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Abstract The Drug Design Data Resource (D3R) Grand
Challenges present an opportunity to assess, in the context
of a blind predictive challenge, the accuracy and the limits
of tools and methodologies designed to help guide pharma-
ceutical drug discovery projects. Here, we report the results
of our participation in the D3R Grand Challenge 4, which
focused on predicting the binding poses and affinity rank-
ing for compounds targeting the β -amyloid precursor pro-
tein (BACE-1). Our ligand
similarity-based protocol using HYBRID (OpenEye Scien-
tific Software) successfully identified poses close to the na-
tive binding mode for most of the ligands with less than 2
Å RMSD accuracy. Furthermore, we compared the perfor-
mance of our HYBRID-based approach to that of AutoDock
Vina and Dock 6 and found that using a reference ligand
to guide the docking process is a better strategy for pose
prediction and helped HYBRID to perform better here. We
also conducted end-point free energy estimates on protein-
ligand complexes on molecules dynamics based ensembles
using molecular mechanics combined with generalized Born
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surface area method (MM-GBSA). We found that the bind-
ing affinity ranking based on MM-GBSA scores have poor
correlation with the experimental values. Finally, the main
lessons from our participation in D3R Grand Challenge 4
suggest that: i) the generation of the macrocycles conform-
ers is a key step for successful pose prediction, ii) the pro-
tonation states of the BACE-1 binding site should be treated
carefully, iii) the MM-GBSA method could not discrimi-
nate well between different predicted binding poses, and iv)
the MM-GBSA method does not perform well at predicting
protein-ligand binding affinities here.

Keywords pose prediction · docking · binding affinity ·
ligand similarity · MM-GBSA

Introduction

One of the key challenges in the small-molecule drug dis-
covery field is to find therapeutic compounds that bind to tar-
geted biomacromolecules with high affinity. Typical ques-
tions that need to be answered during drug discovery projects
include the following: How does a drug molecule interact
with the residues in the binding pocket of the protein? What
is the binding affinity of a molecule? How does the molecule
compare to other prospective drug candidates in terms of
strength of binding energy? Knowing the answers when con-
ceptualizing a compound can help medicinal chemists make
a more informed decision about the experiments that need to
be done or the compounds that need to be synthesized, thus
saving a lot of time, effort and money.

To address these questions, a huge amount of research
has been focused into developing a broad spectrum of com-
putational tools, ranging from fast and less accurate ones
like docking [1] and scoring methods [2] to more computa-
tionally expensive, but ideally more accurate methods like
relative/absolute binding free energy calculations [3].
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Fig. 1 Binding site of the BACE-1 protein containing the aspartyl dyad
- Asp32 and Asp228. The PDB used in this figure is BA20 correspond-
ing to the ligand BACE_20 released by the GC4 organizers. Other im-
portant residues in the active site that interact with the ligand are Tyr71
and Thr231.

Computational methods should be regularly tested on
blind data sets to prevent researchers from exaggerating the
performance of their methods by optimizing or over-fitting
their algorithms to reproduce known data sets and to ensure
we understand the relative performance of new versus estab-
lished methods in a predictive context. To this purpose, the
Grand Challenge organized by the Drug Design Data Re-
source (D3R) community was conceived to provide a plat-
form to evaluate methods in a blind way and also to compare
methods from different research groups.

One of the two biomolecular targets presented in the
2018 D3R Grand Challenge 4 (GC4) was BACE-1 (β -amyloid
precursor protein cleaving enzyme 1). It is a transmembrane
aspartyl protease and generates β -amyloid peptide by cleav-
ing the amyloid precursor protein. β -amyloid peptides are
involved in Alzheimer’s Disease (AD) [4], and BACE-1 has
been seen as a possible target for the treatment and preven-
tion of AD. Fig. 1 shows the binding site of BACE-1 charac-
terized by the aspartyl dyad formed by the residues Asp32
and Asp228, which acts respectively as the acid and base
during the proteolysis reaction [5].

For this challenge, the unpublished BACE-1 dataset was
contributed by Novartis and consists of co-crystal structures
along with experimental affinities. Unlike previous D3R chal-
lenges, this challenge is characterized by a high number of
macrocyclic compounds and only a handful of peptide-like
inhibitors (Fig. S1).

Our motivation behind taking part in the D3R Grand
Challenge was to test a new workflow for binding mode and
affinity predictions and to assess whether we could easily
identify any way to improve the speed and accuracy of bind-
ing mode predictions. We report here the results of our par-
ticipation, where we performed ligand similarity-based pose

prediction and affinity predictions using MM-GBSA calcu-
lations for inhibitors of the target BACE-1.

For the pose prediction challenge, we took advantage
of the available BACE-1 receptor structures co-crystallized
with compounds of the same chemical families as the D3R
query ligands and generated docked poses using a ligand-
based design method called HYBRID [6]. However, instead
of using the built-in scoring function in HYBRID, we se-
lected the final pose based on inputs from structure visual-
ization, stability in the binding site and binding scores gen-
erated using molecular mechanics and generalized Born sur-
face area calculations (MM-GBSA) [7].

Overall, we found that our pose prediction protocol was
able to select poses close to the native binding pose with ac-
ceptable accuracy. Moreover, we compared the performance
of our HYBRID-based docking approach to two standard
docking software, namely AutoDock Vina [8] and DOCK
6 [9] and found that HYBRID was more accurate and reli-
able for RMSD prediction. We also ranked binding affinities
using MM-GBSA scores, but the results showed poor corre-
lation with the experimental values.

Theory and Methods

D3R Grand Challenge 4 stages

The first stage of the challenge (Stage 1a) consisted of 20
ligands for pose prediction (Fig. S1) and 154 compounds
for affinity ranking of which a subset of 34 ligands was
included in the binding free energy calculations. For this
stage, the organizers only provided a FASTA sequence for
the protein BACE-1 and SMILES strings for the different
compounds. Participants were free to use any of the avail-
able crystal structures. After this stage, 20 holo crystal struc-
tures of BACE-1 from the pose prediction dataset (without
the ligands) were released for Stage 1b. Participants had the
option of taking advantage of the released BACE-1 receptor
structures and resubmitting their binding pose prediction for
the same 20 ligands. In Stage 2, complete co-crystal struc-
tures of the 20 ligands were made available to test whether
this additional knowledge about protein-ligand interactions
could improve the affinity rankings and the binding free en-
ergies predictions.

