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Density functional theory (DFT) is nowadays the leading theoretical framework for quantum
description of materials from first principles. Being an exact theory on one hand and computationally
efficient on the other hand, DFT allows to address large and complex many-electron systems and
accurately predict their properties. The predictive power of DFT critically depends though on
an accurate approximation to the generally unknown exchange-correlation (xc) energy functional.
Approximations can be constructed from first principles by satisfying known properties of the exact
functional. In this work I review two such exact properties: the asymptotic behavior of the xc
energy density per particle and the asymptotic behavior of the Kohn-Sham potential, in finite
many-electron systems. The derivation of the asymptotic forms for both quantities is reviewed,
employing the concepts of the adiabatic connection and of the xc hole with relation to the first
quantity and the electron exact factorization approach for the second one. Furthermore, it is shown
that the correct asymptotic behavior of one of the aforementioned quantities does not guarantee
a correct behavior of the other. In this process, a new quantity, the xc hole response function,
is defined and its exact exchange part is analytically derived. The extent to which existing xc
approximations satisfy the named exact properties is reviewed and the relationship between correct
asymptotics and freedom from one-electron self-interaction in DFT is discussed. Finally, a strategy
for development of advanced approximations for exchange and correlation with a correct asymptotic
behavior is suggested.

I. INTRODUCTION

Computational modelling of materials and reliable pre-
diction of their properties is a highly important scientific
task with vast technological applications. Our ability
to simulate materials, even before they are synthesized
in the lab, has dramatically improved over the recent
years. Growth in available computational resources, as
well as development of dedicated software for materials
simulations, allow scientists nowadays to address large,
complex and heterogeneous systems (see, e.g., [1–7]). In
many cases, accurate description of materials’ properties
requires modelling on the level of the electron-electron
interactions, and therefore the system has to be ad-
dressed quantum-mechanically. Density functional the-
ory (DFT) [8–20] became in recent decades the leading
theoretical framework to provide such a description. Be-
ing an exact theory on one hand and allowing a com-
putationally efficient implementation on the other hand,
with a favourable scaling of the numerical effort with the
system size, DFT makes it possible to address in practice
large many-electron systems and to be able to accurately
predict their properties.

DFT is built on solid theoretical foundations: back
in 1964, Hohenberg and Kohn [21] have shown that the
ground-state electron density, n(r), includes essentially
all the information needed to describe a given many-
electron system, be it a single atom, a molecule, a nano
cluster, a crystalline solid or a DNA [197]. This is due to
the one-to-one correspondence [198] between the ground
state density n(r) and vext(r) – the external potential felt
by the electrons, primarily due to their Coulomb attrac-

tion to the nuclei. As a result, any physical quantity can
be viewed as a functional of the the density n(r), includ-
ing the total energy, E[n]. Importantly, E[n] is a vari-
ational quantity: by varying the density, for a given ex-
ternal potential vext(r), one can find the minimum of the
energy functional, which is the true ground-state energy
of the system, and the corresponding minimizing density
is the corresponding ground-state density [22, 23].
To obtain the density and the energy in practice, we

usually follow the approach by Kohn and Sham (KS) [24]:
we introduce a system of non-interacting electrons, which
feel an effective (KS) potential, vKS(r), chosen in such a
way that the ground-state density of the non-interacting
system equals exactly the ground-state density of the
original, interacting system of interest. The KS potential
is normally expressed as

vKS[n](r) = vext(r) + vH[n](r) + vxc[n](r), (1)

being the sum of the external potential, vext(r), the
Hartree potential, vH[n](r) =

∫
d3r′n(r′)/|r − r′| [199],

which corresponds to the classical electrostatic repulsion
of the ‘electron cloud’, and the exchange-correlation (xc)
potential, vxc[n](r), which is responsible for all the quan-
tum interactions between the electrons [200]. This last
term is generally unknown and has to be approximated
in any practical calculation.
Once the KS potential is given, we can actually treat

the KS electrons independently due to the lack of interac-
tion in the KS system, solve the one-electron Schrödinger
equation,(

−1

2
∇2 + vKS[n](r)

)
ϕi(r) = εiϕi(r), (2)
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and construct the density from the first N low-lying lev-

els: n(r) =
∑N

i=1 |ϕi(r)|2. The ground state energy is
then obtained as

E[n] = TKS[n]+

∫
d3r vext(r)n(r)+EH[n]+Exc[n], (3)

with TKS[n] being the KS kinetic energy, EH(r) =
1
2

∫∫
d3r d3r′ n(r)n(r′)/|r − r′| being the Hartree (elec-

trostatic) energy and Exc[n] being the (again, unknown)
xc energy. The relation between the xc energy and the
xc potential is that of a functional derivative: vxc[n](r) =
δExc/δn(r). The xc energy is often expressed as

Exc[n] =

∫
d3r n(r)exc[n](r), (4)

where exc[n](r) is termed the exchange-correlation energy
density per particle. It is exc[n](r) and vxc[n](r) that we
will focus on in this article.

Approximating the xc energy functional is the central
approximation made in KS-DFT. It has attracted much
scientific effort during the years [25–27], because the pre-
dictive power of the method crucially depends on the
quality of the xc approximation used (see, e.g., [28–34]).

One strategy for development of accurate xc approxi-
mations from first principles is the strategy of satisfying
constraints [35–37]: Although the exact xc functional is
not known, many of its properties are. By constructing
an xc approximation in a constrained manner, such that
it satisfies known exact properties, we aim to increase
its predictive power and widen its domain of applica-
bility. The Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation (GGA) [38] and the SCAN meta-
GGA [39, 40] are examples of successful implementation
of this strategy.

Many exact properties of the xc functional have been
revealed during the years [41–70]. The importance of
discovering new properties of the exact xc functional and
understanding the relationship between them [71, 72] can
hardly be underestimated. In this work we focus on the
asymptotic behavior of the xc potential, vxc[n](r), and
the xc energy density per particle, exc[n](r), in finite sys-
tems, namely on the properties of vxc and exc in regions
that are far from where the nuclei and (most of the) elec-
trons of system are. Correct asymptotics of the afore-
mentioned quantities is important in various physical and
chemical scenarios: it helps to obtain stable anions [10],
it is important for satisfying the ionization potential (IP)
theorem in DFT [45, 46, 48, 50, 52, 73, 74], which con-
nects the highest KS eigenvalue to the IP, it leads to un-
occupied eigenvalues of improved interpretability, and as
a consequence allows for higher accuracy in the prediction
of various response properties [75–77]. Moreover, correct
asymptotics proved to be key for developing such an im-
portant class of functionals as range-separated hybrids
(RSHs) [2, 78–82]. Finally, correct asymptotic behavior
of a given xc approximation is strongly associated with
freedom from the spurious self-interaction [43] of elec-
trons in KS-DFT, an association which has been recently

reviewed in Ref. [71] and is further discussed below. In
this work we confine ourselves to systems with a constant
and integer number of electrons, N (but see [72, 83–86]
and references therein for systems with fractional N).
Furthermore, we choose to treat systems whose high-
est occupied KS orbital does not possess nodal planes
(see [71, 87–93] for the latter case).

The rest of the article is organized as follows. In Sec. II
the derivation of the the asymptotic behavior of the ex-
act exc[n](r) and vxc[n](r) is reviewed. Then in Sec. III
it is analytically shown that the correct asymptotic be-
havior of exc[n](r) does not guarantee a correct behavior
of vxc[n](r) and vice versa. This happens because the
asymptotic forms of these two quantities are related to
two different properties of the xc hole (to be defined be-
low): the sum rule of the hole and the behavior of the xc
hole response function – a new quantity, which we define
and explore below. In Sec. IV we analytically derive the
exact exchange part of the aforementioned response func-
tion employing the optimized effective potential (OEP)
method. In Sec. V we discuss how well the the exact
asymptotic behavior of vxc and exc is reproduced in vari-
ous xc approximations and in Sec. VI we discuss the rela-
tionship between correct asymptotics and freedom from
one-electron self-interaction. Finally, in Sec. VII we dis-
cuss how the findings presented in this work can be used
to formulate a strategy for development of advanced ap-
proximations for exchange and correlation with a correct
asymptotic behavior.

II. FORMALISM

A. Exchange-correlation energy-density per
particle

The exchange-correlation energy-density per particle,
exc[n](r), is usually introduced by Eq. (4), which essen-
tially means that the infinitesimal contribution to the xc
energy from the infinitesimal volume element d3r around
r equals n(r) ·exc[n](r)d3r. Normalized by the number of
electrons in this volume, n(r)d3r, the xc energy-density
per particle is therefore exc[n](r).

Equation (4) does not define exc[n](r) uniquely, but
only up to any additive function f(r), which obeys∫
d3r n(r) f(r) = 0 (see, e.g., Refs. [64, 94–96] for fur-

ther details) [201]. However, to discuss the asymptotics
at |r| → ∞ we must define exc[n](r) unambiguously. This
can be done using the concepts of the xc hole and of the
adiabatic connection. In the following, we describe these
concepts in some detail.

