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ABSTRACT  

Fully aromatic, organic polymers have the advantage of being composed from light, abundant 

elements, and are hailed as candidates in electronic and optical devices “beyond silicon”, yet, 

applications that make use of their π-conjugated backbone and optical bandgap are lacking outside 

of heterogeneous catalysis. Herein, we use a series of sulfur- and nitrogen-containing porous 

polymers (SNPs) as real-time optical and electronic sensors reversibly triggered and re-set by acid 

and ammonia vapors. Our SNPs incorporate donor-acceptor and donor-donor motifs in extended 

networks and enable us to study the changes in bulk conductivity, optical bandgap, and 

fluorescence life-times as a function of π-electron de-/localization in the pristine and protonated 

states. Interestingly, we find that protonated donor-acceptor polymers show a decrease of the 

optical bandgap by 0.42 eV to 0.76 eV and longer fluorescence life-times. In contrast, protonation 

of a donor-donor polymer does not affect its bandgap; however, it leads to an increase of electrical 

conductivity by up to 25-fold and shorter fluorescence life-times. The design strategies highlighted 

in this study open new avenues towards useful chemical switches and sensors based on modular 

purely organic materials. 
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INTRODUCTION 

Conjugated microporous polymers (CMPs)1 attract marked attention as sustainable, noble metal 

free materials in a wide range of applications such as heterogeneous catalysis,2 gas storage and 

separation,3 energy storage,4 optoelectronics,5 photovoltaics,6 and sensors.7 Thanks to their high 

chemical modularity, exceptional thermal and chemical stability, and a wide array of synthetic 

approaches, several classes of CMPs have emerged over the last two decades, like polymers of 

intrinsic microporosity (PIMs),8 hyper-cross-linked polymers (HCPs),9 covalent organic 

frameworks (COFs)10 and their nitrogen-containing analogues - covalent triazine-based 

frameworks (CTFs).11 

Arguably, the most important parameters for the performance of these materials in 

optoelectronics and catalysis is their bandgap energy and their band structure. These will not 

only depend on the size and co-planarity of the π-conjugated domains in the polymer backbone, 

but also on the chemical composition of the building blocks. The most common strategy to vary 

the bandgap of CMPs relies on changes of the size of the carbon-based, polycyclic building 

blocks.12-13 Although this bottom-up approach can indeed lead to networks with variable pore 

sizes and bandgaps, it can also have detrimental effects on the pore structure once pore channels 

get sufficiently large for inter-penetration of polymer strands to occur. One further strategy to 

tune the optical bandgap of a conjugated polymer is the incorporation of heteroatom-containing 

donor-acceptor (D-A) motifs into its backbone.14-15 Recently, we have introduced a family of 

sulfur- and nitrogen-containing porous polymers (SNPs) that make use of D-A interactions 

between neighboring electron-deficient triazine (C3N3) cores and electron-rich aryl thiophene 

building blocks of the polymer to achieve control over the bandgap energy without large changes 

to the pore structure.16 In addition, incorporation of aromatic spacers between the donor- and the 
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acceptor-domains enabled us to predictively control the strength of donor-acceptor interactions 

and – by proxy – the extent of charge-carrier recombination in these networks. This has 

implications for the fluorescence life-times and the outstanding performance in photocatalytic 

hydrogen evolution from water of these D-A materials.17-18 

In this study, we make use of four key-properties of our conjugated, porous D-A polymers – 

namely, (1) their strong, covalent backbones, (2) their intrinsic Lewis acidity and basicity, (3) 

their permanently accessible pore channels to gaseous guest molecules, and (4) their optical 

bandgaps in the visible part of the spectrum – and we use them as optical and electronic sensors 

and switches that are triggered by volatile acid vapors and re-set by gaseous ammonia. While 

colorimetric chemical probes are known from molecular systems in solutions,19-20 or work on the 

basis of chemical transformations,21-23 the here-presented study shows one of the first instances 

of amorphous porous conjugated polymers used as fully-reversible, colorimetric chemical 

probes. Recently, we showed, that triazine-containing COFs, made by the same principle, can be 

also exploited as acid/base chemosensors, thus, highlighting the significance of our approach in 

view of making multifunctional smart materials.24 Herein, we choose four previously reported 