Ligand similarity is widely used to predict binding
modes

Ligand or molecular similarity is a commonly used con-
cept for predicting different drug properties [10]. For bind-
ing mode prediction, molecular similarity translates to the
idea that similar molecules are more likely to bind to a pro-
tein in a similar fashion.
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There exists numerous commercial and academic soft-
ware packages which have used ligand similarity to predict
ligand binding modes. Fukunishi et al. ranked docked poses
based on the degree of overlap with reference ligand(s) [11].
HYBRID and POSIT from OpenEye Scientific Software [6,
12] utilize a ligand-based scoring function which favorably
scores similar shape and 3D alignment between query lig-
ands and reference crystallographic ligands. Similar to HY-
BRID and POSIT, SDOCKER [13] has a modified CHARMM-
based scoring function with an added similarity penalty. Al-
ternatively, instead of modifying the scoring function in the
above methods, PoPSS-Lite, developed by Kumar et al. [14]
places query ligands in the binding pocket in the closest pos-
sible conformation and orientation as the reference ligand
and performs grid-based energy minimization to remove bad
contacts.

Interestingly, ligand similarity-based docking approaches
were amongst the best-performing methods in the 2017 D3R
Grand Challenge 3 [15]. For this work, we used HYBRID to
perform the docking calculations.

We used available co- crystal structures of similar
ligands to guide our docking protocol

We created a database of 320 BACE-1 co-crystal structures
which we found in the RCSB Protein Data Bank (rcsb.org)
[16]. We relied on visual inspection to select 9 protein crys-
tal structures with co-crystallized ligands similar to the 20
target ligands - 2P83 [17], 2VIE [18], 3DV1 [19], 3DV5[19],
3K5C [20], 4DPF [21], 4DPI [21], 4GMI and 2QZL [22]).
More details about the chosen receptor structures can be
found in Table 1 and Fig. S2.

We prepared the chosen receptor PDB structures using
the following steps. First, pdbfixer 1.4 was used to remove
the ligand and the water molecules and to add the missing
heavy atoms to the receptor structure. Next, we protonated
the residues of the receptors at a pH of 4.5 and renamed
the residue/atom names according to the AMBER naming
scheme using PDB2PQR web server [23]. The resulting pqr
files were converted to PDB files using Parmed 2.7.4.

Binding poses were generated using OMEGA and
HYBRID

The ligand protonation states for the query ligands were cal-
culated at pH 4.5 using pKa Plugin from ChemAxon and the
Hydrogen atoms were added using Chimera 1.12 [24]. Out
of the 20 ligands, BACE_1, BACE_17, BACE_18, BACE_-
19, and BACE_20 were modeled as neutral. The remaining
15 ligands had a charge of +1. We generated 1000 confor-
mations for each ligand using OMEGA 3.0.8 [25] (Open-
Eye Scientific Software). We next docked the target ligand

into its corresponding receptor structure(s) using HYBRID
3.2.0.2 [6] with a docking resolution of 1.0 Å. The receptor
was treated as a rigid structure during docking.

Because docking typically does well at identifying rea-
sonable potential binding modes, but not at correctly recog-
nizing the single most likely binding mode [26], we chose to
manually inspect well scoring poses and select those which
seemed most reasonable. Specifically, the top 50 docked poses
were visually inspected and poses similar to the reference
PDB structures (Table 1 and Fig. S2) were selected for the
following steps. This step seemed warranted in part because
the majority of the top-performing submissions in past D3R
grand challenges used visual inspection [15].

We selected binding poses based on stability in the
binding pocket and MM-GBSA scores

The ligand binding site of BACE-1 is exposed to water, but,
as is common in docking, we retained no ordered water molecules
while docking. However, the active site of BACE-1 can ei-
ther be wet or dry depending on the nature of the ligand [27].
In order to capture any structural changes in the protein-
ligand complex, including changes in the water structure
as different ligands bind, we simulated the selected bind-
ing poses from HYBRID in explicit solvent using molecu-
lar dynamics (MD) to have better conformational sampling.
Ideally these simulations would also allow water to solvate
the binding site and different ligands as is most suitable in
each case.

The MD simulations were carried out using the pmemd.cuda
module of the Amber18 simulation package [28]. We used
Antechamber (from Amber 16 package [29]) to add par-
tial charges to the ligand atoms using the AM1-BCC model
[30]. Tleap, an auxiliary program of Amber16 was used
to set up the simulation box and parameters. The protein
and the ligands were modeled using the Amberff99sb [31]
and GAFF version 1.8 [32] force fields respectively. The
protein-ligand complex was then solvated in TIP3P water
[33] in a cubic box with 10 Å padding. Na+ and Cl- counter
ions were added to achieve a salt concentration of 0.1M
with additional Cl- ions to ensure that the system was neu-
tral. SHAKE was used to constrain the protein heavy atom-
hydrogen bonds with a time step of 2 fs. Long-range elec-
trostatic interactions were calculated using the particle mesh
Ewald method, with a cutoff of 9.0 Å for the real space elec-
trostatics and Lennard-Jones forces.

The ligand, water, and the ions were first minimized for
1000 steps keeping the protein fixed using 25 kcal/mol-Å2

positional restraints and then for another 1000 minimiza-
tion steps with 10 kcal/mol-Å2 restraints. The system was
next heated from 10 K to 300 K in NVT ensemble for 140
ps while restraining the protein-ligand complex using posi-
tional restraints of 10 kcal/mol-Å2. Next, the restraints were
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Table 1 Co-crystallized PDB structures used as references to guide our similarity-based docking protocol. Structures of the reference ligands are
shown in Fig. S2.

Reference structure Target ligand

2P83 BACE_20

2QZL BACE_20

2VIE BACE_20

3DV1 BACE_19

3DV5 BACE_2, BACE_3, BACE_4, BACE_5, BACE_11

3K5C BACE_12, BACE_13, BACE_14, BACE_15, BACE_16, BACE_17

4DPF BACE_6, BACE_8, BACE_9, BACE_10

4DPI BACE_1, BACE_7, BACE_9, BACE_10, BACE_18

4GMI BACE_1, BACE_9, BACE_10, BACE_18

gradually released using 5 and 2 kcal/mol-Å2 restraints on
the protein-ligand complex for 20 ps each, and then 2 kcal/mol-
Å2 restraint only on the ligand for 20 ps. The temperature
was regulated in the NVT simulations through Langevin dy-
namics with a collision frequency of 2 ps−1. The production
run was performed in NPT ensemble for 14 ns with the first
4 ns being discarded as equilibration. Constant pressure was
maintained in the simulation using isotropic pressure scaling
with a relaxation time of 2 ps.

