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ABSTRACT: A biomimetic synthesis of hitorins A and B was 

achieved based on our modified biosynthetic proposal. In our syn-

thesis, a radical cascade reaction between an alkoxy radical, gener-

ated from a hydroperoxide, and a monoterpene (+)-sabinene ren-

ders the tetrahydrofuran ring of hitorins A and B. In addition, ex-

perimental results supported that the oxidative cleavage of the 

tetrasubstituted olefin in a key intermediate is via a radical oxida-

tion cascade followed by a Grob fragmentation. 

Nature often uses cascade reactions, optimized over millions of 

years of evolution, as a strategy for assembly of complex chemical 

structures.1 Uncovering these cascade reactions improves our un-

derstanding of both chemical reactivity and biosynthesis of natural 

products. Organic chemists are also inspired by these cascade reac-

tions and are still learning to apply them in total synthesis in order 

to achieve synthetic efficiency.2 In this work, we employed a radi-

cal cascade starting from a rare intermolecular alkoxy radical-ole-

fin coupling reaction in our biomimetic synthesis.3 

Figure 1. Hitorins A and B. 

In October 2016, Kim et al. reported the isolation of two struc-

turally unique C25 terpenoids, hitorins A (1) and B (2) from Chlor-

anthus japonicas (Figure 1),4 a plant used as a traditional medicine 

in Japan for the treatment of gastrointestinal disorders. Hitorins A 

and B contain an unprecedented 6/5/5/5/5/3 hexacyclic skeleton 

with two adjacent quaternary carbons. The isolation team proposed 

that, biogenetically, hitorins A (1) and B (2) were adducts of two 

other natural products, atractylenoide III (3) and (+)-sabinene (4). 

As shown in Scheme 1, olefin isomerization of atractylenoide III 

furnished compound 5, and non-selective epoxidation of (+)-sab-

inene formed epoxide 6 as diastereomers. Then the two compounds 

5 and 6 coupled to generate adducts 7 and 7’. Nonetheless, the de-

tailed mechanism of this key coupling step with the formation of a 

tetrahydrofuran ring was not specified. The isolation team believed 

that the C4’-C7 bond formation was not stereospecific, so both iso-

mers 7 and 7’ were concurrently generated. Hitorins A (1) and B 

(2) are the hemiketals of compounds 8 and 8’, respectively, which 

were proposed to be the respective oxidative cleavage products of 

compounds 7 and 7’. Again, their proposal did not specify the de-

tailed mechanism of this biological oxidative cleavage of the Δ4,5-

tetrasubstituted alkene. 

Scheme 1. Biosynthesis of hitorins A and B proposed by 

Kim et al.4 

 

After carefully studying the potential mechanistic details of the 

formation of compound 7 from monomers 5 and 6, we consider that 

a modification in the biosynthetic proposal of hitorins is necessary. 

Simple cationic or anionic mechanisms could not explain this cou-

pling step in Kim’s proposal because the regioselectivity and the 

reactivity of functional groups of 5 and 6 could not match. Pericy-

clic mechanisms could not explain the formation of compound 7 

from monomers 5 and 6 either. As a reasonable alternative, we sug-

gest a radical cascade process for the biosynthesis of 7. In fact, our 

modified proposal using a radical cascade would not stop at com-

pound 7 but continue to account for the oxidative cleavage of the 

Δ4,5-tetrasubstituted alkene, leading to direct precursors of hitorins. 



 

Our new proposal is outlined in Scheme 2, using the biosynthesis 

of hitorin A (1) as the example. Eudesmane derivative 9 would un-

dergo peroxidation to generate hydroperoxide 10. This peroxida-

tion is a known process in nature, as exemplified by the isolation 

of some γ-hydroperoxybutenolide natural products.5 Radical pe-

roxidation of butenolide enolates has also been used in total syn-

thesis.6 The peroxidation of 2-hydroxyfuran or its anion probably 

occurs via a radical mechanism.7 Then the weak OO single bond 

of 10 would be cleaved to form an alkoxy radical 11.8 This highly 

electrophilic oxygen radical could react with (+)-sabinene 4 to form 

a stable tertiary carbon radical 12.9,10 The intramolecular version of 

alkoxy radical-olefin coupling has been proposed for prostacyclin 

biosynthesis with experimental support by Porter et al.11 Radical 12 

may be in equilibrium with less strained radicals 12’ and 12”.12 

Radical 12 would undergo intramolecular conjugate addition to the 

electron-deficient butenolide functionality to form the C4’-C7 bond 

of radical 13, which sets the C4’ configuration as R. This radical 

conjugate addition step is not stereospecific, and the C4’S diastere-

omer of 13 would eventually lead to the formation of hitorin B (2). 