First, we introduce the concept of the xc hole, following
Ref. [10] (see also [9, ch. 8.5], [19, 43, 97–99]). We start
from the two-electron reduced density matrix, ρ2(r, r

′),
which is the probability density to find an electron at r
and another electron at r′. In terms of the many-electron
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wavefunction Ψ(r1σ1, r2σ2, r3σ3, · · · , rNσN ),

ρ2(r, r
′) = N(N − 1)

∫
d3r3 · · · d3rN

∑
σ1

· · ·
∑
σN

|Ψ(rσ1, r
′σ2, r3σ3, · · · , rNσN )|2. (5)

Note that ρ2(r, r
′) is symmetric in r and r′. Next, we

define n2(r
′|r) – the conditional probability density of

finding an electron at r′, given there is an electron at r. It
is related to ρ2(r, r

′) as follows: ρ2(r, r
′) = n(r)n2(r

′|r).
Unlike ρ2(r, r

′), the conditional density n2(r
′|r) is not

symmetric in r and r′. n2(r
′|r) can be presented as

n2(r
′|r) = n(r′) + nxc(r

′|r), (6)

where nxc(r
′|r) is termed the xc hole. It can be thought

of as the reduction in the electron density (creation of a
‘hole’) at some point r′ because there exists an electron
at r. From the simple observation that

∫
d3r′ρ2(r, r

′) =
(N−1)n(r) follows the so-called sum rule for the xc hole:∫

d3r′nxc(r
′|r) = −1. (7)

This is an analytical result of high importance, which will
serve us below.

Now we introduce the concept of the adiabatic con-
nection [90, 97, 99–101]. We consider a series of many-
electron systems with a varying strength of the electron-
electron repulsion. Formally, these systems are described
by the the Hamiltonian

Ĥ(λ) = T̂ + V̂ (λ) + λŴ , (8)

where T̂ = − 1
2

∑
i ∇2

i is the kinetic energy opera-

tor, V̂ =
∑

i v
(λ)
ext(ri) is the potential energy oper-

ator (its λ-dependence is clarified below) and Ŵ =
1
2

∑
i

∑
j 6=i |ri − rj |−1 is the usual electron-electron re-

pulsion operator, which is preceded in the Hamiltonian
by the parameter λ. This parameter defines the strength
of the electron-electron repulsion; we consider the range
of values 0 6 λ 6 1. Next, we introduce the following
restriction: the ground state density of all these Hamil-

tonians is the same, n(r). The external potential v
(λ)
ext(r)

is chosen to satisfy this restriction, and therefore it is dif-
ferent for each λ. As a result, the ground state energy of
the system can be written as

E(λ) = 〈Ψ(λ)|Ĥ(λ)|Ψ(λ)〉 =
∫
d3r v

(λ)
ext(r)n(r) + F (λ)[n],

(9)
where |Ψ(λ)〉 is the ground state of the λ-system and

F (λ)[n] := 〈Ψ(λ)|T̂ + λŴ |Ψ(λ)〉. The particular case of
λ = 1 yields the fully-interacting many-electron system,

where v
(1)
ext(r) equals the external potential vext(r), E

(1)

equals the total energy E[n] of Eq. (3), F (1)[n] is termed
the Hohenberg-Kohn functional [8, 21] and |Ψ(1)〉 is the
fully-interacting many-electron ground state. The case

of λ = 0 yields the KS system, where v
(0)
ext(r) = vKS(r),

F (0)[n] = TKS[n] and |Ψ(0)〉 is the KS ground state de-
noted |ΦKS〉, which, in the case of a pure ground state,
is represented by a Slater determinant of the orbitals
ϕi(r). Comparing Eqs. (9) and (3), we can express the
Hartree-exchange-correlation (Hxc) energy as EH[n] +
Exc[n] = F (1)[n] − F (0)[n]. Realizing that the right-

hand side can be written as
∫ 1

0
dλ dF (λ)[n]/dλ and utiliz-

ing the Hellmann-Feynman theorem (see, e.g., [102],[103,
§11],[10, ch. 1.2.4]), we represent the Hxc energy as

EH[n] + Exc[n] =

∫ 1

0

dλ 〈Ψ(λ)|Ŵ |Ψ(λ)〉. (10)

This is an interesting and important result: formally, the
Hxc energy can be expressed as the λ-average of the ex-
pectation value of the electron-electron repulsion opera-
tor, Ŵ .
Connecting the two concepts we introduced above,

we first note that the expectation value of Ŵ can be
expressed in terms of the λ-dependent two-electron re-

duced density matrix, ρ
(λ)
2 (r, r′) [202]: 〈Ψ(λ)|Ŵ |Ψ(λ)〉 =

1
2

∫ ∫
d3rd3r′ ρ

(λ)
2 (r, r′)/|r− r′|. Expressing ρ

(λ)
2 (r, r′) in

terms of the (now also λ-dependent) xc hole, n
(λ)
xc (r′|r)

(cf. Eq. 6), we find that the xc energy equals

Exc[n] =
1

2

∫∫
d3rd3r′

n(r)n̄xc(r
′|r)

|r− r′|
, (11)

where n̄xc(r
′|r) =

∫ 1

0
dλn

(λ)
xc (r′|r) is the λ-averaged xc

hole. From Eq. (11) we see that the xc energy can
be viewed as the electrostatic interaction between the
ground state density and the λ-averaged xc hole.
Finally, from Eq. (11) it is possible to uniquely define

(not deduce) the xc energy-density per particle in terms
of the xc hole:

exc[n](r) =
1

2

∫
d3r′

n̄xc(r
′|r)

|r− r′|
. (12)

Naturally, exc[n](r) of Eq. (12) and Exc[n] of Eqs. (11)
satisfy relation (4). Equation (12) is known as the con-
ventional gauge for exc[n](r) [64].
Once exc[n](r) is defined, we can discuss its behavior

in the limit |r| → ∞. In this limit, |r − r′| → |r|, and
therefore exploiting the sum rule for the xc hole (Eq. (7)),
we realize that

exc[n](r) → − 1

2|r|
. (13)

Therefore, the asymptotic behavior of exc[n](r) is a direct
result of the sum rule for the xc hole [203].

B. Exchange-correlation potential

In the following, we analytically derive the asymptotic
form of the xc potential, vxc[n](r). But first, to get an in-
tuition about this asymptotic behavior, it is instructive
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to look at the KS potential, vKS[n](r), as a whole. At
r → ∞ (here and below r = |r|, and we use both nota-
tions interchangeably), the KS potential can be roughly
viewed as the potential that is felt by an electron when
it appears very far from the system (i.e., from the nu-
clei and the other electrons). Then, such an electron
should feel the overall attraction of the nuclei, screened
by all the other electrons of the system. Denoting the
sum of all the nuclear charges by Z and the total num-
ber of electrons in the system by N , we realize that
vKS[n](r) ∼ −(Z− (N−1))/r. [This is because the num-
ber of the other electrons is N − 1.] The asymptotic
behavior of the external potential is vext(r) ∼ −Z/r.
The asymptotic behavior of the Hartree potential can
be derived directly from its definition, taking the limit
|r − r′| → |r|; it is vH[n](r) ∼ N/r. Therefore, we con-
clude that according to our intuitive explanation the xc
potential should behave as vxc[n](r) ∼ −1/r.

The asymptotic behavior of the exact vxc[n](r) has
been analytically obtained in the literature, using sev-
eral approaches (see [42, 48, 50, 91, 93] and references
therein). In the following we obtain this result using the
exact electron factorization (EEF) approach [104–107] to
the many-electron problem. Notably, although the intu-
itive explanation given above is by no means a rigorous
derivation, its essential point is a correct one: to ana-
lyze the asymptotic behavior of vxc, we will address an
N -electron system in the process of ionization. This is
common to all the approaches on the matter.

With the EEF approach, we first consider a fully-
interacting N -electron system, which is defined by the
Hamiltonian ĤN (as in Eq. (8), with λ = 1 there) and
is completely described by the N -electron ground-state
wavefunction ΨN (r1 · · · rN ). The subscript N empha-
sizes the number of electrons in the system. Next, with-
out loss of generality [104], we express the wavefunc-
tion as ΨN (r1 · · · rN ) = χ(rN )φ(r1 · · · rN−1|rN ). Here
|χ(rN )|2 has the meaning of the marginal probability
density, namely the probability to find an electron at
rN , whereas |φ(r1 · · · rN−1|rN )|2 has the meaning of the
conditional probability density, namely the probability
to find an electron at r1 and an electron at r2, and so
on, given there is an electron at rN . In fact, |χ(rN )|2
is nothing else but the normalized ground-state density,
n(rN )/N .