After generating trajectories using MD simulations, we
used the MMPBSA.py program [34] in Amber16 to calcu-
late the protein-ligand binding scores using the GBneck2
model [35] with a salt concentration of 0.1 nM. Coordinates
were saved every 100 ps during MD, resulting in 100 frames
which were analyzed for the MM-GBSA calculations for
each ligand.

We would like to note here that even though MM-GBSA
is often called an end-point binding free energy protocol, in
our opinion, MM-GBSA scores are better regarded as scores
rather than true free energies. The calculations are done on
end-point trajectories and use a quasi-harmonic approxima-
tion to account for the entropy of the protein and the lig-
and. Also, the waters in the binding pocket are treated as
a continuum solvent and hydrogen-bonds formed by water
molecules in the binding pocket are neglected in the calcu-
lations.

In the last step of our pose prediction protocol, we picked
the final poses based on both the stability of the ligand in
the binding pocket and MM-GBSA scores. We assessed the
stability of the poses in the binding site by calculating the
RMSD of the docked poses at the start and the end of the
MD simulations. Both these methods have been successfully
used to discriminate between binding poses in literature. Liu
et.al. [36] showed that stability of poses in MD simulations
is a better metric compared to docking scores for discrimi-
nating between correct and decoy poses, while Kaus et al.

[37] demonstrated better discriminating power with MM-
GBSA scores against docking scores.

We first visualized the selected poses after MD to evalu-
ate whether they drifted away from the initial docked poses.
For the simulation initiated at each docked pose, we com-
puted the RMSD at the end of the MD simulation with re-
spect to the initial pose. After doing this for simulations
begun from all poses, we selected the poses with the low-
est final RMSD values. After this step, we compared the
MM-GBSA scores of the selected poses and picked the pose
with the most favorable MM-GBSA score as the top pose.
Also, we submitted multiple binding pose predictions for
the cases where the metrics (RMSD or MM-GBSA scores)
were within 1 Å or 10 kcal/mol of each other for the docked
poses. Even though the poses were selected after MD, the fi-
nal submitted poses were the initial docked poses from HY-
BRID and were not minimized prior to submission.

We made predictions with AutoDock Vina and DOCK
to compare against our ligand similarity-based protocol
in Stage 1b

We did a reference test to check whether we could improve
our docking accuracy if we swap HYBRID with other stan-
dard docking programs - AutoDock Vina 1.1.2 [8] and DOCK
6.8 [9]. Thus, we submitted two separate blind pose predic-
tions with AutoDock Vina and DOCK 6 in Stage 1b. We
used the same binding pocket described in Fig. 1. In addi-
tion, the final binding pose(s) was visually selected to be
consistent with our protocol containing HYBRID. We didn’t
do any additional MM-GBSA calculation to score the poses
and relied on the in-built scoring functions.

AutoDock Vina requires the receptor and the ligand files
to be provided in pdbqt format. We started with the same
PDB files of the receptors and the mol2 files of the ligands
which were used for HYBRID, and converted the structures
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Fig. 2 A schematic description of our ligand similarity-based protocol used for pose prediction in Stage 1a. For Stage 1b, we directly used the
receptor structures provided by the organizers to dock the ligands using HYBRID. The down arrow represents the input files provided by the D3R
GC4 organizers and the up arrow represents our pose prediction submissions.

to pdbqt format using scripts available in AutoDock Tools
[38] — prepare_receptor4.py (v 1.13) and
prepare_ligand4.py (v 1.10). The box size used for dock-
ing was 22 Å×17 Å×20 Å. Exhaustiveness and num_modes
were both set to 50 and an energy_range value of 5 was
used to ignore poorly docked poses.

For DOCK 6, both the ligand and the receptor files were
prepared in Tripos mol2 format using Chimera. Partial charges
were added to the atoms using AM1-BCC method [30] within
Chimera. Next, we generated a molecular surface for the
receptors without the hydrogen atoms using the dms func-
tionality in Chimera, followed by the creation of the dock-
ing spheres using the sphgen program [39] within DOCK
6. A subset of the spheres which were within 7 Å of the
binding site (Fig. 1) were selected using the accessory pro-
gram sphere_selector. Then, we created a box around
the spheres with a margin of 5 Å using the program showbox
in the DOCK suite. Next, the energy interactions were eval-
uated between a dummy atom and all protein atoms within
0.3 Å resolution using the DOCK accessory program GRID
[40]. Van der Waals interactions were modeled using 6-12
Lennard-Jones potential and electrostatic interactions using
Coulomb potential with a dielectric coefficient of ε=4r, where
r is the distance. The resulting grid was used to score the
binding poses using grid-score [40]. For the docking algo-
rithm, we used standard parameters mentioned by Allen et
al. [9].

We used MM-GBSA scores to rank ligands and to
predict relative binding free energies

We used the same MM-GBSA protocol described above to
rank the 154 ligands provided for the affinity prediction chal-
lenge. The initial binding pose was manually created in
Chimera based on a reference structure. The reference was
chosen either from the available co-crystal structures or from
binding poses we predicted using HYBRID for the 20 lig-
ands in the pose prediction challenge depending on which
reference ligand had the highest molecular similarity. More
details about the selected reference structures can be found
in Table S1 and S2.

For the relative binding free energy prediction portion of
the challenge, BACE_10 was specified as the reference lig-
and by GC4 organizers. We subtracted the MM-GBSA score
of BACE_10 from our MM-GBSA scores and submitted the
results as relative binding free energy predictions in Stage 1a
and Stage 2. The predictions aren’t necessarily relative bind-
ing free energies, but we wanted to see whether there might
be any correlation with relative binding free energies with
this approximation. Although we had initially planned to do
alchemical free energy calculations for the binding free en-
ergy predictions, the short time frame of this challenge and
the complexity of handling macrocycles in alchemical cal-
culations [41] made us favor MM-GBSA calculations.
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Fig. 3 Boxplot comparing RMSD values of the ‘best’ and the ‘top’
pose based on our pose prediction protocol. 1a and 1b refers to the two
pose prediction stages in GC4. Each dot represents the RMSD for a
different ligand. The boxplot shows the location of the median RMSD
values, and the 75th and 25th percentile values. The variations in the x
values do not have any significance.

