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ABSTRACT

Introduction: The ability to discriminate among ligands binding to the same protein target in terms of

their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the

accuracy  and reliability  of  binding  affinity  prediction  methods  decreases  the  discrepancy  between

experimental and computational results.

Objectives: The primary objectives were to find the most relevant features affecting binding affinity

prediction, least use of manual feature engineering, and improving the reliability of binding affinity

prediction using efficient deep learning models by tuning the model hyperparameters.

Methods: The binding site of target proteins was represented as a grid box around their bound ligand.

Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor

voxels  in  this  grid.  A combination  of  different  features  including ANOLEA,  ligand elements,  and

Arpeggio  atom types  were  used  to  represent  the  input.  An efficient  convolutional  neural  network

(CNN) architecture,  DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset.

Additionally an extended benchmark dataset was compiled to train and evaluate the models.

Results: The best DeepAtom model showed an improved accuracy in the binding affinity prediction on

PDBbind  core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this

field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields

higher correlation compared to the baseline which confirms the value of our model.

Conclusions: The promising results for the predicted binding affinities is expected to pave the way for

embedding deep learning models in virtual screening and rational drug design fields.



 1. INTRODUCTION

Molecular recognition is key in interactions between biological molecules involved in the cellular

processes.  Proteins  are  the  machinery  that  accomplish  diverse  molecular  and  cellular  functions.

Modulating  the  function  of  proteins  by  small  molecules  has  been  an  active  research  area  with

applications in drug design and development. To quantify the binding of a ligand to its target protein, a

commonly used measure is their binding affinity which describes how strong the ligand binds to its

biological  counterpart.  This  binding strength  can  be  measured  experimentally  by  Surface  Plasmon

Resonance (SPR), Isothermal Titration Calorimetry (ITC), and Fluorescence Polarization (FP) methods

[Willander2009; Du2016].

Computational  methods  for  calculation  of  binding  affinity  range  from rough  estimates  as  in

molecular  docking,  to  more  rigorous  force  fields  in  molecular  dynamics  (MD)  simulations  and

Quantum  Mechanical  (QM)  calculations  [Huey2007;  Gilson2007;  deAzevedo2008;  Kim2008;

Huang2010; Wang2013; Montalvo-Acosta2016; Hernández-Rodríguez2016; Ryde2016]. According to

Liu  and  Wang,  the  scoring  functions  for  protein-ligand  interactions  can  be  broadly  put  into  four

categories:  a. physics-based,  a.k.a.  force  field-based methods  which  rely  on  physical  meaning;  b.

empirical, a.k.a. regression-based methods which aim to find the best weights for the features likely to

contribute to binding energy; c. knowledge-based, a.k.a. potential of mean force-based methods which

are  of  statistical  nature  and  assume  statistical  preference  leads  to  (un)favorable  interactions;  d.

descriptor-based, a.k.a. machine learning-based methods which are based on a large pool of descriptors

and a machine learning algorithm decides which features to keep [Liu2015].

In recent years, there has been a growing interest in the application of machine learning methods

to predict the protein-ligand binding affinity [Ballester2010;  Ballester2014;  Li2014a; Ashtawy2015a;

Ashtawy2015b; Khamis2015;  Ain2015;  Wójcikowski2017;  Heck2017;  Li2017;  Li2018]. Apart from

technological advances in hardware and software industry that has made the use of machine learning



algorithms feasible and widespread, one key justification here is that they reduce the bias in feature

engineering.  The  conventional  scoring  functions  developed  for  molecular  docking  and  molecular

dynamics simulations include terms completely based on the domain knowledge of their developers.

Though  such  scientific  insight  is  invaluable,  it  may  be  potentially  biased  especially  in  feature

engineering, i.e. the terms to include in the force field and their parametric additive functional form

[Li2014a]. This feature engineering tends to make the force fields more complex in order to reproduce

experimental results more accurately. To showcase this complexity, the SFCscore developed by the

Scoring Function Consortium (SFC) includes 66 tailored features mostly being of physicochemical

nature [Sotriffer2008]. On the contrary, this feature engineering can be highly reduced in nonparametric

machine learning methods where the choice of features and their weights is delegated to the algorithm,

with no a priori assumption about the form of functional [Ain2015]. The features then can be as simple

as  the  count  of  protein-ligand  atom  pairs  for  different  atom  types  at  different  distance  ranges

[Ballester2010; Ballester2014; Ain2015; Wójcikowski2017].

Convolutional  Neural  Networks  (CNNs)  are  a  machine  learning  technique  gaining  recent

popularity, although their roots can be traced back to Neocognitron in 1980 [Fukushima1980], a neural

network  model  suggested  for  translation-invariant  pattern  recognition,  i.e.  being  able  to  recognize

features regardless of their position in the input. In contrast to a fully connected neural network where

the nodes in each layer are connected to all nodes in the previous layer, a convolutional layer in a CNN

is composed of nodes each connected to a typically small region in its input, called its receptive field.

This enables the model to learn local features. In order to offer translation-invariance, the nodes should

also share their weights. Together, use of receptive fields and weight sharing allows a convolutional

layer recognize local patterns mostly independent of where they are located in the input. The second

essential type of layer often used right after a convolutional layer is a  subsampling layer. Through

downsampling its input, this layer generates a lower resolution input of smaller size, so it diminishes

the effect of small changes in the input on the network’s output.