In the following we denote integration over all vari-
ables, r1 · · · rN , by double Dirac brackets, 〈〈...〉〉, and in-
tegration over r1 · · · rN−1 only by single Dirac brack-
ets, 〈...〉. Thus, 〈〈ΨN |ΨN 〉〉 =

(∫
d3rN n(rN )/N

)
· 〈φ|φ〉,

and therefore 〈φ|φ〉 = 1, for any value of rN . In other
words, both χ and φ are normalized to 1. Furthermore,
〈φ|ΨN 〉 = χ(rN ) and 〈φ|ĤN |ΨN 〉 = ENχ(rN ), where EN

is the ground-state energy of the N -electron system [204].
Now, let us examine closely the N -electron Hamiltonian,
ĤN . It can be expressed as ĤN = ĤN−1 − 1

2∇
2
N +

vext(rN ) +
∑N−1

j=1 |rj − rN |−1. Using this expression, we

can derive 〈φ|ĤN−EN−1|ΨN 〉, which on one hand equals
−Iχ(rN ) (where I = EN−1 − EN is the ionization po-

tential (IP) of the system), and on the other hand equals
− 1

2∇
2
Nχ(rN ) + vKSP(rN )χ(rN ), where [48, 104]

vKSP(rN ) = vext(rN ) + 〈φ|ĤN−1 − EN−1|φ〉+

+

∫
d3r

nφ(r|rN )

|r− rN |
+

1

2
〈∇Nφ|∇Nφ〉 (14)

is termed the Kohn-Sham-Pauli potential [48, 108,
109]. In the latter equation nφ(r|rN ) is the ‘den-
sity’ that corresponds to φ, namely, nφ(r|rN ) = (N −
1)

∫
d3r2 · · ·

∫
d3rN−1 |φ(r, r2 · · · rN−1|rN )|2. To derive

Eq. (14), we considered the sum of 〈φ|ĤN − EN−1|ΨN 〉
and of its complex conjugate, 〈ΨN |ĤN − EN−1|φ〉, and
took advantage of the fact that ∇N 〈φ|φ〉 and ∇2

N 〈φ|φ〉
are zero, due to the normalization of φ. To summarize,
the marginal probability density amplitude, χ(rN ), sat-
isfies a Schrödinger-like equation(

−1

2
∇2

N + vKSP(rN )

)
χ(rN ) = −Iχ(rN ), (15)

where the eigenvalue equals the (negative of the) IP
of the system and the potential is formally given by
Eq. (14). This equation is central in the orbital-free (OF)
approach [110–116], which is an alternative to the KS ap-
proach in DFT (cf. Eq. (2)).
We now explore the particular case where rN is very

large, i.e., the N th electron is far away from all the elec-
trons and nuclei in the system. This is nothing else but
the process of (a vertical) ionization. In this process, the
parametric dependence of φ(r1 · · · rN−1|rN ) on rN disap-
pears: indeed, the probability to find the N −1 electrons
at certain positions r1 · · · rN−1 does not depend on some
infinitely distant electron at rN . Therefore, for rN → ∞,
φ becomes: (i) independent of rN ; (ii) the ground state of

the (N − 1)-electron Hamiltonian, ĤN−1. Consequently,
the fourth term of Eq. (14) vanishes due to (i), the second
term there vanishes due to (ii) and in the third term nφ
becomes the ground-state density of ĤN−1. At the limit
|r− rN | → |rN |, this third term yields (N − 1)/rN , and
the overall KSP potential decays as ∼ −(Z−(N−1))/rN .
The asymptotic form of the KSP potential allows us

to find the asymptotic behavior of χ(r). Assuming that
the asymptotic decay of n(r), and therefore of χ(r), is
isotropic (and therefore excluding the aforementioned
case of nodal planes [71, 87, 88, 90–93]), the Lapla-

cian can be expressed as ∇2 = ∂2

∂r2 + 2
r

∂
∂r . Substitu-

tion of this form for the Laplacian and of the decay of
the KSP potential obtained earlier into Eq. (15) leads
to an ordinary differential equation for χ(r), whose so-

lution is asymptotically given by χ(r) ∼ rβe−
√
2Ir, with

β = −1 + (Z −N + 1)/
√
2I [42, 93].

Next, from the perspective of the KS system, the den-
sity is the sum of the squares of all occupied KS orbitals,
|ϕi(r)|2. Being all bound states, they asymptotically de-
cay to zero [205]. The slowest decay is of the highest
occupied (ho) orbital, which therefore defines the decay
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rate of the density as a whole. This observation allows

us to conclude that ϕho(r) ∼ χ(r) ∼ rβe−
√
2Ir. Finally,

the KS potential can be expressed in terms of the ho or-
bital as vKS(r) = εho+

1
2 [∇

2ϕho(r)]/ϕho(r). Substitution
of the asymptotic form of ϕho(r) into the above expres-
sion for vKS(r) leads us to conclude that asymptotically
vKS(r) ∼ −(Z−(N−1))/r, as expected [206]. From here
follows also the asymptotic behavior of the xc potential:

vxc[n](r) → − 1

|r|
. (16)

The asymptotic behavior of the KS and the KSP po-
tentials is the same; the Pauli ingredient does not con-
tribute at far distances. This conclusion is in agreement
with the result of Ref. [109], Eq. (16), where an exact
form for the Pauli potential is derived in terms of the KS
energies, orbitals and the density.

To summarize, in this Section we reviewed the deriva-
tion for the asymptotic behavior of the exact xc energy
density per particle, exc[n](r) (Eq. (13)) and of the exact
xc potential, vxc[n](r) (Eq. (16)), as |r| → ∞. The result
for exc[n](r) has been obtained relying on the concepts
of the adiabatic connection and of the xc hole, whereas
for the result of vxc[n](r) the exact electron factorization
approach has been employed.

III. EXCHANGE-CORRELATION POTENTIAL
VIA THE EXCHANGE-CORRELATION HOLE

In this section we further analyze the exact xc poten-
tial and its asymptotic behavior, combining the results
of Sec. II A and Sec. II B.

The xc potential is, by definition, the functional deriva-
tive of the xc energy with respect to the density. We can
therefore derive an expression for the xc potential start-
ing from Eq. (11):

vxc[n](r) = exc[n](r) +
1

2

∫∫
d3r′d3r′′

n(r′)η̄xc(r; r
′′|r′)

|r′ − r′′|
,

(17)
where η̄xc(r; r

′′|r′) := δn̄xc(r
′′|r′)/δn(r) is the response

of the λ-averaged xc hole to a density change at r. In-
terestingly, the xc potential appears here as a sum of
the xc energy density per particle and of an additional
term, which is the electrostatic interaction between the
ground-state density and the xc hole response, η̄xc. From
Eq. (17) we realize that whereas the asymptotic behav-
ior of exc[n](r) directly follows from the sum rule for the
xc hole (Eq. (12)), the asymptotic behavior of vxc[n](r)
depends not only on the properties of the xc hole as
such, but also on the properties of its first derivative,
η̄xc(r; r

′′|r′). Therefore, the correct asymptotic behavior
of exc and of vxc (Eqs. (13) and (16)) can be viewed as
two separate properties of the exact xc functional. When
constructing approximations to exchange and correlation
within DFT, this is a useful fact: it means that in princi-
ple correct asymptotics of exc does not guarantee correct
asymptotics of vxc, and vice versa [71].

The xc hole response, η̄xc, is a quantity that, to the
best of my knowledge, did not receive yet much attention
in the literature. Since it can be used to express the xc
potential, knowledge of its properties is of high interest.
One such property arises directly from the sum rule of
the xc hole (Eq. (7)). By rewriting the sum rule for the

general λ-case as
∫
d3r′′n

(λ)
xc (r′′|r′) = −1 and operating

with δ/δn(r) on both sides, one obtains∫
d3r′′η(λ)xc (r; r′′|r′) = 0. (18)

The same follows for η̄xc, of course.
Another property one can derive is∫∫

d3r′ d3r′′n(r′)ηxc(r; r
′′|r′) = 0. (19)

To prove Eq. (19), consider the quantity g(r′′, r′) =
n(r′)nxc(r

′′|r′). From Eq. (6), we find that g(r′′, r′) =
ρ2(r

′′, r′) − n(r′′)n(r′). Next, from Eq. (5) we re-
alize that

∫∫
d3r′ d3r′′g(r′′, r′) = −N and there-

fore δ
δn(r)

∫∫
d3r′ d3r′′g(r′′, r′) = −1. In parallel,

δg(r′′, r′)/δn(r) = n(r′)ηxc(r; r
′′|r′) + nxc(r

′′|r′)δ(r− r′).
Taking the double integral over the last expression and
using the sum rule (7) yields Eq. (19).
A third property of the xc hole response function arises

directly from combination of Eqs. (13), (16) and (17):∫∫
d3r′d3r′′

n(r′)η̄xc(r; r
′′|r′)

|r′ − r′′|
→ − 1

|r|
. (20)

This expression does not imply directly the asymptotic
r-dependence of η̄xc(r; r

′′|r′) itself. Further findings on
the exchange (x) part of η̄xc are presented in

IV. EXACT EXCHANGE HOLE RESPONSE
FUNCTION

In this section we make the first step in the direc-
tion of investigating the exact xc hole response function,
ηxc(r; r

′′|r′) and derive its exact-exchange (EXX) part.
Due to the fact that the spin dependence of EXX is easily
and transparently represented, the following derivation is
performed within the spin-polarized version of KS-DFT.
The EXX energy functional is usually expressed as

Eexact
x = −1

2

∑
τ

Nτ∑
i=1

Nτ∑
j=1

∫∫
ϕ∗
iτ (r

′)ϕ∗
jτ (r

′′)ϕiτ (r
′′)ϕjτ (r

′)

|r′ − r′′|

× d3r′d3r′′, (21)

where τ is the spin index, which takes the values ↑ or
↓, ϕiτ (r) are the KS spin-orbitals, being the eigenstates
of the Schrödinger equation

(
− 1

2∇
2 + vKS,τ (r)

)
ϕiτ (r) =

εiτϕiτ (r), and Nτ is the number of electrons in the
τ -spin-channel. It is assumed that the first Nτ low-lying
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spin-orbitals are occupied by one electron each and there-
fore introduction of occupation numbers is unnecessary
in the present derivation.