Results and Discussion

We utilized our approach for ligand similarity-based place-
ment and re-scoring with MM-GBSA to participate in all
the three stages for the biomolecular target BACE-1 in D3R
GC4. As detailed in the methods, Stage 1a of the challenge
involved cross-docking prediction for 20 ligands, affinity rank-
ing for 154 ligands and binding affinity prediction for a sub-
set of 34 ligands. Stage 1b included self-docking challenge
for the same 20 ligands as in Stage 1a. For Stage 2, the co-
crystal structures corresponding to the 20 BACE-1-ligand
complexes from the pose prediction challenge were released
and we were asked to recompute the affinity ranking as well
as the free energies.

For the cross-docking challenge in Stage 1a, we iden-
tified co-crystal structures in the RCSB database contain-
ing similar ligands to the 20 target ligands provided for the
blind pose prediction challenge and used these structures for
docking using HYBRID. The top pose(s) was determined
using a combination of visual inspection, end-point free en-
ergy estimates (MM-GBSA scores) and stability of the lig-
ands in the binding pocket. For the self-docking challenge in
Stage 1b, we directly used the receptor structures provided
to perform docking and kept the rest of the protocol the same
as in stage 1a. We also used MM-GBSA scores for ligand
affinity ranking and relative binding free energy predictions
in both Stage 1a and Stage 2.

We achieved <2 Å for both mean and median RMSD
with our HYBRID-based protocol

The performance of our ligand similarity-based docking pro-
tocol was reasonably good in both the cross-docking and
self-docking challenges. Fig. 3, 4, S3 and Table S3 summa-
rize the performance of our docking predictions.

For some of the BACE-1 inhibitors, we had submitted
multiple pose predictions. We will be referring to the pose
that we ranked first in our submission as the ‘top’ pose and
the pose with the lowest RMSD as the ‘best’ pose. In Stage
1a, our ‘best’ pose predictions achieved a mean and median
RMSD of 1.60 Å and 1.79 Å, whereas our ‘top’ pose predic-
tions did not do that much worse, with a mean and median
RMSD of 1.87 Å and 1.88 Å . 12 out of 20 structures had
an RMSD of < 2 Å , which is generally considered as a suc-
cessful docking prediction [26,42].

For a majority of the ligands, we were able to distinguish
between good and bad docking poses based on their stability
in the binding pocket during the MD simulations and had
submitted multiple poses for only 8 ligands in Stage 1a. The
‘top’ pose and the ‘best’ pose were close to each other as
seen from the mean and median RMSD (Table S3), usually
within 0.5 Å RMSD, demonstrating that our protocol was
able to separate the good from the bad poses in most cases.
The superposition of the ‘best’ pose for each ligand in Stage
1a on to the respective crystal structure provided by the GC4
organizers is reported in Fig. 4.

For the self-docking in Stage 1b, the presence of correct
binding site conformation in the receptor helped to improve
our overall docking predictions. For example, we used the
PDB structures 3DV5 and BA04 for cross-docking in Stage
1a and self-docking in Stage 1b respectively for the ligand
BACE_4. There were subtle differences in the side-chain
orientations of the residues Gln12, Leu30, Gln73, Asn233
and Arg235 in the two structures (Fig. S4). Having the cor-
rect side-chain packing in the self-docking challenge im-
proved the RMSD from 2.23 Å in Stage 1a to 0.87Å in Stage
1b.

In Stage 1b, we were able to narrow down to only a
single binding mode for all but one ligand. Our ‘top’ and
‘best’ predictions in this stage consisted of the same twenty
structures with identical RMSD distributions (Fig. 3). We
achieved a RMSD accuracy of <2 Å for 18 out of 20 struc-
tures for the ‘best’ pose (also the ‘top’ pose here) with the
remaining two being very close to 2 Å as seen in Fig. 3 and
Fig. S3. For the ‘best’ pose and the ‘top’ pose, we got a mean
RMSD of 1.32 Å and a median RMSD of 1.25 Å.

Relative to other participants, we ranked in the middle in
both Stage 1a and Stage 1b pose prediction challenges (Fig.
S5 and S6), with the top groups having about 0.5 Å median
RMSD, which is about 1 Å better than us. Thus, we have a
lot of room to improve our protocol.
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Fig. 4 Comparison of our Stage 1a ‘best’ ranking poses (in blue) with the corresponding crystal structure (in pink). RMSD values are reported for
each pose. Compounds underscored by a red line have RMSD values less than 1 Å, those underscored by a light blue line have RMSD values less
than 2 Å and those underscored by a navy blue line have RMSD values higher than 2 Å.

While doing post-analysis of our results after the exper-
imental data was released, we noticed a few places where
we could have done a better job in implementing our pose
prediction protocol and in improving its accuracy.

First, unlike some other standard docking software, HY-
BRID doesn’t minimize the docked poses after placing them
in the binding pocket. We had directly submitted the outputs
from HYBRID in the pose prediction challenge. Minimizing
the poses before submission would have helped relieve any
bad contacts or torsional strains in the macrocycles.

Second, we used an older version of OMEGA to gener-
ate conformers for docking, which, even though was able to
handle macrocycles, was not optimized to handle macrocy-
cles well. As a result, for some of the ligands (Table S4)
we did not sample conformations close to the native co-
crystal pose, which in turn decreased our pose prediction
accuracy. Recently a new distance geometry-based sampling
algorithm was introduced in (released in Oct 2018 after D3R
GC4), which is tailored towards sampling macrocycle con-
formations [43] and will possibly help sampling the ligand
conformational space in a more robust manner.

Third, in this work, the query ligands in the pose pre-
diction challenge had very similar reference ligands already
deposited in the RCSB PDB database with co-crystal struc-
tures. POSIT [12] might have been a better docking tool
than HYBRID for the given dataset. For cross-docking stud-
ies with TanimotoCombo ligand similarity greater than 0.9,
POSIT has been shown to have significantly better accuracy
than other docking tools. It employs a shape-matching algo-
rithm to overlay the query ligand on a reference ligand and
optimizes the alignment of the query ligand and the induced
strain.

Fourth, initially we tried to identify similar ligands in our
PDB database using shape and color similarity search. We
searched the database using OMEGA and OEShape (Open-
Eye Toolkits version 3.0.8, OpenEye Scientific Software)
to identify ligands that are similar to the 20 ligands. How-
ever, we were unsuccessful in identifying close ligand struc-
tures with this approach, probably because the version of
OMEGA we were using was not particularly good for macro-
cycles, resulting in low similarity scores even for macrocy-
cles which in fact were quite similar. As a result, we had to
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identify similar ligands manually. Additionally other simi-
larity tools like TanimotoCombo similarity or Tversky co-
efficient, which has been successfully used by Kumar et al.
[14] in earlier Grand Challenges could have done a better job
at selecting the reference ligands and in turn, automating the
process.