SNP systems as reference: SNP-NDT1, SNP-NDT2, SNP-BTT1 and SNP-BTT2 that consist of 

electron-donating thiophene-based naphthodithiophene (NDT) and benzotrithiophene (BTT) 

moieties, and electron-withdrawing 1,3,5-triazine (Tz) and tris-phenyltriazine moieties (Scheme 

1).18 In addition, we expand the family of SNPs by three networks, two of which contain a 

benzodithiophene (BDT) moiety – SNP-BDT1 and SNP-BDT2. To study the effect of D-A 

dyads versus sheer heterocycle content, we further prepare one polymer comprised from 

electron-rich BTT-building blocks only – SP-BTT. All polymers were prepared using the robust, 

Pd-catalyzed Stille cross-coupling to link the readily available, stannylated derivatives of 
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thiophene-based molecules with halogenated triazine (TzCl3) and tris-bromophenyltriazine 

(Tz(PhBr)3) or sulfur-containing benzotrithiophene (BTT-Br3) monomers (see SI and 

Table S1).18, 25 
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Scheme 1. Synthetic pathway towards sulfur- and nitrogen-containing polymers (SNPs) and 

sulfur-only polymer, SP-BTT. Electron-donating thiophene-based linkers (in red) are coupled 

with electron-accepting triazine-based monomers (in blue) via Pd-catalyzed Stille cross-coupling. 

EXPERIMENTAL SECTION 

Details of all characterization conditions, as well as results of the gas adsorption experiments, 

PXRD, SEM, TEM, elemental analyses, EDX, XPS, UV-Vis, PL, TCSPC, conductivity, and EPR 

experiments, which were not included in the main manuscript, are listed in the respective sections 

of the Supporting Information. 

Synthesis of molecular precursors 

Syntheses of 2,5,8-tris(trimethylstannyl)benzo[1,2-b:3,4-b':5,6-b'']  (BTT), 2,7-

bis(trimethylstannyl)naphtho[2,1-b:6,5-b']dithiophene (NDT), 2,6-bis-trimethylstannanyl-

benzo[1,2-b;4,5-b']dithiophene (BDT), 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (Tz(PhBr)3) and 

2,5,8-tribromobenzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (BTT-Br3) are given in the Supporting 

Information (Scheme S1-S4). 

General procedure for Stille-coupling polymerisation 

An overview of all prepared materials can be found in Table S1. 

The respective stannylated monomer, brominated monomer, and Pd(PPh3)4 (3:2:5% mol ratio; in 

case of benzo[1,2-b:3,4-b':5,6-b'']trithiophene (BTT) – 1:1:5% mol ratio) were dissolved in 

anhydrous toluene under inert atmosphere and refluxed for 3 days. In a short time period (1-2 h) 

the precipitate of polymer started to appear in the reaction flask. After completion of the reaction 

the precipitate was filtered and washed with hot toluene, DMF, chloroform, THF and methanol 

(3 times each solvent). Subsequently, Soxhlet extraction was performed using chloroform, THF, 
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and methanol (24 h each solvent). Afterwards the solid was dried in a vacuum drying oven at 

120 oC for 24 h. More detailed reaction parameters can be found in Table S2. 

RESULTS AND DISCUSSION 

Structure and chemical composition of the polymer systems were confirmed via 13C cross-

polarization magic-angle-spinning (CP-MAS) NMR spectroscopy, combustion elemental 

analysis (EA), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). 

Both the triazine- and thiophene-containing SNP-BDT1 and SNP-BDT2 polymers have 

characteristic signals at 167-169 ppm in solid-state 13C CP-MAS spectra which belong to C3N3-

ring carbons. Signals in the range from 110-150 ppm are attributed to sp2-hybridised carbon 

atoms within aromatic phenyl and thiophene units (Figure S2). The sulfur-containing polymer, 

SP-BTT, shows three distinct signals at 136, 131 and 118 ppm, which correspond to quaternary 

carbons in thiophene and phenyl rings, and to tertiary thiophene carbons. Details of the bulk 

analysis of the as-received polymers are found in the SI (Table S2, S4-S7, Figure S12-S17). For 

all polymer systems, we detect residual Pd-content (0.03 to 1.05 wt%) and P atoms (0.09 to 

0.36 wt%) trapped in the polymer matrix after the cross-coupling reaction, as well as Sn (0.39 to 

1.07 wt%) and halogen atoms (Cl: 0.57 to 3.72 wt%, Br: 2.25 to 5.74 wt%) arising from 

unreacted end-groups. These findings correlate with results from TGA measurements under an 

oxidative atmosphere that show a residual content of non-combustible inorganics between 3 and 

7 wt% (Figure S4a). Irrespective, the high degree of cross-linking we achieve in all networks 

confers high thermal stability up to 750 °C under an inert atmosphere (Figure S4b). 