Another way to express the EXX energy is via the
KS one-electron reduced density matrix, ρ1(r

′′τ, r′τ) [9],
which is obtained from the KS many-electron wavefunc-
tion, ΦKS(r1τ1, r2τ2 · · · rNτN ), in the following way [10]:

ρ1(r
′′τ, r′τ) = N

∑
τ2···τN

∫
d3r2 · · ·

∫
d3rN

Φ∗
KS(r

′′τ, r2τ2 · · · rNτN )ΦKS(r
′τ, r2τ2 · · · rNτN ). (22)

Recalling that ΦKS is a Slater determinant constructed
of KS spin-orbitals, we can simplify the expression for
ρ1(r

′′τ, r′τ) to

ρ1(r
′′τ, r′τ) =

Nτ∑
i=1

ϕ∗
iτ (r

′′)ϕiτ (r
′). (23)

Noting that ρ1(r
′′τ, r′τ) = ρ∗1(r

′τ, r′′τ), we express the
EXX energy (21) as

Eexact
x = −1

2

∑
τ

∫∫
d3r′d3r′′

|ρ1(r′′τ, r′τ)|2

|r′ − r′′|
. (24)

A third way to express the EXX energy is via the EXX
hole, nx(r

′′|r′). To obtain the latter, one first finds the
KS two-electron reduced density matrix, ρKS

2 (r′′, r′), by
substitution of ΦKS into Eq. (5). One then finds that
ρKS
2 (r′′, r′) = n(r′′)n(r′) −

∑
τ |ρ1(r′′τ, r′τ)|2. Then, fol-

lowing the line of thought of Sec. II A, one realizes that
the EXX hole equals

nx(r
′′|r′) = − 1

n(r′)

∑
τ

|ρ1(r′′τ, r′τ)|2. (25)

Subsequently, the EXX energy density per particle equals

eexactx (r′) =
1

2

∫
d3r′′

nx(r
′′|r′)

|r′ − r′′|
=

= − 1

2n(r′)

∑
τ

∫
d3r′′

|ρ1(r′′τ, r′τ)|2

|r′ − r′′|
(26)

and the EXX energy is expressed as

Eexact
x =

1

2

∫∫
d3r′d3r′′

n(r′)nx(r
′′|r′)

|r′ − r′′|
; (27)

substitution of Eq. (25) into Eq. (27) leads to Eq. (24),
as required. Using Eqs. (27) and (26), the EXX potential
can be formally expressed as

vexactx,σ (r) =
δEexact

x

δnσ(r)
= eexactx (r)+

+
1

2

∫∫
d3r′d3r′′

n(r′)ηx,σ(r; r
′′|r′)

|r′ − r′′|
, (28)

where ηx,σ(r; r
′′|r′) = δnx(r

′′|r′)/δnσ(r) is the response
of the EXX hole, nx(r

′′|r′), to a variation is the σ-spin-
density, nσ(r). Using Eq. (25), this response function can
be written as

ηx,σ(r; r
′′|r′) = −nx(r

′′|r′)
n(r)

δ(r− r′)−

− 1

n(r′)

∑
τ

[ρ∗1(r
′′τ, r′τ)wσ(r; r

′′, r′, τ) + c.c.] , (29)

where wσ(r; r
′′, r′, τ) := δρ1(r

′′τ, r′τ)/δnσ(r) is the re-
sponse of the KS one-electron reduced density matrix.
The EXX hole response ηx,σ(r; r

′′|r′) satisfies the sum
rule for hole response functions (18): integrating over
r′′, while remembering that

∫
d3r′′nx(r

′′|r′) = −1, that∫
d3r′′|ρ1(r′′τ, r′τ)|2 = nτ (r

′) and that

∫
d3r′′ρ∗1(r

′′τ, r′τ)wσ(r; r
′′, r′, τ) + c.c. =

=
δ

δnσ(r)

∫
d3r′′ |ρ1(r′′τ, r′τ)|2 = δστ δ(r− r′), (30)

one proves Eq. (18) for ηx,σ. Furthermore, ηx,σ satisfies
also Eq. (19), which can be proved in a similar manner.
Consequently, also the exact correlation hole response
function, ηc,σ, has to satisfy Eqs. (18) and (19).

In the following we obtain an analytical expression for
ηx,σ by deriving an expression for wσ. The main challenge
in deriving wσ as a density derivative of ρ1 lies in the fact
that ρ1 is not explicitly density-dependent: as we see in
Eq. (23), ρ1 is explicitly expressed in terms of the KS
spin-orbitals, which in turn depend on the spin densities,
via the KS potential. Therefore, the dependence of ρ1 on
the density is implicit. This challenge is not unique to ρ1:
the same issue raises when one wishes to obtain, for ex-
ample, the EXX potential from the EXX energy. To find
the density-derivative in such cases, we employ the well-
known OEP method [90]. Our case is complicated by
the fact that ρ1 is a complex quantity. The OEP formal-
ism, originally designed to take the derivative of an en-
ergy – manifestly a real quantity – is generalized accord-
ingly in the Appendix. Relying on Eq. (A.20) from the
Appendix, we calculate wσ(r; r

′′, r′, τ) in the Krieger-Li-
Iafrate (KLI) approximation [117], namely neglecting the

orbitals shifts ψ∗
iσ(r) and ψ̃iσ(r) in Eq. (A.20). Within

this approximation the response function wσ(r; r
′′, r′, τ)

is expressed as

wKLI
σ (r; r′′, r′, τ) =

1

nσ(r)

[
Nσ∑
i=1

Uiσ(r; r
′′, r′, τ)|ϕiσ(r)|2+

+

Nσ−1∑
i=1

(
w̄iσ(r

′′, r′, τ)− Ūiσ(r
′′, r′, τ)

)
|ϕiσ(r)|2

]
, (31)
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where

Uiσ(r; r
′′, r′, τ) =

=
1

2

(
1

ϕ∗
iσ(r)

δρ1(r
′′τ, r′τ)

δϕiσ(r)
+

1

ϕiσ(r)

δρ1(r
′′τ, r′τ)

δϕ∗
iσ(r)

)
(32)

includes the derivatives of ρ1 with respect to the
KS orbitals and the bar above a quantity means its
r-average with respect to the ith KS orbital, namely,
w̄iσ(r

′′, r′, τ) =
∫
d3r ϕ∗

iσ(r)wσ(r; r
′′, r′, τ)ϕiσ(r) and

Ūiσ(r
′′, r′, τ) =

∫
d3r ϕ∗

iσ(r)Uiσ(r; r
′′, r′, τ)ϕiσ(r) (see

the Appendix for more details). The standard alignment
convention w̄Nσσ(r

′′, r′, τ) = ŪNσσ(r
′′, r′, τ) is employed.

From Eq. (23) we find that

Uiσ(r; r
′′, r′, τ) =

=
δστ
2

(
ϕ∗
iσ(r

′′)

ϕ∗
iσ(r

′)
δ(r− r′) +

ϕiσ(r
′)

ϕiσ(r′′)
δ(r− r′′)

)
(33)

and Ūiσ(r
′′, r′, τ) = δστϕ

∗
iσ(r

′′)ϕiσ(r
′). Next, to find

w̄iσ(r
′′, r′, τ), we multiply both sides of Eq. (31) by

|ϕjσ(r)|2 and integrate over r:

w̄jσ(r
′′, r′, τ) =

δστ
2
ρ1(r

′′σ, r′σ)

(
|ϕjσ(r

′)|2

nσ(r′)
+

|ϕjσ(r
′′)|2

nσ(r′′)

)
+

Nσ−1∑
i=1

mσ
ij(w̄iσ(r

′′, r′, τ)− Ūiσ(r
′′, r′, τ)). (34)

Here mσ
ij =

∫
d3r |ϕiσ(r)|2|ϕjσ(r)|2/nσ(r). Equa-

tion (34) can be conveniently represented in a vector-
matrix form as

~s = ~s0 +Mσ~s, (35)

if we define the vector ~s of length (Nσ − 1), whose ele-
ments are given as sj = w̄jσ(r

′′, r′, τ)− Ūjσ(r
′′, r′, τ), the

vector ~s0, whose elements are given as

(s0)j = δστ

[
1

2
ρ1(r

′′σ, r′σ)

(
|ϕjσ(r

′)|2

nσ(r′)
+

|ϕjσ(r
′′)|2

nσ(r′′)

)
−

− ϕ∗
jσ(r

′′)ϕjσ(r
′)

]
(36)

and the (Nσ − 1)× (Nσ − 1) matrix Mσ, whose elements
are the above-defined integralsmσ

ij . Equation (35) is then

formally solved as ~s = (I−Mσ)
−1~s0. This paves the way

to analytically obtain the averages w̄iσ.