An important feature of CNNs is channels. In image processing, different combinations of the

three colors red, green, and blue (RGB) are used to generate all other colors. Similar to RGB channels,

using channels in a CNN allows the network to have multiple different views of a single input. This

channel information will later be combined to provide a more complete view of the input. In practice,

atom types and atom properties have been used to define different channels in a molecule. Ragoza and

coworkers used smina atom types as channels in their CNN model; it included 34 distinct atom types

with 16 protein types and 18 ligand types, where discrimination was made between ligand and protein

types [Koes2013; Ragoza2017]. Jiménez et al. defined rules for atom properties based on AutoDock 4

atom types.  As channels,  they included hydrophobic,  aromatic,  hydrogen-bond acceptor,  hydrogen-

bond  donor,  positive  ionizable,  negative  ionizable,  metal,  and  excluded  volume  properties

[Jiménez2017]. The present research aims to improve the binding affinity prediction by tuning  several

aspects  of  the  modeling,  from  representation,  to  model  architecture,  and  compilation  of  a  more

inclusive dataset used for training and evaluation of the models.

A comparative  analysis  in  2017 reported  that  several  cheminformatics  and  machine  learning

methods can achieve experimental accuracy in  binding affinity prediction,  i.e.  mean absolute error

(MAE) less than 1 kcal/mol [Gomes2017]. This is a promising result compared to the 2-3 kcal/mol

standard  error  in  binding affinity  prediction  reported  for  AutoDock 4  as  one  of  the  most  popular

docking  packages  [Morris2009].  It  is  expected  that  machine  learning  methods  will  improve  the

accuracy even more, considering that they may mitigate the bias caused by functional form assumption.

If  they reach that  level  of  accuracy and reliability,  they  can  be  a  valuable tool  chained to  virtual

screening methods and boost the hit enrichment, leading to better computational drug design efforts.



2. METHODS

The workflow for prediction of binding affinity needs to preprocess the input data and train a

network on it. Details of the data and model components are discussed separately below.

2.1. Data

Datasets:  The PDBbind dataset as well  as Binding MOAD database are arguably the largest

collections  of protein-ligand binding affinity  data;  they also include experimental  data  about  other

biological entities such as nucleic acids [Wang2005; Liu2017;  Hu2005;  Ahmed2015]. The PDBbind

data consists  of three subsets,  namely  general,  refined,  and  core.  The  general subset  includes any

experimentally  resolved  complex  structure  with  reported  binding  affinity;  as  a  result,  it  contains

complexes with various levels of quality, e.g. high and low resolution structures, as well as binding

affinity values in terms of Kd, Ka, Ki, and IC50. Applying several filtration steps, the developers had

reduced this  dataset to  refined subset;  it  contains  protein-ligand structures at  higher resolution and

excludes any complexes with IC50 affinity data  only.  To benchmark different scoring functions for

protein-ligand binding affinity  prediction,  the PDBbind  refined subset  has turned into the standard

training dataset. Finally based on 90% sequence similarity threshold, the complexes in refined subset

have been clustered into 58 protein families, with five representative complexes each to better span the

binding affinity range. The resulting core subset is often used either as test or validation dataset. In the

PDBbind v2016 dataset, the non-overlapping portions of the three subsets  general,  refined, and  core

contain 9,228, 3,767, and 290 complexes, respectively [Liu2017].

In addition to using the PDBbind v2016 dataset, we compiled an extended benchmark dataset.

Two complementary resources were used in compilation of our benchmark dataset, namely PDBbind

v2016 and v2018 [Liu2017] and Binding MOAD [Hu2005; Ahmed2015]. All complexes which belong

to any subset of PDBbind v2016 or v2018 were included if their binding affinity data was reported as



Kd, Ka, or Ki. We excluded complexes with IC50 data only. In the case that the binding affinity of a

complex was reported as Kd or Ka in one dataset and as Ki in the other, we kept the more reliable Kd /

Ka data. Complexes with structural or binding affinity data issues were filtered out; for instance, the

two complexes with PDB IDs 2W9I and 4KG1 were obsolete and superseded by newer complexes, so

they were removed from the benchmark dataset. The two complexes 1CAM and 1D2V existed in the

index file  for  general  subset,  but  their  structures  were  absent  from the  dataset;  the  corresponding

structures were generated in those cases. For Binding MOAD dataset, several filters were applied. If a

complex included a peptide or ion as its ligand, it was not considered. Similar to PDBbind filtering,

only Kd, Ka, and Ki were accepted for binding affinity data. These steps resulted in 10,673 complexes.

We will refer it as the benchmark 2018 dataset in the remainder of the text. We provide the PDB codes

and pK values for complexes in this extended dataset (Supplementary Materials) as Comma-Separated

Values (CSV) format.

Data Types:  For the sake of binding affinity prediction, not all data are of the same reliability.

The  dissociation  constant  Kd and  the  association  constant  Ka directly  relate  to  the  protein-ligand

binding energy and are universal binding measures. On the other hand, the inhibition constant K i is a

thermodynamic  constant  defined for  enzymes only,  and is  a  less  reliable  binding affinity  measure

compared to Kd / Ka. Among the four types of binding affinity quantities, the half maximal inhibitory

concentration IC50 has the lowest reliability to be converted into binding affinity energy; this can be

attributed to the dependence of IC50 on the concentrations of both protein and ligand. The general

equation for IC50 is defined as: 

IC50=
[E]0

2
+Ki

(app)

where [E]0 represents the initial enzyme concentration and Ki
(app) denotes the apparent Ki. The inhibition

mechanism for an enzyme can be competitive, noncompetitive, uncompetitive, or mixed-type, which is

represented by different terms in the apparent Ki value.  Indeed, Ki
(app) often depends on the ligand



concentration unless it follows noncompetitive mechanism [Cha1975]. Therefore the mapping from

IC50 to binding energy by a computational model requires not only the structures of protein and ligand,

but also the knowledge of inhibition mechanism. Additionally, Kd and Ki are equilibrium constants

which may be compared if  derived from multiple binding assays; however the dependence of IC50

values on experimental settings discourages its comparison across different assays [Li2014b]. This is

why the training data for machine learning algorithms often excludes complexes with merely IC50 data.

