energies of 17 drug-like inhibitors of p38α MAP kinase. The selected

protein-ligand complex includes challenges due to sampling of protein-ligand binding modes

and binding site hydration, and is therefore representative of typical hit-to-lead optimiza-

tion projects. The mean unsigned error of 0.98 kcal/mol of the first generation of QUBE is

competitive with widely-used biological force fields, and encouragingly the crystallographic

binding pose of 17 was obtained despite starting from an alternative structure. More gen-
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erally, the FEP/REST enhanced sampling protocol employed here allowed us to obtain all

predictions starting from a single binding pose, in contrast to previous studies that required

two.29 One current disadvantage of QUBE is parameterization time, which can be of the

same order of magnitude as the free energy calculation itself. However, there is future scope

for the use of, for example, fragmentation schemes for reducing the computational expense

of torsion scans and machine learning methods for non-bonded parameter assignment,34 es-

pecially when employed in congeneric series of ligands such as this one. Meanwhile, a wide

range of accuracy improvements are envisaged, from the use of off-site charges in relative

binding free energy calculations to improve the description of electron density anisotropy,18

to improved descriptions of polarization, van der Waals and short-range repulsion using ad-

vanced force field functional forms.35,36 Future work will continue to improve the accuracy

and throughput of the QUBE force field for binding free energy applications in prospective

medicinal chemistry efforts.

Computational Methods

Input structures for the complexes between p38α MAP kinase and the 18 inhibitors were

prepared starting from the crystal structure (PDB: 1OUY33) as described in the Supporting

Information using the MCPRO 3.231 and BOMB37 software packages. Ligand force fields

were parametrized using the QUBEKit software package.18 Quantum chemistry geometry op-

timizations and frequency calculations were performed in Gaussian0938 using the ωB97XD

functional and 6-311++G(d,p) basis set. Equilibrium bond lengths and angles were ex-

tracted from the QM optimized geometry, and the bond-stretching and angle-bending force

constants were derived from the QM Hessian matrix via the modified Seminario method

with a vibrational scaling factor of 0.957.26 Constrained one-dimensional torsional optimiza-

tions were also performed using Gaussian09, with the same level of theory and basis set,

in 15◦ increments from 0◦ to 360◦. Torsion parameter optimizations of dihedrals φ1 and
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φ2 were performed for each ligand separately using QUBEKit with no Boltzmann weight-

ing or regularization.18 OPLS atom types were retained during torsion fitting to reduce the

parameter search space, while all remaining small molecule torsion parameters were taken

from the OPLS force field. Non-bonded parameter assignment was performed for both small

molecules and the protein (2961 atoms) using the ONETEP linear-scaling density functional

theory code and DDEC AIM analysis (Supporting Information). All bonded parameters of

the protein were assigned from a transferable library that has been specifically designed to

be compatible with the QUBE FF.20 Water molecules were described using the TIP4P water

model. FEP/REST calculations were performed using the MCPRO software, version 3.2,

which includes recent improvements to the efficiency of protein MC moves.39 Protocols were

similar to those used previously and are described in the Supporting Information.40
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