Proceeding with the derivation, we define the matrix

M̃σ := (I −Mσ)
−1, and the elements of this matrix as

m̃σ
ij . Given the KS orbitals ϕiσ(r), these matrix elements

can be numerically calculated with relatively little effort.
Assuming m̃σ

ij are given, we can now express the elements
of vector ~s as

si =

Nσ−1∑
j=1

m̃σ
ij(s0)j = δστ

[
1

2
ρ1(r

′′σ, r′σ)×

×
Nσ−1∑
j=1

m̃σ
ij

(
|ϕjσ(r

′)|2

nσ(r′)
+

|ϕjσ(r
′′)|2

nσ(r′′)

)
−

−
Nσ−1∑
j=1

m̃σ
ijϕ

∗
jσ(r

′′)ϕjσ(r
′)

]
. (37)

Next, we insert Eq. (33) and (37) into Eq. (31) to explic-
itly express the response function wσ(r; r

′′, r′, τ) in the
KLI approximation:

wKLI
σ (r; r′′, r′, τ) = δστ

[
1

2
ρ1(r

′′σ, r′σ)

(
δ(r− r′)

nσ(r′)
+
δ(r− r′′)

nσ(r′′)

)
+

+
1

2
ρ1(r

′′σ, r′σ)

Nσ−1∑
i=1

Nσ−1∑
j=1

m̃σ
ij

(
|ϕjσ(r

′)|2

nσ(r′)
+

|ϕjσ(r
′′)|2

nσ(r′′)

)
|ϕiσ(r)|2

nσ(r)
−

Nσ−1∑
i=1

Nσ−1∑
j=1

m̃σ
ijϕ

∗
jσ(r

′′)ϕjσ(r
′)
|ϕiσ(r)|2

nσ(r)

]
, (38)

In the following we shortly analyze the achieved result.
First, the response function wσ(r; r

′′, r′, τ) is diagonal
with respect to σ and τ , meaning that variation in a
given spin-density creates response of the KS one-electron
reduced density matrix in that very spin channel, but
not in the opposite one. For this reason, from now
on we drop for brevity the argument τ in the expres-
sions for wσ. Second, the response function satisfies
wσ(r; r

′′, r′) = w∗
σ(r; r

′, r′′), as expected. Third, from

Eq. (38) we realize that with respect to r the response
function wσ has terms of two types: an extremely lo-
calized term, due to the presence of the Dirac delta-
functions, δ(r − r′) and δ(r − r′′), and a term that is
relatively spread out, which decays exponentially with r,
due to the ratios |ϕiσ(r)|2/nσ(r).
Finally, we are ready to obtain the result for the

EXX hole response function, ηx,σ(r; r
′′|r′), by substitut-

ing Eqs. (38) and (25) into Eq. (29):
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ηKLI
x,σ (r; r′′|r′) = − 1

n(r′)

{
|ρ1(r′′σ, r′σ)|2

nσ(r′′)
δ(r− r′′) +

|ρ1(r′′σ, r′σ)|2

nσ(r′)
δ(r− r′)−

∑
τ |ρ1(r′′τ, r′τ)|2

n(r′)
δ(r− r′)+

+

Nσ−1∑
i=1

Nσ−1∑
j=1

m̃σ
ij

[
|ρ1(r′′σ, r′σ)|2

(
|ϕjσ(r

′)|2

nσ(r′)
+

|ϕjσ(r
′′)|2

nσ(r′′)

)
−
(
ρ∗1(r

′′σ, r′σ)ϕ∗
jσ(r

′′)ϕjσ(r
′) + c.c.

)] |ϕiσ(r)|2

nσ(r)

}
. (39)

Equation (39) is the central result derived in this sec-
tion. Similarly to Eq. (38), this expression also includes
extremely localized terms with delta-functions (first line
of Eq. (39)) and somewhat delocalized terms, with the
ratios |ϕiσ(r)|2/nσ(r) (second line). Substitution of
Eq. (39) into Eq. (28) yields, after some algebraic ma-
nipulations, the EXX potential in the KLI approxima-
tion [90], as required. Furthermore, ηKLI

x,σ (r; r′′|r′) satis-
fies Eq. (19).

As to the contribution of ηKLI
x,σ to the asymptotic be-

havior of the potential, which was our central concern in
Sec. II B, we reach the following interesting finding: as
we substitute Eq. (39) into Eq. (20), we find that the
only terms of ηKLI

x,σ that are significant for the asymp-
totic behavior are those extremely localized terms that
appear in the first line of Eq. (39). Summed up, they
give the correct −1/|r| behavior. The delocalized terms
that appear in the second line, and are proportional to
|ϕiσ(r)|2/nσ(r), decay exponentially, and therefore do
not contribute asymptotically. In addition, it follows that
those terms that are absent in the KLI approximation,
but do appear in the full OEP treatment, do not con-
tribute to the asymptotic behavior either (cf. Ref. [118]
for an analogous conclusion for the potential). This find-
ing is relevant when constructing approximations to the
exchange functional via the exchange hole, nx(r

′′|r′), and
its response, ηx,σ(r; r

′′|r′): for the aim of getting the cor-
rect −1/|r| asymptotic behavior, one can focus on ap-
proximating those extremely localized terms of ηx,σ that
appear in the first line of Eq. (39). As to the complemen-
tary correlation term, η̄c,σ, it follows that the correlation
contribution,

∫∫
d3r′d3r′′n(r′)η̄c,σ(r; r

′′|r′)/|r′ − r′′| has
to decay at far r slower than 1/|r|, in order to satisfy
Eq. (20).

V. ASYMPTOTIC BEHAVIOR OF COMMON
EXCHANGE-CORRELATION

APPROXIMATIONS

So far we described the asymptotic behavior of the ex-
act xc energy density per particle and the corresponding
exact potential. It is therefore appropriate to examine
the performance of common approximations with respect
to the expected exact results.

It has become popular to categorize density functional
approximations (DFAs) according to the “Jacob’s lad-
der” scheme originally introduced in Ref. [25] [207]. The

ladder, which is schematically depicted in Fig. 1, con-
sists of five rungs that help to climb from the inaccu-
rate ‘Hartree world’ to the ‘heaven of chemical accuracy’.
The DFAs are distributed on the rungs of the ladder ac-
cording to the sophistication of the ingredients used in
their construction. Thus, on the lowest, first rung we
find the local density approximation (LDA) [119, 120],
whose energy density per particle is a function (not a
functional!) only of the density n(r) itself. On the
second rung we find the GGAs, which depend also on
the gradient of the density, ∇n. Among them is the
celebrated PBE [38] functional. On the third rung re-
side the meta-GGAs (e.g., [39, 121]). For them the use
of second derivatives of the density, e.g. ∇2n, as well

as of the quantity τ(r) = 1
2

∑
σ

∑Nσ

i=1 |∇ϕiσ(r)|2 (which
is the KS kinetic energy density), is allowed. On the
fourth rung we find functionals that explicitly depend
on KS orbitals, but only on the occupied ones. Among
them are the EXX functional, global hybrid function-
als, like PBEh [122–124] and B3LYP [125, 126], local hy-
brids, e.g., [64, 96, 127–130] and range-separated hybrids
(RSHs) (see [78, 79, 131, 132] and references therein).
The last, fifth rung hosts functionals that depend also
on unoccupied KS orbitals and on orbital energies, εi.
One example of such a functional is the random-phase-
approximation (RPA) [133]. The accuracy of DFAs is
expected to improve the higher their rung on the ladder
is. This happens normally at the price of increased com-
plexity of the functional, of its numerical implementation
and of the numerical effort required in calculations.

In the following, we review the asymptotic performance
of DFAs on each rung of the ladder. On the first rung,
the LDA exchange yields eLDA

x (r) = − 3
4 (

3
π )

1/3n1/3(r),

and therefore vLDA
x (r) = −( 3π )

1/3n1/3(r) [9]. Asymptot-

ically, the density decays exponentially, and so do eLDA
x

and vLDA
x . For LDA correlation the asymptotic result is

similar, with both eLDA
c and vLDA

c decaying as n1/3(r).
This too rapid decay, which is characteristic of the LDA,
is held responsible for many of its failures, e.g., inability
to produce bound anions and poor prediction of the IP
via εho.

On the second and third rung the asymptotic per-
formance of GGAs and meta-GGAs (also called semi-
local approximations) is typically similar to that of LDA:
the decay is exponential and therefore too rapid. Dif-
ferent are the Becke (B88) [134] and the Armiento-
Kümmel (AK13) [135] exchange functionals. In the for-



9

LDA

GGAs

meta GGAs

hybrids

n(r)

n(r), |rn(r)|

n(r), |rn(r)|, (r)

n(r), |rn(r)|, (r), occ. i(r)

n(r), |rn(r)|, (r), all i(r), i

Hartree world

Heaven of chemical accuracy

RPA and beyond

FIG. 1: “Jacob’s ladder” of density functional approximations
to the xc energy [25].

mer, eB88
x (r) decays as ∼ 1/(2|r|), by construction (for

an exponentially decaying density), but vB88
x (r) does not

produce the correct asymptotic limit [41]. In the latter,
vAK13
x (r) decays correctly, by construction, but eAK13

x (r)
does not.

The functional that clearly yields the correct asymp-
totic behavior for both exc(r) and vxc(r) resides on the
fourth rung. This is the EXX functional. The asymp-
totic behavior for eexactx (r) can be readily deduced from
Eq. (26) by substituting r′ with r and taking the limit
|r − r′′| → |r|. Recalling that

∫
d3r′′nx(r

′′|r) = −1, it
follows that eexactx (r) ∼ −1/(2|r|). To find the asymp-
totic behavior of vexactx,σ (r) we need to address the latter
quantity with the OEP method. We do not present this
derivation here, but only refer to a property of the OEP
equation [90, 118]: the asymptotic behavior of vexactx,σ (r)
is governed by the ho orbital-specific derivative

uNσ,σ(r) =
1

ϕ∗
Nσ,σ

(r)

δEexact
x

δnσ(r)
=

= − 1

ϕ∗
Nσ,σ

(r)

Nσ∑
j=1

ϕ∗
jσ(r)

∫
d3r′

ϕ∗
Nσ,σ

(r′)ϕjσ(r
′)

|r− r′|
.