Data Splitting: The data used to train and test a model determines whether different models can

be compared. This is called “splitting” the dataset into train and test subsets. Unfortunately there is no

consistency  in  the  literature  on  how  to  split  the  datasets.  This  makes  the  comparison  of  models

irrelevant, for example when the training set of two models is different, even when the models are

tested on the same dataset. Random splitting of the datasets is commonly used, which also leads to

variances in the output. Either the names of samples used in training should be reported or the splitting

source code along with the random seed should be available; otherwise we should take into account a

margin  for  differences  in  the  model  performance  due  to  the  variances  in  the  training  data.  To

extensively  evaluate  the  performance of  our  DeepAtom model,  we follow three  different  splitting

schemes: a) following the splitting used by Jiménez  et al. [Jiménez2018]; b) splitting the PDBbind

v2016 dataset into training, validation, and test subsets; c) compiling a larger benchmark dataset and

splitting it into training, validation, and test subsets. These schemes are discussed in more detail below.

We initially followed the splitting suggested by Jiménez et al. [Jiménez2018] using the PDBbind

2016  refined subset (excluding  core subset) as the training set and the  core subset to test the model

performance. The main issue with their splitting is that it does not follow the standard scheme which

divides the available data into training, validation, and test data; this recommended practice trains a

model on training data only,  while its hyperparameters are optimized based on the validation data.

Different  reasonable values  are  tried for each hyperparameter;  later  optimization steps  will  fix  the

hyperparameter at the value which yields highest performance for the model on the validation data.



Once the hyperparameters are all tuned, the best model is then evaluated on unseen test data. This best

practice is not followed in the KDEEP paper; their model is trained and tested on PDBbind v2016 refined

and core subsets,  respectively,  without  a  validation set.  This  is  followed by evaluating their  KDEEP

model on additional test datasets [Jiménez2018]. We believe using this splitting effectively turns the

core  subset  into  the  validation  set,  and  the  additional  test  sets  are  the  true  indicators  of  KDEEP's

performance  compared  to  the  other  models,  where  RF-Score  model  shows  superior  performance

compared to KDEEP model in all four additional test sets, and is either the best model or among the top

two compared to  the  other  models  [Jiménez2018].  Therefore  in  our  second data  splitting  we first

combined the core and refined subsets of the PDBbind v2016 datasets, and then divided it into train-

validation-test sets using 80-10-10 random splitting. Finally the same splitting scheme was followed for

our compiled benchmark 2018 dataset to obtain train, valid, and test sets. Our baseline in the second

and third splittings was RF-Score, because of its superior performance and its being open source.

Data Representation: Two major approaches have been reported when dealing with molecules

as  3D  input  to  a  model:  atom-centered  representation  and  grid-based  representation.  The  former

represents the molecule as atoms whose neighbor lists are compiled based on distance and atom type of

the neighbors for each atom [Schietgat2015; Gomes2017]. The latter generates a grid either around the

whole molecule or the area we are interested in, e.g. the binding site of an enzyme. The contribution of

atoms to each neighbor voxel is then calculated [Ragoza2017;  Jiménez2017;  Torng2017]. The data

conventionally used in describing the structural data as well as the interactions between a protein and a

small molecule ligand is in the tabular form. Often, there is no or small relations between the adjacent

columns in this input data. This limits the applicability of advanced algorithms on such trivial data. As

an example, spatial data is lost when an image is converted from a two dimensional matrix into a one-

dimensional vector. This is the case for a fully-connected artificial neural network (ANN). To harness

the power of deep learning models more efficiently, “representation” of the interacting molecules is the

key. This representation of a molecule needs to encode the presence of neighboring atoms around a



reference atom. Such an encoding is often distance-dependent, although binary encoding has also been

suggested [Ragoza2017].

Atom Types: In addition to the two atom types used by [Ragoza2017] and [Jiménez2017], two

other  atom types  schemes  have  been  defined but  not  yet  used  in  deep learning  models;  they  are

ANOLEA [Melo1997; Melo1998] and Arpeggio [Jubb2017] atom types. For the standard amino acids,

ANOLEA defines 40 different heavy atom types based on bond connectivity,  chemical nature, and

location level of the atom, i.e. whether it belongs to side-chain or backbone of the residue. This typing

scheme was suggested to be used in structure prediction and fold recognition [Melo1997]. Arpeggio

scheme used SMARTS-based atom types similar to the properties used by Jiménez  et al. based on

AutoDock 4 atom types [Jiménez2017]. This scheme is built on CREDO atom types and improves

some of its type definitions [Schreyer2009;  Schreyer2013]. The 11 features generated by Arpeggio

include  H-bond  donor/acceptor,  weak  H-bond  donor/acceptor,  halogen  bond,  positive/negative

ionizable,  hydrophobic,  carbonyl  oxygen/carbon,  and  aromatic  [Jubb2017].  Figure  2  depicts  how

features are extracted from a protein-ligand complex in a grid-based representation.