We envision that radicals 12’ and 12” would not undergo the radi-

cal conjugate addition like radical 12 because, if so, it would afford 

a strained trans-cyclooctene ring. In general, a cyclopropylmethyl 

radical opens fast (k: ~108 s-1) to form a homoallyl radical, while 

the reverse reaction, if facilitated by the gem-dimethyl effect, is 

also fast (k: ~106 s-1). The 5-exo-trig radical cyclization proceeds 

with a rate constant of 105~108 s-1.13 In the hitorin biosynthesis, the 

5-exo-trig radical cyclization could be the productive pathway un-

der the Curtin-Hammett principle,14 leading to radical 13. Radical 

13 would then react with oxygen in the air to generate peroxy rad-

icals 14 and 11-epi-14 (the latter is not shown here),15 and the new 

radical 14 would react with the electron-rich C=C bond to form a 

carbon radical 15. Radical 15 would then react with a second mol-

ecule of oxygen to furnish compound 16 after quenching the peroxy 

radical intermediate with some reductant. Upon reduction of the 

hydroperoxide in 16, intermediate 17 could undergo a Grob frag-

mentation,16,17 furnishing compound 8, and hitorin A (1) should 

form immediately after hemiketal formation. Hitorin B (2) would 

be produced similarly.  Captivated by the intriguing chemistry em-

bedded in the hitorin biosynthesis, we embarked on the biomimetic 

synthesis of hitorins A and B. Our successful synthesis of these two 

natural products, shown below, supported our modified proposal. 

Scheme 3. Synthesis of hydroperoxide 10. 

Although structure 9 with an 8R configuration is a known com-

pound, the synthetic route from artemisin is costly.18 New chemis-

try allowed us to prepare hydroperoxide 10 by a different route. As 

shown in Scheme 3, enone 20 (74% ee) was prepared from 19 ac-

cording to literature.19 CBS reduction of enone 20 provided allylic 

alcohol 21 with amplified optical purity (81% ee).20 Repeated re-

crystallization of alcohol 21 from hexanes furnished samples with 

98.5% ee, which were used in subsequent investigations. Alcohol 

21 was acetylated, followed by reduction via palladium chemistry 

to afford compound 22.21 After ketal deprotection, a one-pot pro-

cedure directly provided the unstable butenolide (8S)-9 (50% yield 

Scheme 2. Biosynthesis of hitorins A and B proposed in this work (shown for the biosynthesis of hitorin A). 

 



 

from 22) via titanium-enolate chemistry.22 Butenolide (8S)-9 is 

prone to produce undesired hydroperoxides in the air (not shown). 

But happily, a two-step procedure afforded the desired hydroper-

oxide 10 as a 1:1.35 diastereomeric mixture via singlet oxygen 

Diels-Alder reaction with siloxyfuran 25.23 The minor component 

in the hydroperoxide mixture is the desired stereoisomer 10. Pure 

hydroperoxide 10 was obtained via HPLC separation using chiral 

columns. 

We then evaluated different conditions to couple (+)-sabinene 4 

with hydroperoxide 10 as proposed in Scheme 2. We initially 

screened Fe(II), Cu(I) and Cu(II) salts, as well as UV light on mix-

tures of hydroperoxides 10 and 10’ with different olefins. We later 

found that pure hydroperoxide 10 reacted with (+)-sabinene 4, me-

diated by FeSO4·7H2O and Cu(OAc)2 in degassed methanol,24 to 

generate lactones 26 and 26’ in a 1:8 ratio in a combined yield of 

36% (Scheme 4).25 A preliminary mechanistic model of generating 

26’ is proposed and shown here: Fe(II) reduces hydroperoxide 10 

to generate alkoxy radical 11, alkoxy radical 11 would then react 

with (+)-sabinene (4) in a manner similar to that in Scheme 2 to 

form radical 13’. Formation of compound 26’ presumably involves 

radical oxidation by Cu(II)26 or a Heck-type reaction involving a 

formal β-H elimination of intermediate 27’.27 The crystal structure 

of compound 26’ was obtained (CCDC-1870111), confirming the 

proposed stereochemistry. Compound 26 should be formed with a 

similar mechanism. The two compounds 26 and 26’ were separated 

via HPLC using chiral columns.  

The synthesis of compound 26 and 26’ set the stage to test our 

proposed biosynthetic steps following the generation of radical 13 

(see Scheme 2). As shown in Scheme 5, under hydroperoxidation 

conditions,28,28e radical 13’ was formed from pure 26’ via hydrogen 

atom transfer.29 Radical 13’ then underwent our proposed radical 

cascade reaction involving O2, rendering a putative hydroperoxide 

mixture 28’ as epimers at C4, together with other unknown com-

pounds. After selective reduction of the hydroperoxide of com-

pound 28’ to alcohol by polymer-bound PPh3 (finished in about one 

hour as shown in mass spectrometry),28e,30 continued stirring of the 

reaction mixture for a month led to the completion of the Grob frag-

mentation of the putative peroxide 29’,16,17 leading to hitorin B (2) 

in 26% yield from compound 26’.31 The 1H-NMR spectrum of 

hitorin B (2) matched the reported data, while we found its 13C-

NMR spectrum was concentration-dependent,32,33 and the spectrum 

of a concentrated synthetic sample matched the reported data. 

Hitorin A (1) was also prepared in a similar fashion in 18% yield 

from pure compound 26.  

In summary, a radical cascade reaction starting from an alkoxy 

radical-olefin coupling was proposed for the biosynthesis of 

hitorins A and B. Our modified proposal led to the first biomimetic 

synthesis of these two natural products. Our synthesis would dis-

close nature’s expertise to synthesize secondary metabolites using 

alkoxy radicals. Detailed mechanistic studies and biological evalu-

ations of some advanced intermediates are underway. 

Scheme 5. Synthesis of hitorin B. 
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