(40)

In the limit |r − r′| → |r|, the latter quantity decays
as ∼ 1/|r|, and so does vexactx,σ (r). Therefore, EXX and
also a combination of EXX and any (semi-)local correla-
tion approximation perfectly perform in the asymptotic
regime, both for exc(r) and vxc(r). The main problem,
however, is that bare EXX is known for its poor descrip-
tion of binding energies and structural properties [10, ch.
2],[11], whereas adding a semi-local correlation functional
can make performance even worse, leading to results in-
ferior to those of a semi-local xc approximations. This is
known as the incompatibility of EXX with (semi-)local
correlation [90, Sec. III.D].

As a possible remedy to the above-described situation,
one can consider a (global) hybrid DFA, which typically

has the form

Egl.hyb.
xc = (1− a)Eexact

x + aEs.-l.
x + Es.-l.

c . (41)

Here the superscript gl.hyb. stands for global hybrid, the
superscript s.-l. stands for semi-local, and a is a pa-
rameter between 0 and 1 [208] . Hybrid DFAs proved
to be very successful in prediction of various properties
and have nowadays a broad range of applications (see,
e.g., [67, 90, 136] and references therein). However, global
hybrids fail to produce the correct asymptotics for both
exc(r) and vxc(r). Assuming that the semi-local exchange
and correlation terms decay exponentially, it follows that
egl.hyb.xc (r) ∼ −(1−a)/(2|r|) and vgl.hyb.xc (r) ∼ −(1−a)/|r|,
namely the resulting decay is too shallow by a factor of
(1− a), and the correct result is obtained only for a = 0,
i.e., for bare EXX plus semi-local correlation.
A further step towards construction of a correlation

functional compatible with EXX has been made by in-
troduction of local hybrids [127, 128]. Being a general-
ization of the global hybrid approach, a local hybrid xc
approximation is defined via its energy density per par-
ticle:

eloc.hyb.xc (r) = (1− f(r))eexactx (r) + f(r)es.-l.x (r) + es.-l.c (r),
(42)

being a linear combination of EXX and semi-local ex-
change, plus a semi-local correlation. Notably, the com-
bination is not global, but local, due to the r-dependence
of the function f(r), termed the local mixing function
(LMF). The flexibility introduced by the LMF allows,
for example, to employ a higher portion of EXX in cer-
tain spatial regions of the system (e.g., where there is es-
sentially one electron only), and a lower portion of EXX,
hence a higher portion of semi-local exchange in other re-
gions (e.g., where the density is close to a uniform one).
A judicial choice of f(r), which is a functional of the
density, is in the heart of the local hybrid approach.
A good strategy is to design f(r) by satisfying exact

constraints [64, 129]. One such constraint is related to the
asymptotic limit, |r| → ∞. In this limit, we wish eloc.hyb.xc

to be dominated by the EXX term. Assuming that the
semi-local exchange and correlation terms of Eq. (42) de-
cay exponentially (or at least faster than 1/|r|), we realize
that

lim
|r|→∞

f [n](r) = 0 (43)

is the LMF behavior we are looking for (see, for ex-
ample, the LMF developed for the ISOcc local hybrid
in Ref. [129]). If Eq. (43) is satisfied, eloc.hyb.xc (r) ∼
(1 − f(r))eexactx (r) ∼ −1/(2|r|), as required. But what
about the corresponding potential, vloc.hyb.xc (r)? One
could näıvely expect from Eq. (42) that, by analogy
to global hybrids, the potential will share with eloc.hyb.xc

the same coefficient in the decay rate, and therefore be-
have as −1/|r|. However, a careful analysis performed
in Ref. [71] has shown that vloc.hyb.xc (r) ∼ −γ/|r|, where
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γ = 1− 1
2

∫
d3rf(r)|ϕho(r)|2. γ is a system-specific quan-

tity, and it can be shown that it always lies in the ragne
( 12 , 1]. The desired value of 1 can be reached only by set-
ting f(r) = 0 everywhere in space, basically going back
to the EXX functional. The obtained asymptotic decay
of −γ/|r| is of course better than the rapid exponential
decay of semi-local functionals, being closer to the exact
one. Still, the finding of Ref. [71] implies that even such
a broad and flexible family of functionals as local hybrids
cannot generally yield the exact asymptotic behavior of
exc(r) and vxc(r) simultaneously. Therefore, an broader
class of functionals has to be suggested.

VI. ASYMPTOTIC BEHAVIOR AND
SELF-INTERACTION ERROR

Incorrect asymptotic behavior is frequently associated
in the the literature with the spurious self-interaction
that plagues many DFAs. The notion of one-electron self-
interaction (SI) [43] emerges from the fact that for one-
electron systems (such as the H atom, the H+

2 molecule,
etc.) we know the KS potential and total energy exactly.
For these cases, the only existing electron feels just the
external potential. For this to happen, the exchange po-
tential has to cancel out the Hartree potential and the
correlation potential has to equal zero. The same re-
lation is true for the corresponding energies [10]. In a
DFA that does not satisfy the above criterion, the elec-
tron feels a spurious repulsion from itself. As a result,
it tends to delocalize in space and the energy of the sys-
tem is systematically too high. For example, the total
energy for the H atom within the LSDA is higher by 4%
comparing to the exact value (see e.g. [137, 138]). In a
more general way, for any many-electron system, a DFA
is considered [43] one-electron SI-free if

EH[|ϕiσ(r)|2] + Exc[|ϕiσ(r)|2] = 0, (44)

where ϕiσ(r) are the occupied KS spin-orbitals of the
system. The definition above is not unique; see, e.g., the
discussion in Ref. [139].

The SI problem is associated with problems of
orbital delocalization [43, 140–143], ionization pro-
cesses [144–147], charge transfer [148–151], dissociation
of molecules [65, 152–158] and the interpretability of
eigenvalues and orbitals e.g. in the context of photoem-
mission spectroscopy [80, 159–163].

Intuitively, there is a reason to connect self-interaction
and wrong asymptotic behavior of the xc potential. Re-
call the intuitive explanation that we gave for the behav-
ior of the potential in Sec. II B: located far away from a
system, an electron in the exact KS potential feels the
attraction of the nucleus screened by all the other N − 1
electrons. In an approximate potential, the electron “in-
teracts with itself”, hence the behavior of the xc potential
is wrong.

Furthermore, a strong association between self-
interaction and wrong asymptotics may have also
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FIG. 2: One-electron self-interaction freedom versus correct
asymptotic behavior of selected DFAs.

emerged from the fact that both the well-known EXX
functional and the self-interaction-corrected (SIC) func-
tional [43] (built on satisfying criterion (44)), have both
properties right: they are one-electron self-interaction-
free and the asymptotics of their potentials is cor-
rect [208].
However, it follows from Ref. [71], and further sup-

ported by the results of Refs. [151, 163], that (i) free-
dom from one-electron self-interaction does not necessar-
ily lead to (ii) correct asymptotics of the xc potential,
or the other way around. In fact, (i) and (ii) are two
distinct properties of the exact xc functional. This work
makes a further distinction: (iii) correct asymptotics of
the xc energy-density per particle is yet another indepen-
dent property of the exact functional; particularly, (iii) is
distinct from (ii). These aforementioned properties can
be regarded as three separate requirements that we wish
an approximate xc functional to satisfy.
The matter is summarized in Fig. 2, which presents

a 2 × 2 table indicating satisfaction of one-electron self-
interaction freedom (property (i); vertical) and correct
asymptotics (properties (ii) and (iii) combined; horizon-
tal). Each DFA can be positioned in this table according
to the extent it satisfies the aforementioned properties.
Thus, in the top-left quadrant (SI present, wrong

asymptotics) one finds the LDA, most GGAs, most meta-
GGAs and global hybrids (for DFAs marked in the figure
with an asterisk, see footnote [208]). The latter are posi-
tioned closer to the right-bottom corner of this quadrant,
as their asymptotic behavior goes at least with the cor-
rect power of |r|, namely |r|−1, albeit with a wrong coef-
ficient. Furthermore, global hybrids can also be viewed
‘partly’ SI-free; both these properties emerge from the
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presence of a fraction of EXX in the functional. Notably,
there exist at least two semi-local DFAs, which were men-
tioned above, that reside on the border of the two upper
quadrants: these are the B88 and the AK13 exchange
functionals. Not being generally SI-free, these function-
als yields the correct asymptotic behavior for either ex(r)
(B88) or vx(r) (AK13), which is denoted in the table.

The bottom-right quadrant of the table (SI-free, cor-
rect asymptotics) hosts the EXX functional, the SIC
functionals (implemented self-consistently within the KS
scheme [139]) and of course the (unknown) exact xc func-
tional. Local hybrid functionals (e.g., the ISOcc func-
tional [129]) are located on the border of the two bottom
quadrants. By an appropriate construction of the LMF,
they can be SI-free and yield the correct asymptotic be-
havior of exc(r), but not of vxc(r), as discussed in Sec. V.