Before generating the channels, all datasets were preprocessed to ensure fewer problems in later

steps, as well as to improve the data reliability. This included checking for atoms in the binding site

which did not belong to the standard atom types used. Also alternate location “A” was picked in the

case an atom occupied multiple alternate locations in the PDB file.

2.2. Model

Model  Architecture:  To give  a  better  overview,  some  of  the  architectural  ideas  are  briefly

discussed here. The model benefits from residual modules. These units include direct links between

input and output of residual modules as bypass, so that the unit learns features with reference to its

input, rather than learning an unreferenced mapping. This architectural idea has proved to improve the

model reliability; it alleviates the overfitting problem as well as the “vanishing gradients” issue where



the back-propagated error signal is too small when it reaches the initial layers so it cannot train them

efficiently [He2015]. Batch normalization was applied to the output of residual modules to stabilize the

model;  this  transformation  normalizes  each mini-batch  by  its  mean and variance  [Ioffe2015].  The

model also makes use of two filter types: 1. Depthwise filters which still have a receptive field greater

than 1x1, but only apply at individual channels or depths; 2. Pointwise filters which are the opposite of

depthwise filters, i.e. they have 1x1 receptive field spanning multiple channels. Together these two

types  of  filters  replace  the  standard  convolutional  filters  in  each  block,  and  are  called  depthwise

separable convolutions [Howard2017].  Because the pointwise 1x1 filters  are a bottleneck, they are

replaced by pointwise group convolution filters followed by a channel shuffle layer. While pointwise

convolution applies  to  all  channels  for  each single point  in  the input,  the  group convolution layer

reduces the computational cost  by splitting the channels into groups; only intra-group channels are

applied to each input point.  To reach higher accuracy, the channels from different groups are later

shuffled, so that the feature maps get a blend of different channel groups [Zhang2017; Ma2018].

Based upon the mentioned ideas, we developed a convolutional neural network to predict binding

affinity values from the holo structure of the ligand-bound protein. The schematic in Figure 3 illustrates

the main blocks in the model. The first block integrates information from atoms in the grid box. The

second block is employed to extract features, and the third block predicts the binding affinity by taking

average over the outputs.

Model Hyperparameters: They refer to parameters whose values are set by the developer before

running the model, and not optimized by the model itself. The hyperparameters included grid box size,

number of channels, grid resolution, occupancy type, and whether to take the average over augmented

input during test. We tuned the model hyperparameters one at a time on a range of reasonable values.

This iterative process was followed in order to improve the model’s performance. Due to the long

training time of the networks and the large number of hyperparameters, developing models with all

combinations of hyperparameters is infeasible; therefore it is often assumed that the hyperparameters



are independent [Ballester2014]. Based on this assumption, one hyperparameter can be tuned while

others  get  fixed  at  their  reasonable  values.  In  the  following,  further  details  are  provided for  each

hyperparameter.

Grid box size: Because we planned to represent the 3D data on a grid, an initial step was to

determine a reasonably large box around the ligand in the binding site. While the first choice could be

to  follow  the  recommended  values  in  the  literature,  e.g.  a  cube  with  24  Å  sides  [Ragoza2017;

Jiménez2018],  we analyzed the distribution of end-to-end distances for all  ligands in the PDBbind

v2016 core and refined subsets [Wang2005]. This gave us clue to define a larger box size of 32 Å. This

is the same as the end-to-end distance for the longest ligand in these two datasets, so there is no need to

filter out any. The distribution of ligand lengths in these two subsets is illustrated in Fig. 1. It can be

argued that, even if a ligand is larger than the box size, it may fit into the box if its longest axis is not

parallel to the grid box planes. However, keep in mind that grid-based deep learning models almost

always use augmented data by applying translation and rotation to their original input; therefore it is

very likely that the ends of large ligands be cropped by the grid box if its size is not defined large

enough.

Atom types: We tried different combinations of atom types for protein and ligand atoms. This was

intended to see if different complementary features would improve the model’s ability to predict the

binding  affinity.  On  the  one  hand,  we  described  the  protein  atoms  by  40  ANOLEA atom  types

[Melo1997;  Melo1998] and the ligand atoms by the 9 elements (C, N, O, F, P, S, Cl, Br, I); one the

other hand, both protein and ligand atoms were also described by 11 Arpeggio atom types [Jubb2017],

the  most  significant  ones  being  H-bond  acceptor,  H-bond  donor,  positive  /  negative  ionizable,

hydrophobic, and aromatic properties. This combination provided 60 atom types to describe the atoms

in the complex. Another choice for the featurization was to use 24 atom types; it describes protein and

ligand  by  11  Arpeggio  atom types  and  one  excluded  volume channel,  and  discriminates  between



protein and ligand channels, i.e. 2 x (11 + 1). Models were developed based on either 11 Arpeggio

types, the whole 60 atom types, or the 24 channels.

Grid resolution: The van der Waals radius of the mentioned 9 heavy atoms is equal to or greater

than 1.5 Å; hence the resolution of the individual grid voxels must be smaller that this value in order to

differentiate two atoms from each other. Models were developed with grid resolution values of 1.0, 0.5

and  0.375  Å.  The  0.375  Å  is  taken  from  AutoDock  4,  the  popular  molecular  docking  package

[Morris2009]. While a finer resolution may enhance the model performance,  it  is also expected to

drastically increase the computational cost because the input size scales with N3 where N is the number

of  voxels  at  each  (X,  Y,  Z)  direction.  Consequently  there  is  a  trade-off  between performance and

computational cost. The optimized value for this hyperparameter is not necessarily the one yielding the

highest  performance,  rather  the  value  which,  on  balance,  optimizes  both  performance  and

computational cost.