Fifth, instead of relying on the final snapshot at the end
of MD simulations to select the predicted binding pose, we
could also select the cluster heads of the MD trajectories.
The final snapshot might not necessarily be the representa-
tive conformation for that simulation.

Lastly, another manual part of our protocol was visually
selecting the poses after HYBRID docking. As mentioned
before, HYBRID does not minimize or cluster the docked
poses in the binding pocket. Having an additional step where
we minimized and clustered the poses by a RMSD filter
could have reduced the final number of docked poses, and
thus could have saved us time.

Then, MD and MM-GBSA calculations could be per-
formed on all the selected poses to pick the top ones based
on RMSD and MM-GBSA scores. We could also select the
cluster heads we obtain during MD simulations instead of
relying on the final snapshot at the end of MD simulations
to select the predicted binding pose.

We expect that incorporating the above changes will im-
prove the pose prediction accuracy of our protocol and make
it less human intensive and easier to scale-up for a large
number of ligands at the same time .

Equilibrated poses from MD simulations have higher
RMSD in general

As our predictions, we submitted the outputs from HYBRID
as our predicted poses during the challenge even though we
used MD simulations to assess the stability of these poses.
The poses were not minimized or equilibrated to relax any
steric or Coulombic clashes prior to submission. An alter-
nate approach would have been to submit poses relaxed by
MD. Hence, in Stage 1b, we decided to have two separate
submissions: i) The initial binding poses before MD corre-
sponding to the outputs generated by HYBRID. Similar to
Stage 1a, these poses were not minimized or equilibrated to
relax any steric or Coulombic clashes prior to submission.
and ii) the final binding poses at the end of our 14 ns long
MD trajectories. Our objective was to see how the relaxed
binding poses from the MD simulations fared compared to
the initial starting conformations.

Overall the quality of the pose prediction degraded mildly
when we considered the binding poses after MD. The mean
and the median increased from 1.32 and 1.25 Å before MD
to 1.75 and 1.70 Å , respectively after MD. Although the
RMSD of 9 out of the 20 poses either improved or didn’t

Fig. 5 Comparison of RMSD of ligand binding poses before and af-
ter MD in Stage 1b. Overall, the binding poses after MD have higher
RMSD values than the poses selected before MD: the RMSD values of
9 ligands either improved or did not change significantly after MD and
the RMSD values of the remaining 11 ligands changed significantly
after MD.

change significantly after MD, the rest of them differed by
at least 0.5 Å or more.

This finding is not surprising since if the starting pose
in MD is not stable, it is highly likely that the ligand will
try to explore around the binding pocket during the sim-
ulation to find favorable and/or metastable binding modes.
Also, the proteins are crystallized at very low temperatures,
whereas we use room temperature in our MD simulations.
This is also a possible contributor to the higher RMSD val-
ues achieved after MD for some of the ligands – thermal
motion ought to result in some change in binding mode,
but additionally, the low temperature binding mode might
be different (perhaps only subtly) from that at room temper-
ature.

The worst RMSD after MD was reported for the BACE_-
2 ligand. Based on the MD trajectory, the BACE_2 ligand
drifted away from the binding site after 14 ns of MD. There-
fore, we decided to perform MD simulations on the released
BACE_2 crystal structure (Fig. 6 and Fig. S7.A) to find the
cause of the drifting of the predicted pose - whether it was
because of poor pose prediction or because of any force field
errors. Our results show that starting with the crystal struc-
ture, the ligand stays in the binding site after 14 ns of MD
(Fig. S7.B). However, the non-macrocyclic part of the ligand
moved from its initial position. Furthermore, if we compare
the BACE_2 crystal structure to our ‘best’ pose before MD,
we notice that these are two different BACE_2 conformers
with many structural differences (Fig. S7.C, circled regions).
This finding means that our BACE_2 docked ligand left the
binding site during MD simulations, likely because of its
poor starting conformation. This highlights the importance
of correct conformer generation for accurate pose predic-
tion.

Moreover, the RMSD value of the BACE_18 ligand was
2.08 Å and increased to 2.34 Å after MD. The analysis of
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Fig. 6 Comparison of the crystal structures of BACE_2, BACE_3, BACE_18 and BACE_20 (in pink) with our Stage 1b ‘best’ ranking poses
before MD simulations (in blue) and our Stage 1b ‘best’ ranking poses after MD simulations (in blue), respectively. MD affected our performance
in different ways for different ligands. For example, the worst RMSD value was reported for the BACE_2 ligand, the RMSD value corresponding
to the BACE_18 ligand increased after MD, and the RMSD values corresponding to the BACE_3 and the BACE_20 ligands decreased after MD.
Compounds underscored by a red line have RMSD values less than 1 Å, those underscored by a light blue line have RMSD values less than 2
Å and those underscored by a navy blue line have RMSD values higher than 2 Å.

the corresponding MD trajectory shows that the established
interactions between the ligand and the aspartyl dyad are
different from those before MD (Fig. S8). This may be due
to a wrong protonation of the aspartyl dyad residues at pH
4.5. The activity of BACE-1 is known to be pH-dependent,
with a reported activity peak between pH 3.5 and 5.5 [44,
45], which is why we protonated our proteins as appropriate
for pH 4.5.

In order to investigate whether we correctly protonated
the aspartyl dyad or not, we changed the protonation states
of Asp32 and Asp228 for the BACE_18 protein structure
and performed separate MD simulations on the modified
protein-ligand complexes. Thus, in addition to the BACE_-
18 complex bearing a protonated Asp32 and a deprotonated
Asp228 (32p, 228d), we designed four BACE_18 complexes
(Fig. 7) with different orientations of the ligand’s hydroxyl
groups that interact with the aspartyl dyad for complex - A)
protonated Asp32 and deprotonated Asp228 (32p1, 228d1)
and tried all the reasonable protonation states of the aspartyl
dyad at pH 4.5 on complexes: B) deprotonated Asp32 and
protonated Asp228 (32d, 228p), C) protonated Asp32 and
protonated Asp228 (32p1, 228p1), and D) protonated Asp32
and protonated Asp228 (32p2, 228p2). C and D are different
by the orientation of the hydrogens and the oxygen (OD2)
of the carboxyl group on their Asp32 and Asp228.