Two additional classes of DFAs appear in Fig. 2.
Scaled-down SIC functionals [164], located in the left-
bottom quadrant, is SI-free, but its asymptotics is in
error, due to the scale-down factor (see Ref. [164],
Sec. V.B). Finally, RSHs have, by construction, the cor-
rect asymptotics, but are generally not SI-free, which de-
termines their location in the top-right quadrant.

In summary, we conclude from Fig. 2 that various
DFAs may appear be contaminated by one-electron self-
interaction or be SI-free and in parallel may possess cor-
rect asymptotics, for both exc(r) and vxc(r), for one of
them or for neither. All combinations exist among known
DFAs, which shows that properties (i), (ii) and (iii) are
distinct properties of the exact xc functional.

VII. SUMMARY AND OUTLOOK

In this work we addressed the asymptotic behav-
ior of the exchange-correlation potential, vxc[n](r), and
of the exchange-correlation energy density per particle,
exc[n](r), as |r| → ∞, namely far away from a given finite
system. Despite the high importance of satisfying exact
constraints and despite the particular significance of hav-
ing correct asymptotics in xc approximations, one has to
admit that simultaneously obtaining the correct decay of
both exc(r) and vxc(r) is not an easy task at all. Not only
semi-local approximations or global hybrids generally fail
this task, but also such a large and flexible family of ap-
proximations as local hybrid functionals is not capable,
in principle, to capture both these properties at once.

This article tried to contribute to the understanding
why this is so. Indeed, while investing significant efforts
in modelling exc(r), or in the case of local hybrids – mod-
elling ec(r) (compatible with eexactx (r)), the xc potential,
vxc(r), directly result from exc(r) obtained by differentia-
tion, without us having a direct influence on its properties
in the process of approximation construction. Evidently,
not all exact properties inherent to exc(r) naturally mi-
grate to vxc(r), as one would have näıvely hoped. As
shown in Sec. III, asymptotic behavior of exc(r) and of
vxc(r) are two distinct properties of the exact xc func-

tional, that do not follow one from the other. In particu-
lar, whereas the behavior of exc(r) is a direct consequence
of the xc hole sum rule, the behavior of vxc(r) depends on
an additional quantity – the λ-averaged xc hole response
function, η̄xc(r; r

′′, r′).

The xc hole response function η̄xc(r; r
′′, r′) was studied

in Sec. III, with three of its exact properties analytically
derived. Furthermore, in Sec. IV the exact exchange part
of this response function, ηx,σ(r; r

′′, r′), was obtained em-
ploying the OEP method (which has been generalized
for this task, to address complex quantities (see Ap-
pendix)). In course of the derivation, the KLI approx-
imation was employed and those terms of ηx,σ(r; r

′′, r′)
that contribute to the asymptotic behavior of the xc po-
tential were identified. It was shown that other terms,
including those that are beyond the KLI approximation,
are not significant asymptotically and hence the KLI ap-
proximation is justified in our case. In addition, during
the derivation of η̄xc(r; r

′′, r′) we obtained wσ(r; r
′′, r′) –

the response of the KS one-electron density matrix, which
is another quantity of interest in its own right.

Further progress in exploring ηx,σ(r; r
′′, r′) can take

several directions. First, going beyond the KLI approx-
imation is desirable. Although not of direct significance
to the questions of asymptotics, a more exact expression
for ηx,σ(r; r

′′, r′) can contribute to modelling the xc po-
tential and reveal some of its exact properties. Second,
generalization of the present approach to systems with a
varying number of electrons, N , and subsequent deriva-
tion of ηx,σ(r; r

′′, r′) and other quantities for a fractional
N can yield a better understanding of the exact xc poten-
tial in this scenario. Although systems with fractional N
are outside the scope of the present work, their treatment
and detailed understanding of their properties is a topic
of high significance [67, 72, 83–86, 136, 157, 165–173].
Finally, additional effort is required to study the proper-
ties of the correlation ingredient of the xc hole response
function, ηc,σ(r; r

′′, r′). This may be partly achieved
via derivation of additional exact properties, following
Eqs. (18), (19) and (20).

In conclusion of this work, it is appropriate to discuss
the possible routes one can take aiming at new xc approx-
imations that have correct asymptotics, simultaneously
for vxc[n](r) and exc[n](r), along with additional impor-
tant properties, such as freedom from self-interaction,
uniform scaling, size consistency, satisfying the IP the-
orem, and more. One such route is to directly model the
xc potential, making it to satisfy the correct ∼ −1/|r|
asymptotics as a constraint. Fruitful efforts in this direc-
tion took place over the years (see, e.g., [75, 174–177])
and the resulting approximations are of practical use.
However, recovering the corresponding energy density
per particle for a directly designed potential expression
is not feasible, and the mathematical question of exis-
tence of an energy functional for a given potential stands.
Therefore, the use of direct potential approximations is
necessarily limited [178–180].

Another route towards approximations with correct
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FIG. 3: The exchange-correlation tree (details in text)

asymptotics is to employ the idea of range separa-
tion [78, 79, 181–184], possibly combining it with lo-
cal hybrid functionals. Range-separated hybrids, exist-
ing nowadays in various flavors, have been successfully
applied to a variety of materials and chemical environ-
ments [2, 80–82, 131, 132, 185–192]. Yet, with the ad-
vantages of RSHs come also the challenges, particularly
determining the range-separation parameter, which can
be difficult e.g. in heterogeneous systems [193].

The results of this work suggest an additional possible
route: instead on focussing on modelling exc[n](r), it is
suggested here to invest in constructing approximations
for the λ-averaged xc hole function, n̄xc(r

′′|r′), satisfying
the properties known for the hole and for its functional

derivative, η̄xc(r; r
′′|r′). Alternatively, one can decide to

use the exact exchange and search for a compatible cor-
relation. In such a case, nexactx,σ (r′′|r′) and ηexactx,σ (r; r′′|r′)
are known (Eqs. (25) and (39)) and one searches for the
correlation hole, i.e., for n̄c(r

′′|r′) and η̄c(r; r′′|r′). Once
the xc hole is approximated, obtaining the correspond-
ing energy density per particle and the xc potential is
straightforward (see Eq. (12) and (17)). This may open
the door for approximations with correct asymptotics,
both for vxc[n](r) and exc[n](r).

The suggestion above can be further extended, going
beyond the question of correct asymptotic behavior dis-
cussed here, to formulate a strategy for design of new xc
approximations in general, following the concept of sat-
isfying constraints. The idea is graphically presented in
Fig. 3. This is a suggestion for classification of various
xc functionals in rungs (or levels), as in “Jacob’s ladder”.
Figure 3 shows a drawing of a tree with branches on four
different levels. On each level a different DFT quantity
is meant to be approximated. Climbing the tree, one
progresses from more simple and intuitive concepts, such
as [focusing on the left part for the moment] the xc en-
ergy, Exc (level 1), or the xc energy density per parti-
cle, exc(r) (level 2) to the more abstract concepts of the
λ-averaged xc hole, n̄xc(r

′|r) (level 3) all the way to the

top of the tree, with the λ-dependent hole, n
(λ)
xc (r′|r).

The number of coordinates each quantity has, as well as
the difficulty to construct approximations also rises. Of
course, descending is usually easier than ascending: once
an approximation for a quantity is made, those below are
immediately obtained, by integration. In addition, one
can choose whether to climb the tree on the left, approx-
imating exchange and correlation, or on the right, using
the exact exchange and looking for a compatible corre-
lation functional. The various known xc approximations
can be located on one of the branches of this tree. It gen-
erally seems that the first two levels are rather congested,
whereas the higher levels are only sparsely occupied. This
is a call to keep climbing the exchange-correlation tree!
The sweetest fruits are on the top (not shown in Fig. 3).

Appendix: OEP formalism for a complex functional

The purpose of this appendix is to show how the op-
timized effective potential (OEP) formalism [90] can be
generalized for the case of a complex functional. Usu-
ally, the OEP formalism serves in DFT to obtain the xc
potential vxc[n](r) from the xc energy functional Exc[n],
in cases where the xc energy functional is not explic-
itly density-dependent, but is rather explicitly orbital-
dependent.

The xc energy is surely a real quantity, and standard
OEP derivations that are found in the literature assume
that. In Sec. IV we encounter a situation where the OEP

formalism has to be applied to a complex quantity, and
therefore the OEP equations have to be generalized ac-
cordingly, which is done below. In our derivation we
closely follow Ref. [90], Sec. II. In particular, our results
are presented in the spin-dependent form and we consider
here the explicit dependence on the KS orbitals, but not
on other quantities, such as the KS energies {εiσ}, the
occupation numbers, etc.