Powder X-ray diffraction (PXRD) shows that the SNP-BDT1, SNP-BDT2 and SP-BTT 

networks are – just like the previously reported SNPs – amorphous with broad features at around 

10 and 25° 2θ which correlate with in-plane distances between aromatic building blocks and π-
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stacking distances of approx. 3.6 Å,11 respectively (Figure S5).16-18 Scanning electron 

microscopy (SEM) images of SNP-BDT1 and SNP-BDT2 networks confirm a ‘cauliflower’-like 

morphology typical for nucleation-growth polymers, while the SP-BTT polymer grows in rod-

like aggregates of 20 to 100 μm length (Figure S6-S8). Transmission electron microscopy (TEM) 

and selected-area electron-diffraction (SAED) for these three polymers confirm a similar degree 

of internal, microscopic structure as seen in PXRD data with visible, concentric rings indicative 

of polycrystalline materials (Figure S9-S11). Cross-linking of C2 and C3 symmetric building 

blocks suggests a regular bonding pattern with hexagonal, “honeycomb”-shaped pores on paper, 

and the low number of unreacted end-groups in our polymers suggests just that. However, as 

structural analysis reveals and as we established previously,26 Pd-catalyzed Stille cross-coupling 

favors the formation of the disordered, kinetic product, presumably with some degree of 

interpenetration of adjacent pore structures. We investigated these pore channels by nitrogen gas 

adsorption/desorption analysis performed at 77 K. All polymers show Type I isotherms with a 

pronounced hysteresis indicative of micro- and mesopores (Figure S3).27 The guest accessible 

surface area was calculated according to Brunauer–Emmett–Teller (BET) and varies in the range 

from 79 to 698 m2 g-1 (Table 1). 

So far, we have established the covalent bonding pattern of our networks and their permanent 

micro- and mesoporosity. Further, we make use of their intrinsic π-aromaticity and heteroatom 

content by exposing these polymers to a trigger: corrosive HCl vapors. In principle, SNPs have 

two Lewis-basic sites that can be protonated – triazine-ring nitrogens and thiophene sulfur atoms. 

SP-BTT plays a particular role in this study, since it contains thiophene-moieties only (Scheme 

S5). The as-received powders of SNPs show a rapid color change and marked red-shift of the 

absorption edge in solid-state UV-Vis spectra (Figure 1a, S18-22, Video S1). These values 
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correspond to a decrease of the direct optical bandgap by 0.45 to 0.66 eV and indirect optical 

bandgap by 0.42 to 0.76 eV according to the Kubelka-Munk function (Figure 1c, S18-S22).28 

The most sensitive network, SNP-NDT1, is triggered by hydrochloric acid concentrations as low 

as 54 ppm (dosing limit of the current setup, see SI); a response that can still be distinguished by 

the naked eye within 30 seconds (Figure S25, Table S9). In contrast, sulfur-containing SP-BTT 

does not show any appreciable color change when exposed to HCl vapors, hence, no marked 

changes in UV-Vis absorption (Figure 1b) and in optical bandgaps (Figure 1d), respectively. One 

conceivable explanation for this phenomenon could be the difference in basicity between the 

triazine and the thiophene moiety. While 1,3,5-substituted triazines are readily protonated at the 

pyridinic ring-nitrogen,29 thiophenes and oligothiophenes are protonated by superacids only at 

the 2-position.30-31 
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Figure 1. a) Repeating unit of SNP-NDT1 and solid-state UV-Vis absorption spectra and c) Tauc 

plot of SNP-NDT1 in pristine state (black), after exposure to HCl (red) and NH3 (blue) vapors. In 

the inset of (a) – photographs of polymer before and after protonation; c) Repeating unit of SP-
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BTT and solid-state UV-Vis absorption spectra and d) Tauc plot of SP-BTT in pristine state 

(black) and after exposure to HCl (red) vapor. In the inset of (c) – photographs of polymer before 

and after protonation. 