The observed hydrogen bond interactions between the
ligand and the aspartyl dyad residues in these four differ-

ent cases after MD simulations are reported in Fig. 7. More
details about the specific atoms involved in these hydrogen
bond interactions are reported in the caption of Table S6.
Among the four cases, only the double protonated aspartyl
dyad of BACE_18 do not interact with the ligand (Fig. 7 C
and D). To verify whether the interactions shown in Fig. 7
are preserved during the MD simulations, we measured two
different average distances; one between Asp32 and the lig-
and BACE_18, and another between Asp228 and the ligand
BACE_18. We did this for each of the four complexes A, B,
C, and D (Table S6). The calculated average distances con-
firm that Asp32 and Asp228 of complexes A and B establish
more stable interactions with the BACE_18 ligands than the
aspartyl dyad residues of complexes D and C. The superim-
position of the BACE_18 ligand pose extracted from each of
the modified complexes after MD with the released BACE_-
18 crystal structure (Fig. S9) shows that all the four ligand
poses are different. This analysis suggests that the binding
mode of BACE_18 depends on the protonation states of the
aspartyl dyad in BACE-1 and is consistent with other studies
that evaluate the pH-dependent activity of BACE-1 [46,27,
47].

At pH 4.5, the aspartyl dyad of apo state of BACE-1 is
most likely to be mono-protonated based on the pKa val-
ues of the aspartyl dyad (protonated Asp32, deprotonated
Asp228). In this work, we protonated the aspartyl dyad of
the protein-ligand complex at the same state as the apo state,
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Fig. 7 Interactions occurring in the BACE_18 active site between the ligand and the aspartyl dyad Asp32/Asp228 at the end of 14 ns of MD
simulations. The protonation states of the four complexes were held fixed during MD. A) BACE_18 with protonated Asp32 and deprotonated
Asp228 (32p1, 228 d1), B) BACE_18 with deprotonated Asp32 and deprotonated Asp228 (32d, 228d), C) BACE_18 with protonated Asp32 and
protonated Asp228 (32p1, 228p1), and D) BACE_18 with protonated Asp32 and protonated Asp228 (32p2, 228p2). C and D are different by the
orientation of the hydrogens and the oxygen (OD2) of the carboxyl group on their Asp32 and Asp228. The calculated distances are in Å. More
details about the specific atoms involved in the labeled hydrogen bond interactions are reported in Table S6.

which might not be a good approach. Several computational
studies have shown that the pKa of the aspartyl dyad changes
when inhibitors are present in the binding pocket [27,48].
Constant pH molecular dynamics might be able to capture
the effect of ligand binding on the protonation states of the
receptors, but is computationally expensive.

The PDB2PQR server we used for protonating the pro-
teins utilizes PROPKA 3.1 [49] as a back end. While ana-
lyzing our results, we found that the server-selected proto-
nation state was not the same across different receptor struc-
tures with a few of them having both Asp32 and Asp228
in the protonated state. Treating the protonation states more
carefully by adding a step to check whether the protein was
protonated as desired could have improved our predictions.
Also, the existing pKa tools needs to be improved for more
accurate prediction.

MM-GBSA scores are not efficient in discriminating
between crystal pose and poorly predicted poses

During our post-analysis after the release of the experimen-
tal data, we decided to test the power of MM-GBSA in dis-
criminating between potential binding poses for the same
ligand. We evaluated the MM-GBSA scores of the released
crystal pose and compared them against the score for the
‘best’ pose predicted by us in Stage 1b. Table 2 shows the
calculated MM-GBSA scores for the two poses and also the
RMSD of our predicted pose with the crystal pose as a ref-
erence.

Lower MM-GBSA scores for the crystal pose indicate
that MM-GBSA was successful in discriminating between
the poses, particularly for the cases with RMSD close to or
higher than 2 Å for our predicted pose. For six out of twenty
ligands, MM-GBSA scores ranked our predicted pose better
or almost similar to the crystal pose even when the RMSD
value of our predicted pose is high or increases after MD or
both indicating that the pose is unstable. Thus, MM-GBSA
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Fig. 8 Boxplot comparing RMSD values of the ‘best’ poses obtained
using different docking software in Stage 1b of the blind pose predic-
tion challenge. HYBRID performed better than AutoDock Vina and
DOCK 6 as a docking software in our protocol.

scores alone might not be sufficient in discriminating be-
tween different binding poses.

Our protocol worked better than standard AutoDock
Vina and DOCK 6 docking software

Each docking software is associated with a unique docking
algorithm and scoring function. Since we are visually select-
ing the final pose, the scoring function is not that important
in our protocol. However, the search algorithm is of crucial
importance. If the docking algorithm is not able to generate
poses close to the correct binding pose (and score these well
enough that they are retained by the algorithm), then there is
no good pose to choose from and, the selected final pose(s)
will have high RMSD.

To test whether we can generate better poses, we de-
cided to make predictions using AutoDock Vina and DOCK
6 along with HYBRID in Stage 1b. HYBRID uses pre-generated
conformations with Omega and places them in the binding
pocket in different positions and orientations to have similar
3D conformation as the reference crystallographic ligand.
On the other hand, AutoDock Vina uses a stochastic global
search algorithm [8], while DOCK 6 uses a more systematic
search using the ‘anchor-and-grow’ algorithm [9]. Both of
them do not need any reference binding pose to perform the
search.

Fig. 8 compares the RMSD distribution and the median
values which we obtained from the predictions made with
the three pieces of docking software. The RMSD values cor-
responding to the HYBRID-based protocol were much more
compact and consistent compared to AutoDock Vina and
DOCK 6.

Overall, AutoDock Vina has good RMSD accuracy with
18 poses having ≤ 2 Å RMSD. AutoDock Vina automat-
ically clusters the docked poses, unlike HYBRID. As a re-
sult, the poses were far apart in RMSD, and we were able
to narrow down on a single pose during pose selection for
most of the ligands. Thus, we submitted multiple pose pre-
dictions for only four ligands in the AutoDock Vina sub-
mission, and for all of them, the ‘top’ pose and the ‘best’
pose were the same. Also, the median RMSD of 1.27 Å for
AutoDock Vina was almost the same as HYBRID ( 1.28 Å).
The docking algorithm failed for the two ligands BACE_13
and BACE_18 and generated poses were far from the ex-
pected. This resulted in a high mean RMSD of 1.55 Å.