Occupancy types: How an atom affects its neighborhood in a grid is determined by its occupancy

type. We compared binary and distance-dependent occupancy types; in the former, a voxel gets 1 if its

center overlaps with an atom’s van der Waals radius rvdw in a specific channel, and zero otherwise. This

gives  rise  to  a  sparse  representation.  As  an  example,  one  of  the  most  dense  ANOLEA channels

corresponds to the backbone alpha carbon for all protein residues except Glycine, around the binding

site of a complex. In the complex with PDB ID 1A30, only 0.07 of the total voxels overlap with the

backbone  Cɑ atoms  of  this  channel.  On  the  other  hand,  in  the  distance-dependent  scheme  the

contribution of each atom to its nearby voxels depends on the distance between them, as described

below [Jiménez2017]:

n( r )=1−exp(−(
rvdw
r

)

12

)

where r represents the distance between a neighbor grid point and the atom with van der Waals radius

of rvdw.



Mitigate Overfitting: An issue that appears with various machine learning tasks is overfitting. It

is similar to remembering versus learning. In simple words, it occurs when the model has learned not

only those features of the input data necessary for the prediction task, but also the non-relevant features

and details. This helps a model improve its accuracy on the training data, but will reveal a large gap in

model’s accuracy when evaluated on independent data not used in its training. Different strategies can

be applied to alleviate this problem. Among the most straightforward ways is to augment the data itself.

To implement this strategy, we generated random rotations of the ligand with respect to the binding site

grid box. Furthermore we allowed a small translation of the ligand, up to 1.0 Å in an arbitrary direction,

from the grid box center. Applying both translation and rotation, up to 36 grid boxes were sampled for

each original binding site input. The second modification that helps decrease overfitting in a model is

the use of dropout strategy. With a given dropout probability, the output from each of the nodes in the

dropout layer will be given a weight of zero, effectively removing that node from that training cycle.

However the nodes in the dropout layer are always present during test time, and their weights needs to

get  multiplied  by  the  same dropout  probability.  This  makes  the  model  resistant  to  the  loss  of  its

connections and at each forward pass generates a potentially different architecture. This is in nature

similar to running an ensemble of models because each epoch sees a different network architecture.

Use of a dropout layer has therefore been reported to prevent a model from overfitting [Srivastava2014;

Goodfellow2016].  An  additional  strategy  to  reduce  overfitting  is  the  use  of  regularization.  It  is

implemented by introducing a penalty term in the loss function; this will make a balance in the model’s

level of complexity, i.e. the new loss function disfavors both too simple models which yield high error

as  well  as  too  complex  models  which  lead  to  overfitting  and  yield  high  penalty.  We  added  L2

regularization to all variables in our models except the biases.

2.3. Analysis of Results

Enrichment Analysis: The test set in PDBbind v2016 dataset includes complexes from core and

refined subsets, while the samples in the benchmark 2018 dataset may belong to either of the core,



refined, or general subsets of PDBbind v2018, or Binding MOAD dataset. In order to examine the

effect of data source on predictions, enrichment analysis was carried out considering only PDBbind

subsets in  the test  data.  Enrichment  factor  was defined as  the ratio  of the observed percentage of

complexes divided by the expected percentage of complexes across each PDBbind subset, for the 5%,

10%, and 20% most accurate predictions. The same analysis was performed using both DeepAtom and

RF-Score models.

Analysis of Prediction Errors:  Contrary to enrichment analysis, the  largest prediction errors

were analyzed across the PDBbind subsets.  The error factor was defined similar to the enrichment

factor, but for the 5%, 10%, and 20% largest prediction errors.



3. RESULTS AND DISCUSSION

The binding affinity of a protein-ligand complex is defined as the difference between the free

energy of complex and the sum of free energies of protein and ligand in their free form. The standard

way to formulate this measure has been to split the contributing phenomena into short-range and long-

range interactions and then to define their parts in a functional form. This requires extensive feature

engineering; as an example, refer to [Sotriffer2008] where 66 expert-defined features constitute the

SFCscore  objective  function.  On  the  contrary,  deep  learning  models  avoid  the  functional  form

assumption and mostly rely on the data itself for feature generation and extraction.

3.1. Model Architecture

The model consisted of three blocks, starting with fusing the atom information across different

channels  using  a  pointwise  (PW,  1x1x1)  convolution  layer.  To  decrease  the  input  dimension  and

provide more translational invariance for the features, a 3D max pooling layer followed, leading to an

output size of 16x16x16. To extract features from the previous subsampling layer, the second block

employed multiple  consecutive  3D  shuffle units  to  hierarchically  extract  the  latent  features.  Three

groups of these units were used in this architecture based on how many channels they had in their

output. Similar to residual networks, the input of feature channels were split equally by a channel split

operator at the beginning of the unit.  While one branch was sequentially processed by a pointwise

convolution,  a  3x3x3  depthwise  (DW)  convolution  and  another  pointwise  convolution,  the  other

identity branch got concatenated with the output from the first branch. The blending of information

across the two branches was achieved by the channel shuffle operation. More specifically, the feature

maps in each of the branches were divided into subgroups, followed by mixing of the branches with

different subgroups. For these groups, downsampling layer occured in only the first shuffle groups,

whereas the input dimensions was kept the same in the remainder of units. Subsequently after the three



shuffle groups stacked, the original 3D data included 3 grids along x, y, z axes and 1024 channels. The

model’s third block consisted of 8 vectors (2x2x2) with dimension 1024. These vectors then fed into a

shared-weight fully connected layer, thus yielding the regression loss to train the network.