Notably, this coloration can be fully re-set when the HCl-treated polymer is exposed to NH3 

vapors from 24% aqueous ammonia solution (Figure 1a, c, S1). This on/off response to HCl/NH3 

vapors can be triggered at least five consecutive times (as shown for SNP-NDT1, Figure S26) 

with no apparent losses in the intensity of the optical response.  

We closely examined the chemical composition of the polymer backbone during this on/off 

response to verify that the interaction of the polymer with corrosive HCl is indeed a reversible 

chemisorption process. Fourier-transform infrared (FT-IR) spectra of pristine and HCl-treated 

samples show characteristic C3N3-ring vibrations around 1500 cm-1and 1360-1370 cm-1, along 

with the triazine-ring breathing mode at 805-820 cm-1 (Figure S28-33).32-33 Moreover, there are 

no indicative signals in the OH- and NH- region around 3000 cm-1 that would be a tell-tale sign 

of irreversible hydrolysis of the polymers. Similarly, FT-IR spectra of the pristine and HCl 

treated SP-BTT polymer show C-S vibrations of the thiophene ring at 810 cm-1 as well as 

aromatic C-C stretching at 1342 cm-1 (Figure S34).26 A comparison of FT-IR spectra over five 

cycles of exposure to HCl/NH3 gases shows that all reported networks remain chemically stable 

(Figure S35). Previous DFT calculations confirm that the Lewis basic N-atoms of the triazine 

moieties are the preferred site of protonation.24 

This rapid and fully-reversible detection of HCl vapors at low concentrations makes SNPs 

suitable candidates for naked-eye sensors. Moreover, we monitored the response of SNP-NDT1 

to different acids, such as hydrobromic, nitric, sulfuric, trifluoromethylsulfonic (TFMSA), and 
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acetic acid. Initial exposure for 1 min revealed color changes only in case of HCl. Longer 

exposure for up to 3 days ensured complete diffusion of acid vapors throughout the material. 

Accordingly, we also observed marked color change in case of HBr and HNO3, whereas vapors 

of TFMSA and acetic acid caused only slight shifts of the UV-Vis absorption edge (Figure S27). 

Interestingly, sulfuric acid shifted the absorption edge of SNP-NDT1 towards the blue region by 

~12 nm; an electron induction effect into the polymer network which probably stems from a 

strong interaction of the SO4
2- anion with the polymer network, analogous to charge-transfer 

complexes formed between sulfate and molecular electron acceptors.34-35 Overall, we observe 

that soft conjugate bases (e.g. AcO-) cause a smaller UV-Vis shift than hard conjugate bases (e.g. 

Cl-). This phenomenon merits further study, but a conceivable explanation is that more localised 

charge-transfer complexes with hard conjugate bases are responsible for a larger UV-Vis shift 

than weaker, more delocalised CT complexes with soft conjugate bases, as observed 

previously.36 

Previously we discovered, that SNPs are highly fluorescent in benzene suspensions under UV-

light irradiation.18 Here we confirmed the fluorescence of obtained materials in solid state, 

including newly synthesized frameworks (Figure S36). Absolute quantum yields (AQY) 

measured under 365 nm UV light irradiation vary from 0.3% (at 79.5% absorbance) for SNP-

NDT1 to 1.0% (at 79.9% absorbance) for SNP-NDT2 (Table S10). We performed solid-state 

photoluminescence emission (PLE) measurements in steady-state and time-correlated single 

photon counting (TCSPC) experiments to better understand, how the protonation event 

influences the optical properties of the materials. As expected, PLE spectra recorded at 440 nm 

excitation wavelength revealed marked red-shift of the emission maximum after protonation, 
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with emission maxima appearing in the near IR region up to 788 nm for SNP-BDT1 

(Figure S37). 

Table 1. Porous, optical and electronic properties of SNPs. 

Network 
SBET  

(m2 g-1)[a]
 

Eg.dir. 

(eV)[b] 

Eg.indir. 