For DOCK 6, there were seven ligands where the search
algorithm completely fell through, resulting in poses either
out of the binding site or improperly oriented. Surprisingly
DOCK 6 had the best median RMSD value at 1.12 Å for the
‘best’ pose among the three programs. We tried tuning dif-
ferent parameters to make the search algorithm more robust
but were not able to generate good docked poses.

As noted, DOCK 6 performed worst, but it seems possi-
ble this could be due to specific issues with its search method-
ology as it relates to this challenge. Particularly, the ‘anchor-
and-grow’ search algorithm used for conformer generation
may not be well suited for macrocycles. More work is needed
to be done to investigate whether DOCK 6 is efficient for
macrocycle docking or not.

Hand-engineered poses performed better compared to
those from pose prediction protocol for ligands with
high similarity

Some of the reference structures that we used in our docking
protocol were very similar to the target ligands. For exam-
ple, BACE_3 and the ligand co-crystallized with BACE-1
in the PDB structure 3DV5 differ only by a single hydroxyl
group. For such simple cases, we directly made the struc-
tural changes using Chimera (listed in Table S5) and sub-
mitted the binding pose to evaluate how well docking search
algorithms perform compared to educated human guesses.
However, human guesses were not always possible, espe-
cially when the changes involved adding or modifying non-
aromatic rings (BACE_2 and BACE_7) or macrocycles with
different ring sizes (BACE_19 and 3DV1).

We had submitted six hand-engineered predictions in Stage
1a and for all of them we obtained equal or better RMSD
compared to our HYBRID-based protocol. In particular, for
the ligand BACE_5 and BACE_16, the hand-engineered poses
have an RMSD < 2 Å , while the respective RMSD of HYBRID-
based poses are > 2 Å (Fig. 9). This highlights that a lot of
work is still needed in order to improve search algorithms to
achieve better accuracy in binding mode predictions.
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Table 2 Table showing MM-GBSA scores for the crystal structures released by the GC4 oragnizers and the binding poses from our Stage
1b ‘best’ prediction. The reported RMSD values are with respected to the crystal pose. All RMSD values are reported in Å. In an ideal scenario,
MM-GBSA score for the crystal pose should be lower than that of Stage 1b ‘best’ pose, especially for the ligands with high RMSD values. Rows
highlighted with red are for the ligands where MM-GBSA score predicted the crystal pose to be poorer and those highlighted with gray are for
cases where MM-GBSA score for the crystal pose and our predicted pose are almost the same.

Crystal Pose Stage 1b ‘Best Pose’

Ligand ID MM-GBSA score MM-GBSA score RMSD before MD RMSD after MD

BACE_1 -68.8±0.5 -67.3±0.4 2.16 1.45

BACE_2 -56.1±0.5 -24.6±0.4 1.38 3.85

BACE_3 -69.4±0.9 -68.9±0.7 0.95 0.68

BACE_4 -62.9±0.4 -60.9±0.8 0.87 1.81

BACE_5 -57.6±0.6 -48.6±0.3 1.17 1.68

BACE_6 -54.0±0.5 -46.2±0.5 0.71 1.58

BACE_7 -51.3±0.5 -45.0±0.5 1.10 1.16

BACE_8 -38.4±0.4 -44.1±0.4 1.03 1.19

BACE_9 -52.7±0.5 -44.8±0.4 1.22 2.06

BACE_10 -47.5±0.4 -44.5±0.6 0.83 1.56

BACE_11 -45.5±0.4 -26.1±0.3 1.28 2.84

BACE_12 -56.4±0.5 -35.4±0.4 1.35 1.25

BACE_13 -29.8±0.5 -29.0±0.9 1.10 1.97

BACE_14 -50.4±0.6 -40.6±0.5 1.47 2.47

BACE_15 -51.4±0.4 -37.8±0.5 1.46 1.74

BACE_16 -46.3±0.8 -37.6±0.5 1.85 2.15

BACE_17 -46.2±0.4 -51.7±0.5 1.53 1.73

BACE_18 -46.6±0.6 -49.1±0.5 2.08 2.34

BACE_19 -58.2±0.4 -48.9±0.4 1.16 1.02

BACE_20 -66.8±0.5 -66.1±0.5 1.67 0.56
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Fig. 9 Plot comparing RMSD of predicted poses using ligand
similarity-based protocol to RMSD of the respective hand-engineered
poses in Stage 1a. We had submitted multiple predictions for the
BACE_6 and BACE_20 ligands and hence, have multiple dots showing
the RMSD of our different predictions. Overall, the hand-engineered
predictions were better than the ligand similarity-based protocol.

MM-GBSA scores have poor correlation with
experimental affinity ranking

Affinity ranking. Stage 1a and Stage 2 focused on affinity
ranking of a set of 154 ligands. As detailed in the methods,
we used a structure-based protocol for the affinity ranking.
We docked the ligands into the proteins and performed short
14 ns explicit solvent MD simulations. Finally, we scored
the ligands using MM-GBSA calculations. At the end of
the challenge, the organizers reported quality metrics (the
Kendall’s τ and the Spearman’s ρ) to assess the correlation
between the experimental and predicted affinity rankings for
the 154 compounds.

The overall correlation between our predicted binding
affinity ranking and the experimental affinity ranking is rather
poor for both the Kendall’s τ and the Spearman’s ρ . We have
obtained a Kendall’s τ of 0.17 and a respective Spearman
ρ of 0.26 for our Stage 1a MM-GBSA based submission.
Out of the 26 structure-based affinity ranking submissions
in Stage 1a, our MM-GBSA based submission was classified
as the 7th (Fig. S11), with the best submission in this cate-
gory having a Kendall’s coefficient and a Spearman’s ρ of
0.38 and 0.54, respectively. There was also no improvement
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for the structure-based ranking between Stage 1a and Stage
2 indicating that our MM-GBSA protocol is not perform-
ing well in ranking the ligands from this affinity ranking set.
For Stage 2, our MM-GBSA based submission was ranked
19th among 48 submissions using the Kendall’s τ correla-
tion coefficients (Fig. S12) and 18th using the Spearman’s
ρ . The top submission scored a Kendall’s τ of 0.39 and a
Spearman’s ρ of 0.54.