The leaky rectified linear unit (leaky ReLU) was adopted as the activation function. Speeding up

of  training  was  achieved  by  a  batch  normalization  layer  (batch  size:  128)  appended  after  each

convolution operation. The mean squared error (MSE) was set as our affinity regression loss for model

learning.

3.2. Model Refinement

The initial hyperparameter values in training the DeepAtom model were: number of channels: 11;

grid  resolution:  1.0  Å;  occupancy  type:  binary;  and  no  averaging  during  test  time.  Each  step  of

hyperparameter  tuning is  explained in  more details  below.  Table 1 reports  the performance of  the

DeepAtom model in terms of Pearson’s correlation coefficient between the predicted and experimental

pK values when we optimize the hyperparameter values one by one. In addition, Figure 4 illustrates the

impact of optimizing each hyperparameter.

Grid box size: We defined a box size of 32 Å based upon our analysis of the end-to-end distance

for the ligands in our training dataset. Figure 1 illustrates the distribution of ligand end-to-end distances

for  the  PDBbind  v.2016  refined and  core subsets.  Among these  two subsets  as  the  train  and  test

datasets, 59 of them are longer than the 24 Å box size defined in a recent work by Jiménez  et al.

[Jiménez2018]. This issue gets more serious when data augmentation is applied; it is possible that the

too long ligands have their most distant atom pair not originally parallel to the box side plane and could

fit in the box, but these atom pairs are more likely to get out of the box after rotation and translation. It

should also be remarked that the 24 Å box size may not be enough even with ligands with shorter end-

to-end distance, because it may not include the interacting residues on the protein side. The threshold

for  Hydrogen bond,  aromatic,  and ionic interactions is  about  4  Å,  and the cutoff  for  hydrophobic



interactions  is  4.5  Å  [Jubb2017],  so  this  cutoff  distance  should  also  be  taken  into  account  when

defining the grid box to accommodate the residues surrounding the ligand.

Grid channels: Representation of the input and type of channels is expected to largely influence a

model’s performance. We trained models on three different set of features, including 11, 24, and 60

features. The former describes both protein and ligand atoms with the same 11 Arpeggio atom types;

the second one discriminates between protein and ligand atom types,  with an additional “excluded

volume” feature that includes all ligand or protein atoms, thus resulting in 2 x (11 + 1) = 24 features;

finally the 60 features include 40 ANOLEA atom types to describe protein atoms, 9 element types to

describe  ligand  atoms,  and  11  Arpeggio  atom  types  to  describes  both  protein  and  ligand  atoms.

Comparison of the results indicated that, by not differentiating between protein and ligand atoms, 11

features are unable to make a reliable prediction. This is expected and can be explained by the binding

affinity definition. The binding affinity energy is defined as the energy of complex minus the sum of

energies of the free protein and free ligand. In the case of PDBbind as the training dataset, only the

holo structure of protein is known and thus the apo protein structure as well as the ligand are extracted

from the complex. The underlying assumption is that the protein conformational change is negligible

and the extracted protein structure can represent the  apo structure. If this assumption holds, we can

continue with  ΔGcomplex−( ΔGprotein+ΔGligand) . Because the intramolecular interactions are the same

for the extracted protein and the holo protein structure, they will cancel out. The same holds true for the

ligand. As a result,  when the free structures of protein and ligand are inferred from their complex

structure, the only contribution to binding energy comes from the intermolecular interactions between

the protein and ligand atoms. The model trained with 11 features  ignores the distinction between

protein and ligand atoms and is doomed to show relatively low performance. The model trained with

24 features mitigates the mentioned issue and achieves the highest performance among the three sets of

features.  Finally  adding  the  ANOLEA protein  types  and  ligand  element  types  indeed lowered  the



performance. This is consistent with the report by Ballester  et al. [Ballester2014] who performed a

systematic study and concluded that a more precise description of a protein-ligand complex does not

necessarily lead to better prediction accuracy.

Atom occupancy type: Various functions have been suggested to describe how much an atom

influences its surrounding environment. These include binary, Gaussian [Ragoza2017] and pairwise

correlation  [Jiménez2017; Jiménez2018].  The  binary  occupancy  does  not  depend  on  the  distance

between the atom center and the voxel center as long as this distance is shorter than the atom’s van der

Waals radius. In contrast, the Gaussian and pairwise correlation schemes are distance dependent. To see

the impact of occupancy type on the model performance, models were trained using either binary or

pairwise correlation occupancy. The results are in favor of the richer description offered by the pairwise

correlation. While we did not test the Gaussian occupancy, we expect it to achieve similar favorable

results,  although  the  calculation  needed  for  Gaussian  occupancy  is  slightly  more  computationally

expensive.