We therefore consider a complex quantity, Q, which is
an explicit functional of the KS orbitals: Q [{ϕiσ(r)}],
and therefore an implicit functional of the spin-densities,
nσ(r). The first derivative of Q with respect to nσ(r) is
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expressed as

wσ(r) :=
δQ

δnσ(r)
=

=
∑

α=↑,↓

Nα∑
i=1

∫
d3x

[
δQ

δϕiα(x)

δϕiα(x)

δnσ(r)
+

δQ

δϕ∗
iα(x)

δϕ∗
iα(x)

δnσ(r)

]
(A.1)

Unlike in a standard OEP derivation, here we write down
explicitly both the derivative of Q with respect to ϕiα(x)
and with respect to ϕ∗

iα(x). If Q were real, δQ/δϕ∗
iα(x)

would equal δQ∗/δϕ∗
iα(x), which in turn would equal

(δQ/δϕiα(x))
∗
, and the second term of the integrand in

Eq. (A.1) would then be simply the complex conjugate
(c.c.) of the first term. However, when Q is complex,
both terms have to be explicitly considered.

The next few steps of the OEP derivation remain un-
altered by the fact that Q is complex: (i) the unknown
derivative δϕiα(x)/δnσ(r) is expressed using the KS po-
tential as

δϕiα(x)

δnσ(r)
=

∑
β=↑,↓

∫
d3y

δϕiα(x)

δvKS,β(y)

δvKS,β(y)

δnσ(r)
, (A.2)

and similarly for the derivative of ϕ∗
iα(x). (ii) The deriva-

tive of the KS orbital with respect to the KS potential
can be derived from first-order perturbation theory

δϕiα(x)

δvKS,β(y)
= δαβ

∞∑
j=1
j 6=i

ϕjα(x)ϕ
∗
jα(y)

εiα − εjα
ϕiα(y). (A.3)

Again, the expression for the derivative of ϕ∗
iα(x) is very

similar. (iii) The KS response function is given by

χKS
σβ (r, z) =

δnσ(r)

δvKS,β(z)
=

= δσβ

Nσ∑
i=1

∞∑
j=1
j 6=i

ϕ∗
iσ(r)ϕ

∗
jσ(z)ϕiσ(z)ϕjσ(r)

εiσ − εjσ
+ c.c. (A.4)

Using the KS Green function

GKS
iσ (x,y) =

∞∑
j=1
j 6=i

ϕjσ(x)ϕ
∗
jσ(y)

εiσ − εjσ
, (A.5)

we can express the results of Eqs. (A.3) and (A.4) as

δϕiα(x)

δvKS,β(y)
= δαβϕiα(y)G

KS
iα (x,y), (A.6)

δϕ∗
iα(x)

δvKS,β(y)
= δαβϕ

∗
iα(y)

[
GKS

iα (x,y)
]∗
, (A.7)

and

χKS
σβ (r, z) = δσβ

Nσ∑
i=1

ϕ∗
iσ(r)ϕiσ(z)G

KS
iσ (r, z) + c.c. (A.8)

The fact that results (i)–(iii) remain unchanged for a
complex Q is not surprising: they have nothing to do
with the functional Q, whose derivative we are looking
for.
Next, we denote the orbital-specific derivatives

uiσ(r) :=
1

ϕ∗
iσ(r)

δQ

δϕiσ(r)
, ũiσ(r) :=

1

ϕiσ(r)

δQ

δϕ∗
iσ(r)

.

(A.9)
For the particular case of a real Q, we have ũiσ(r) =
u∗iσ(r); not so for a complex Q. We now substitute
Eqs. (A.2), (A.6), (A.7) and (A.9) into Eq. (A.1) to ob-
tain:

wσ(r) =
∑
α

Nα∑
i=1

∫∫
d3x d3y

δvKS,α(y)

δnσ(r)
·

·
[
uiα(x)ϕ

∗
iα(x)ϕiα(y)G

KS
iα (x,y) +

+ ũiα(x)ϕiα(x)ϕ
∗
iα(y)

[
GKS

iα (x,y)
]∗]

(A.10)

We multiply both sides of this equation by χKS
σβ (r, z), inte-

grate over r and sum over β. Then, on the left-hand-side
we exchange the variables r 7→ x, and only then on both
sides z 7→ r to obtain the celebrated OEP equation

Nσ∑
i=1

∫
d3x

[
ϕ∗
iσ(x) (wσ(x)− uiσ(x))ϕiσ(r)G

KS
iσ (x, r)+

+ ϕiσ(x) (wσ(x)− ũiσ(x))ϕ
∗
iσ(r)

[
GKS

iσ (x, r)
]∗]

= 0

(A.11)

generalized for a complexQ. Notably, in the case of a real
Q, where ũiσ(r) = u∗iσ(r), the second term of Eq. (A.11)
becomes the complex conjugate of the first term, and the
OEP equation reduces to its known form (Eq. (24) of
Ref. [90]).
We continue the derivation further, aiming to resolve

Eq. (A.11) with respect to wσ(r), by introducing the so-
called orbital shifts. The first orbital shift

ψ∗
iσ(r) =

∫
d3x ϕ∗

iσ(x) (wσ(x)− uiσ(x))G
KS
iσ (x, r)

(A.12)
is the familiar one, whereas the second, complimentary
orbital shift reads

ψ̃iσ(r) =

∫
d3x ϕiσ(x) (wσ(x)− ũiσ(x))

[
GKS

iσ (x, r)
]∗
.

(A.13)
These definitions allow us to express the generalized OEP
equation, Eq. (A.11), as

Nσ∑
i=1

ϕiσ(r)ψ
∗
iσ(r) + ϕ∗

iσ(r)ψ̃iσ(r) = 0. (A.14)

Again, for a real Q, wσ(r) is real, ψ̃iσ(r) = ψiσ(r) and
therefore Eq. (A.14) reduces to its usual form.
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The KS Green function satisfies the following inhomo-
geneous Schrödinger-like equation:(

−1

2
∇2 + vKS,σ(r)− εiσ

)
GKS

iσ (x, r) =

= − [δ(x− r)− ϕiσ(x)ϕ
∗
iσ(r)] . (A.15)

As a result, one deduces the following equations for the
orbital shifts:(

−1

2
∇2 + vKS,σ(r)− εiσ

)
ψ∗
iσ(r) =

= − [(wσ(r)− uiσ(r))− (w̄iσ − ūiσ)]ϕ
∗
iσ(r) (A.16)(

−1

2
∇2 + vKS,σ(r)− εiσ

)
ψ̃iσ(r) =

= −
[
(wσ(r)− ũiσ(r))−

(
w̄iσ − ¯̃uiσ

)]
ϕiσ(r),

(A.17)

where the bar above a quantity means its av-
erage with respect to the ith KS orbital, e.g.,
w̄iσ =

∫
d3r ϕ∗

iσ(r)wσ(r)ϕiσ(r). Equations (A.16)
and (A.17) can be resolved with respect to vKS,σ(r)ψ

∗
iσ(r)

and vKS,σ(r)ψ̃iσ(r), respectively, and substituted into
Eq. (A.14) to finally get an expression for wσ(r):

wσ(r) =
1

nσ(r)

{
Nσ∑
i=1

[
Uiσ(r) +

(
w̄iσ − Ūiσ

)]
|ϕiσ(r)|2+

+
1

2

[
ϕiσ(r)

(
1

2
∇2 + εiσ

)
ψ∗
iσ(r)+

+ ϕ∗
iσ(r)

(
1

2
∇2 + εiσ

)
ψ̃iσ(r)

]}
(A.18)

Here

Uiσ(r) =
1

2
(uiσ(r) + ũiσ(r)) , (A.19)

which can be formally viewed as the average of the two
orbital-specific derivatives of Q, defined in Eq. (A.9). Fi-
nally, using the same algebraic techniques as in the stan-
dard OEP derivation, Eq. (A.18) can be further simpli-
fied to

wσ(r) =
1

nσ(r)

{
Nσ∑
i=1

[
Uiσ(r) +

(
w̄iσ − Ūiσ

)]
|ϕiσ(r)|2−

− 1

2
∇ ·

(
ψ∗
iσ(r)∇ϕiσ(r) + ψ̃iσ(r)∇ϕ∗

iσ(r)
)}

.

(A.20)

Equation (A.20) provides an expression for wσ(r) –
the functional derivative of a complex, explicit orbital-
dependent functional Q, with respect to the density, in
terms of the generalized orbital specific derivatives Uiσ(r)

and the orbital shifts ψ∗
iσ(r) and ψ̃iσ(r). Equation (A.20)

serves as the the generalization of the usual wσ-resolved
OEP equation (cf. Eq. (35) of Ref. [90]) for the case of
a complex Q. The derivation presented here allows us
to address the derivative of the KS one-electron reduced
density matrix with respect to the spin density, which is
discussed in the main text.
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Phys. Chem. Chem. Phys. 16, 14357 (2014).
[72] M. J. P. Hodgson, E. Kraisler, A. Schild, and E. K. U.

Gross, J. Phys. Chem. Lett. 8, 5974 (2017).
[73] J. P. Perdew and M. Levy, Phys. Rev. B 56, 16021

(1997).
[74] M. K. Harbola, Phys. Rev. B 60, 4545 (1999).
[75] D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 10180

(1998).
[76] D. J. Tozer, R. D. Amos, N. C. Handy, B. O. Ross, and

L. Serrano-Andres, Mol. Phys. 97, 859 (1999).
[77] M. E. Casida and D. R. Salahub, J. Chem. Phys. 113,

8918 (2000).
[78] R. Baer, E. Livshits, and U. Salzner, Annu. Rev. Phys.

Chem. 61, 85 (2010).
[79] L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer,

J. Chem. Theory Comp. 8, 1515 (2012).
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