The poor performance of MM-GBSA is consistent with
our findings in the Stage 2 ligand affinity ranking challenge
in GC4 where we predicted the same affinity ranking for a
different set of binding poses generated using AutoDock-
GPU and obtained comparably poor performance between
MM-GBSA scores and AutoDock-GPU docking scores based
on the Kendall’s τ and Spearman’s ρ metrics [50].

Relative affinity prediction. In Stage 1a and Stage 2, we per-
formed MD simulations on the 34 ligands of the free energy
set, then computed end-point free energy approximates with
MM-GBSA method, and submitted the results as relative
binding free energy predictions. Knowing that MM-GBSA
is not a rigorous method for reliable relative free energy cal-
culations, we wanted to explore the predictive power of this
approximation method.

For free energy predictions, the correlation metrics (Kendall’s
τ , Spearman’s ρ and Pearson’s r) disclosed by the GC4 or-
ganizers show that our submitted ranking does not reflect the
experimental ranking of binding affinities satisfactorily.

Comparing to the experimental binding free energies, the
MM-GBSA results led to correlation coefficients near 0 in
Stage 1a (a Kendall’s τ of 0.17, a Spearman’s ρ of 0.22, and
a Pearson’s r of 0.2), meaning a disagreement between our
predicted values and the experimental binding data. Simi-
larly in Stage 2, the evaluation of the results shows that the
correlation coefficients values are still low (a Kendall’s τ of
0.01, a Spearman’s ρ of 0.02, and a Pearson’s r of 0.05)
for this stage. In Stage 1a, our submission based on MM-
GBSA method was ranked 8th among 22 submissions (Fig.
S13). Regarding Stage 2, our submission was ranked 21st

among 31 submitted predictions (Fig. S14). Also, the re-
ported RMSE values are high for both Stage 1a (8.17 kcal/mol)
and Stage 2 (8.14 kcal/mol). Consequently, the employed
MM-GBSA scoring method is not correlated to the experi-
mental relative binding affinity of the ligands.

While we find MM-GBSA performs poorly here, a vari-
ety of previous literature results have reported reasonable
performance and positive correlations between calculated
binding scores and experimental affinities [51,52]. The GB-
Neck2 model used in this work is a relatively new GBSA
model and has not been widely tested for protein-ligand bind-
ing affinity rankings. However, Su et al. used it successfully
in their QM-MM/GBSA work on benzimidazole inhibitors
[53]. It is also possible that successes of MM-GBSA may

be published more often than failures so our sampling of
the literature could be subject to publication bias. More-
over, participants in previous D3R challenges found a poor
correlation between MM-GBSA free energy estimates and
experimental binding affinities [54,55,56]. In the best case
scenario, MM-GBSA is expected to be consistent with the
results generated using the MM-PBSA method (molecular
mechanics - Poisson-Boltzmann surface area), which itself
has been shown to be an unreliable method [57,58,59].

The failure of MM-GBSA in this work can be attributed
to many factors. MM-GBSA might not be suited for macro-
cycles or the receptor BACE-1, or fundamental limitations
of the method and the approximations it makes might be
a problem here. Additionally, the ligand dataset had both
positive and neutral molecules and MM-GBSA has been
shown to have poor correlation for ligands with different net
charges [51].

In our calculations, we used a ‘single trajectory proto-
col’, where the unbound ligand and receptor structures are
extracted from the same protein-ligand complex trajectory.
Even though this is a computationally efficient way of per-
forming the calculations, the simulations did not sample the
complete unbound conformational space explored by the re-
ceptor and the ligand separately. This might be especially
important for macrocycles, which have lots of flexible bonds
and have a vast conformational space. A ‘multiple trajectory
protocol’ where all the three end-states are simulated sepa-
rately might have been a better approach.

Additionally, we ran a 14 ns long MD for generating
structures for MM-GBSA calculations, which might not have
been necessary. Running MM-GBSA on single minimized
structures or very short MD trajectories ( < 1 ns long) have
been shown to be equally efficient as long MD trajectories
[51,53], saving both time and cost in our workflow.

Conclusions

The 2018 Grand Challenge was a great learning opportunity,
especially since this was the first challenge in which the ma-
jority of the dataset consisted of macrocycles of different
sizes and charges. Macrocycles are difficult to model be-
cause of the presence of a large number of flexible bonds and
conformational restraints. The free energy prediction com-
ponent was particularly challenging because the dataset in-
volved both macrocycles of different sizes and also a few
linear ligands. Breaking macrocycles requires special ap-
proximations to get good convergences in free energy calcu-
lations [41]. In addition to this, the active site of the BACE-1
target is also challenging in nature because of the presence
of the aspartyl dyad.

The challenge helped us to identify many of the short-
comings in our pose prediction protocol, as well as several
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ways in which we can improve it. We could have potentially
made our protocol less tedious by minimizing the docked
poses from HYBRID and using better similarity metrics for
identifying reference ligands from available co-crystal PDB
structures. Using better macrocylic conformer sampling and
protein protonation tools can potentially improve the pose
prediction accuracy.

A strong point for our protocol was using ligand simi-
larity for pose prediction. At the same time, it is also a lim-
itation. Since BACE-1 inhibitors have been widely studied
and there exists a substantial amount of deposited co-crystal
structures of them, we were able to find reference ligands
with very high molecular similarity to our query ligands in
this work. Researchers might not have this edge for newly
discovered protein targets or ligands with unique scaffolds.
Methods like FRED [6], AutoDock Vina and Dock6 which
do not require any reference ligand might be more well-
suited for those cases.

Our pose prediction protocol includes human expertise.
Many past challenges (including D3R and SAMPL)[15] have
had greater success with manual workflows than fully auto-
mated ones, and this has significant similarity to how mod-
eling tools are still often employed in the pharmaceutical in-
dustry. Thus, one major challenge for the field is to progress
to where fully automated workflows outperform manual ones.

In this work, MM-GBSA performed poorly for both dis-
criminating between different binding poses and for affinity
ranking. This may be due to the challenging BACE-1 ac-
tive site or the difficulty of the ligand series, consisting of
macrocycles with different net charges or both. One could
also explore using only static minimized structures or ‘mul-
tiple trajectory protocol’ for improving MM-GBSA perfor-
mance.

To sum up, we used ligand similarity to predict binding
conformations for the cross-docking and self-docking chal-
lenge and MM-GBSA scores to rank ligand affinities. Our
ligand similarity-based protocol was able to identify binding
poses close to the native poses with an accuracy of 2 Å for
most of the ligands. On the other hand, our predicted MM-
GBSA scores had a weak correlation with the experimental
affinities.
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