(eV)[c] 

PLmax 

(nm)[d] 

τavg 

(ns) [e] 
𝝆 (μS m-1)[f] 

SNP-NDT1* 656 2.56 2.27 559 0.58 0.048 

SNP-NDT1-HCl - 1.98 1.75 717 1.11 0.051 

SNP-NDT2* 79 2.50 2.33 547 1.06 0.055 

SNP-NDT2-HCl - 1.85 1.58 753 1.85 0.055 

SNP-BTT1* 698 2.57 2.26 545 0.54 0.055 

SNP-BTT1-HCl - 2.09 1.83 718 1.89 0.017 

SNP-BTT2* 411 2.60 2.38 525 0.37 0.049 

SNP-BTT2-HCl - 2.08 1.84 740 1.33 0.066 

SNP-BDT1 195 2.38 2.00 632 0.41 0.353 

SNP-BDT1-HCl - 1.75 1.53 788 1.03 0.258 

SNP-BDT2 92 2.36 2.19 553 0.57 0.061 

SNP-BDT2-HCl - 1.82 1.51 773 1.03 0.057 

SP-BTT 356 2.60 2.23 532 0.37 0.415 

SP-BTT-HCl - 2.60 2.23 532 0.49 10.371 

[a] Surface area calculated from N2 adsorption isotherm using BET equation; [b] Direct and [c] 

indirect optical bandgaps calculated via the Kubelka-Munk function; [d] Maximum of 

photoluminescence emission measured in solid state; [e] Average fluorescence lifetimes (τ) were 

calculated from triple-exponential fitting of fluorescence decay; [f] Conductivity values (𝜌) were 

obtained from I-V profile measurements with bias sweep of -10 to 10 V, triplicates of each 

sample were conducted and an average was taken.*- the SBET, Eg dir and Eg indir data for SNP-

NDT1, SNP-NDT2, SNP-BTT1 and SNP-BTT2 polymers was taken from previous report by 

us.18 

These findings are in a good agreement with UV-Vis study – the observed decrease of the optical 

bandgap width corresponds to a lower transition energy to the excited state, hence, to longer 
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emission wavelengths in fluorescence decay. Average fluorescence life-times estimated by 

triple-exponential fitting from TCSPC for the pristine polymers are in the range from 0.37 ns for 

SNP-BTT2 and SP-BTT to 1.06 ns for SNP-NDT2 (Figure 2a, Table 1, S10). After exposure to 

HCl, however, we observe a 2- to 3-fold increase in fluorescence life-times for triazine-

containing polymers from 1.03 ns for SNP-BDT1-HCl and SNP-BDT2-HCl up to 1.89 ns for 

SNP-BTT1-HCl (Figure 2b, Table 1, S10). The results indicate, that after protonation charge 

carriers are in general more localized, which will lead to fewer non-radiative charge 

recombination events, and hence, longer fluorescence lifetimes. Here, we can appreciate the 

advantage of the modular make-up of SNPs: strong donor-acceptor interactions in SNPs that 

contain directly linked triazine- and thiophen-moieties enable more efficient charge transfer – 

and, hence, comparatively faster exciton decay – than their counterparts where D and A moieties 

are separated by an aryl spacer.37-39 
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Figure 2. Time-correlated fluorescence decay for pristine (a) and HCl treated (b) polymers; 

photographs of fluorescence in solid state of pristine (c) and protonated (d) SNPs (from left to 

right: SNP-NDT1, SNP-NDT2, SNP-BTT1, SNP-BTT2, SNP-BDT1, and SNP-BDT2; λexc = 

365 nm). 

Notably, the sulfur-containing SP-BTT network did not show such dramatic increases in 

fluorescence life-times with a total change from 0.37 to 0.49 ns in the HCl-treated network. In 

this case, charge carriers are more delocalized due to the absence of strong D-A interactions. 

This small increase in fluorescence life-times in SP-BTT can be explained by a partial transfer 

of electron density from the central benzene ring of the benzotrithiophene core. It is worth to 

note, that the fluorescence intensity of SNPs in the solid state is completely quenched to the 

naked eye after exposure to HCl vapors after 30 seconds, and it is fully recovered after exposure 

to ammonia (Figure 2c, d). This feature can be used for manufacturing of acid-base fluorescence 

sensors. 