We would like to elaborate on the feature extraction step. It may be argued that the deep learning

models are supposed to automatically extract useful features with little or no human intervention; on

the  other  hand,  our  initial  featurization  step  is  based  on  domain  knowledge  of  the  biological

interactions. While this is true, let us draw the reader’s attention to how deep learning models function

in computer vision applications such as image classification and segmentation. In these applications,

the content  of an input  2D image is  quantified by the values of the three Red-Green-Blue (RGB)

channels;  then a deep learning model automatically extracts  features from these values.  Using this

analogy, we need a similar input prior to automatic feature extraction. The input structures are first

represented using different combinations of channels (in our work: 11, 24, and 60, similar to RGB

channels) and different occupancy types. In image recognition applications, there is no need to take the

last step, i.e. each pixel does not impact its adjacent pixels which could blur the image. In contrast, the

occupancy is considered in our case based on the electron cloud distribution concept in chemistry; in a



simplified  manner,  the  occupancy  type  defines  how  much  each  protein  /  ligand  atom  affects  its

surroundings. By considering both channels and occupancy effects, we prepare the input structure for

automatic feature extraction. To summarize, the initial step (including channels and occupancy types) is

more related to data representation, rather than feature extraction. The same holds true for related grid-

based works in this field [Ragoza2017; Jiménez2018].

Grid resolution: There is a trade-off between performance and computation time depending on

the grid resolution. Three different values were tested for resolution: 0.375, 0.5, and 1.0 Å. The grid

data  resulted from the former is  about  20 times larger  in  size  than the representation with 1.0 Å

resolution as it scales proportionate to N3. The DeepAtom models trained on grid data with 0.375, 0.5,

and 1.0 Å resolution respectively yielded Pearson’s correlation coefficients of 0.79,  0.78,  and 0.78

between the predicted and experimental pK values (see Table 1). The slight improvement in model

performance comes with a large computational cost, so we picked the 1.0 Å resolution as the optimal

value for this hyperparameter.

Data augmentation at training and test time: It is desirable to train the model on a larger dataset,

especially  for  a  deep  learning  model.  Nonetheless,  the  number  of  protein-ligand  complexes  with

available  experimental  binding  affinity  data  is  limited.  One  solution  is  to  expand  the  dataset  by

applying transformations such as random translation and rotation to each of the samples. Preliminary

results revealed the need to always use augmented data during the training stage. We generated 36 such

augmented  samples  for  each  original  complex in  the training  dataset.  Although each epoch in the

absence of augmented data took less time due to fewer input,  network convergence is  much more

guaranteed when trained on augmented samples. The next comparison was made between two cases;

one with data augmentation at training time only, and the other with data augmentation applied during

both training and testing. The model performance raised when we get from the former to the latter, i.e.

when not only the available data was extended during training, but also several predictions were made

for each of the augmented test samples. In this final case, the model’s output was obtained by taking



average over all these predictions. As shown in Figure 2, data augmentation during test time improved

the Pearson’s R from 0.81 to 0.83.

Dropout  and  Regularization: Besides  data  augmentation,  adding  dropout  and  regularization

proves to avoid overfitting. From the beginning, we tested different values for dropout probability and

achieved the best performance with dropout values of 0.5 and 0.8. Including regularization always

improved the performance, so it was incorporated into all models.

3.3 Model Evaluation

To evaluate the generalization power of our DeepAtom model, we compare it with the published

algorithms for binding affinity prediction as the baseline, namely RF-Score [Ballester2014] and KDEEP

[Jiménez2018]. Our model and the data used to evaluate it also try to fix the flaws in KDEEP paper. In the

following, we discuss the flaws as well as the measures we took to resolve them.

If the data used in training two models is different, the models' performance cannot be compared

directly. Indeed, two of the three models used as baseline in KDEEP paper [Jiménez2018] are trained on

smaller datasets because of less data available at the time they were developed. The latest versions of

X-Score [Wang2002] and CyScore [Cao2014] available to academic users were trained in 2003 and

2014,  respectively.  Their  smaller  training datasets  make it  unfair  to  compare  them against  models

trained  on  PDBbind  v2016  data.  RF-Score  model  performs  better  than  KDEEP model  in  all  four

additional test  sets  used in the original  report,  and is  either  the best  model or among the top two

compared to the other models the authors evaluated [Jiménez2018]. Additionally, RF-Score is the only

open source model among the four; this makes it a reasonable baseline for our work.

To  compare  DeepAtom  model  against  KDEEP and  RF-Score,  we  first  followed  the  splitting

reported by KDEEP. To make a fair comparison, we also optimized the hyperparameters of the RF-Score

model,  not  carried  out  in  the  KDEEP paper.  We noticed  that  the source code for  RF-Score  sets  the

hyperparameters  different  from  their  optimized  values  reported  in  the  original  RF-Score  paper



[Ballester2014] for the PDBbind v2007 data. For instance, the default distance cutoff is set as 5.0 Å,

whereas the paper reported its optimized value as 12.0 Å. A more subtle issue is that, by default, RF-

Score extracts the features from the pocket files pre-generated from the whole protein structures; this is

with the aim of improving the computational efficiency. However, these pocket files in the PDBbind

dataset include protein atoms up to 8.0 Å from the ligand. If using the default settings, RF-Score with a

distance cutoff larger than 8.0 Å does not consider those protein-ligand atom pairs beyond 8.0 Å. To

resolve  these  issues,  we  set  distance  cutoff  as  a  hyperparameter,  and  also  generated  pocket  files

consistent  with  the  distance  cutoff  used.  It  should  be  noted  that  in  this  splitting  scheme  no

hyperparameter tuning was carried out for RF-Score model due to absence of a validation set. Instead

we set their values as the optimized values reported in the RF-Score paper [Ballester2014], i.e. 12 Å

distance cutoff, elements descriptors, 2 Å bin size, and feature selection threshold (spr=1). Using Mean

Squared Error (MSE) as the evaluation metric,  the Pearson's  R correlation coefficient  achieved by

DeepAtom, KDEEP, and RF-Score model on the core subset of PDBbind v2016 is 0.83, 0.82, and 0.81,

respectively. Figure 4 shows how much the DeepAtom performance improves by tuning each of its

hyperparameters.