Protonation of the heteroatoms has an influence on the bandgap width and photoluminescence, 

and it involves charge transport across the π-aromatic network as a whole. Such an increase of 

charge carrier mobility was reported for p-type doping of semiconducting, linear polymers.40-42 

Thus, we examined the influence of protonation on the charge carrier mobility of our bulk 

materials using two-probe measurements (Figure S38-S46). Interestingly, there is only a slight 

measurable increase of conductivity within the same order of magnitude for all SNPs upon 

activation with HCl vapors (Table 1, Figure S45). However, the thiophene-only SP-BTT 

framework showed a dramatic increase in conductivity after protonation from 0.415 to 

10.371 μS m-1 (Figure 3a). These results support the fact that donor-acceptor interactions within 

polymer network will tailor not only optical, but also electronic properties of the desired 
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materials. As seen in the UV-Vis study, protonated triazine-containing SNPs have more localized 

charges – presumably in the form of Cl-salts stabilized by strong D-A interactions – that do not 

contribute much to overall bulk conductivity, whereas SP-BTT experiences a higher degree of 

charge-delocalization and thus showing higher charge carrier mobility.  

In the end, we monitored the change in paramagnetic behavior of prepared polymers upon 

protonation using electron paramagnetic resonance (EPR) spectroscopy (Figure 3b, S47). All 

pristine materials show the presence of paramagnetic species typical for polymeric networks with 

extended π-conjugation.43-45 The EPR signals are centered around g-values ranging from 2.0035 

to 2.0045 (linewidth of about 0.47 to 1.26 mT, Table S11) indicating the contribution of 

heteroatoms to overall charge localization. After exposure to HCl vapors all SNPs show a 

decrease in EPR signal intensity with the exception of SNP-NDT1 – a polymer that is made up 

of directly coupled, strongly interacting D-A domains. This supports the hypothesis that charge 

localization is enhanced by stronger donor-acceptor interactions (Figure S47). Again, the homo-

coupled, sulfur-containing SP-BTT network is the outlier: there is a marked increase in EPR 

signal intensity after protonation (Figure 3b). Quantitative analysis of the EPR spectra of SP-

BTT shows a 2-times increase of radical concentration from (7±0.2)*1013 radicals mg-1 

(0.12±0.02 nmol mg-1) to (1.4±0.2)*1014 radicals mg-1 (0.23±0.03 nmol mg-1) in the protonated 

state. In the light of the I-V conductivity results, this suggests that protonation leads to an 

increased delocalization of paramagnetic species and that these paramagnetic species could be 

contributing to the conductivity of HCl-treated SP-BTT. 
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Figure 3. a) EPR spectra and b) direct conductivity measurements of SP-BTT in the pristine (blue) 

and the protonated (orange) state. 

To compare charge transfer properties of SP-BTT we performed temperature dependent EPR 

measurements taking SNP-NDT1 – the most strongly interacting D-A polymer – as a reference. 

Computational simulations were based on the assumption that one to two protons are present per 

D-A dyad after HCl exposure (Figure S48 and Table S12), and they correlate well with the 

observed EPR spectra. The g-factor exhibits a hysteresis upon heating and cooling (Figure S49). 

These observations indicate that the variations of the g-factor are not related to the increased 

structural mobility of the heated network, but rather to the delocalization of unpaired electrons.46 

The g-factor of both polymers increases upon heating, and it increases further upon cooling for 

SNP-NDT1. Here, both polymers are switched to a “more localized” spin state. However, SP-

BTT is better at delocalizing radical paramagnetic centers along the polymeric chain in 

comparison to SNP-NDT1 (Figure S50). 
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CONCLUSION 

In summary, we present a comprehensive study that correlates optical and electronic effects in 

weakly and strongly interacting donor-acceptor systems based on the family of highly modular, 

sulfur and nitrogen-containing porous polymers (SNPs). SNPs are capable of real-time, 

reversible optical and electronic sensing of volatile acid and base vapors. The optical and 

electronic responses involve the entirety of the π-conjugated polymer, and the host-guest 

interactions between volatile trigger molecules and the chemoresponsive polymer are made 

possible by the permanent porosity, strong, covalent backbone and predictably modular 

heteroatom content of the materials. The optical on-response of strongly D-A interacting 

networks is selective for acid vapors with small counter anions (such as HCl, HBr and HNO3) 

that are able to form more localized chromophore complexes. Conversely, the weakly 

interacting, thiophene-only D-D polymer benefits from overall charge delocalization and a 25-

fold enhancement of charge carrier mobility when exposed to acid vapors. These findings 

demonstrate that D-A polymers are suitable materials for chemically triggered optical sensors 

and switches, while homo-coupled D-D polymers are useful electronic chemosensors and 

switches. 
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