As mentioned before, lack of validation set is discouraged in machine learning field. Being open

source and showing superior performance makes RF-Score the ideal baseline. In the second splitting

scheme, we combined the refined and core subsets of PDBbind v2016 and then split the whole dataset

using  80-10-10  random splitting.  This  resulted  in  80% (3,245 complexes)  for  training,  10% (406

complexes) for validation, and 10% (406 complexes) for testing. This yielded Pearson's R correlation

coefficient (and MSE in pK units) of 0.79 (1.5) and 0.75 (1.8) for DeepAtom and RF-Score model,

respectively. The correlations are provided as scatterplots in Fig. 5.

The benchmark dataset  we compiled is  composed of  10,673 complexes.  Following 80-10-10

random splitting, 8,538 complexes were used in training both DeepAtom and RF-Score model. 1067 of

the remaining complexes were used as validation to tune the hyperparameters of both models, and 1068



complexes were used to evaluate them. The performance in terms of Pearson's R (and prediction error,

in terms of pK units) achieved for DeepAtom and RF-Score model were 0.78 (1.5) and 0.73 (1.8),

respectively. Figure 6 illustrates the predicted pK values versus experimental pK values for DeepAtom

and RF-Score model. The performance of the models on the mentioned three splittings is tabulated in

Table 2.

It is noteworthy that the original RF-Score model trained on PDBbind v2007 data had shown the

best performance when the  elements descriptors (the simplest among the three descriptor schemes)

were used [Ballester2014]. In contrast,  we found  Sybyl features (the most detailed among the three

feature schemes) to yield the lowest prediction error for RF-Score models trained on 80-10-10 random

splits of PDBbind v2016 and our extended benchmark dataset. However, consistent with the RF-Score

model trained on PDBbind v2007, we found the lowest performance yielded from Credo descriptors.

The training sizes for PDBbind v2007, PDBbind v2016 (KDEEP split), PDBbind v2016 (80-10-10 split),

and our  extended benchmark dataset  (80-10-10 split)  are  1105,  3767,  3245,  and 8538 complexes,

respectively.

The  two models  were  scrutinized  by  enrichment  analysis;  as  the  graphs  in  Figs.  7a  and  7b

illustrate, in the 80-10-10 random splitting of PDBbind v2016 dataset the complexes which belong to

core  subset are  clearly  over-represented  in  the  5%  and  10%  most  accurate  predictions  by  both

DeepAtom and  RF-Score  models,  whereas  those  complexes  coming  from  refined  subset  occur  as

frequently  as  expected.  The  80-10-10  random splitting  of  the  benchmark  2018 dataset  reveals  an

interesting difference between the two models; the performance of DeepAtom in prediction of refined

and general subsets is balanced, with both around 1.0, while the RF-Score predictions are evidently in

favor of the complexes from general  subset. Due to much fewer number of complexes coming from

core subset, their low occurrence in the enrichment analysis was expected (Figs. 7c and 7d).

Analysis of prediction errors for PDBbind v2016 complexes with the 5%, 10%, and 20% largest

errors suggests higher errors than expected for complexes from the core subset (Fig. 8a). This behavior



is similar between DeepAtom and RF-Score, although the former model is less affected. Together with

the enrichment analysis graphs in Figs. 7a and 7b, the error graphs in Figs. 8a and 8b may point to

overfitting on the core subset for both models; this may root back to how the representative complexes

from  the  refined  subset  have  been  assigned  to  the  core  subset  in  the  PDBbind  v2016  dataset

[Wang2005]. Even a sharper difference is observed for the  core  complexes in the benchmark 2018

dataset between the DeepAtom and RF-Score models (Figs. 8c and 8d). The abundance of complexes

from different subsets is almost balanced in DeepAtom, whereas the complexes from core subset are

highly over-represented in the largest prediction errors yielded from the RF-Score model.

The training data puts a limitation on model performance. There has been debate whether the

inclusion  of  low quality  data  leads  to  an  improvement  in  a  model’s  generalization  power.  Li  and

coworkers reported that their Random Forest (RF) model benefited from training on additional low

quality structural and binding data. Their study suggests that a machine learning model should not be

restricted on a small training set of high quality data, and it will get a boost from including lower

quality  data  [Li2015].  Nevertheless,  a  recent  work  reported  no  significant  change  in  model

performance when trained on PDBbind’s both general and refined subsets [Jiménez2018]. Both sides

seem to have a point, so we planned to consider their justifications in compiling our extension to the

refined  set as the standard training dataset. As Figs. 9a and 9b illustrate, the median of errors in the

PDBbind v2016 is  almost  the  same in both  models;  meanwhile  the  Inter-Quartile  Range (IQR) is

smaller in the case of DeepAtom, meaning that the spread of errors in DeepAtom are smaller for the

50% top predictions, compared to the RF-Score model. Similarly for the benchmark 2018 dataset the

errors have narrower spread in the DeepAtom predictions, which also gives rise to more outliers (Figs.

10a and 10b). In addition to these boxplots dissected by the source, comparison of all predictions for

the two models confirms the previous finding, i.e. the DeepAtom model yields narrower error spread;

more outliers in DeepAtom can in turn be attributed to this smaller spread, because the Absolute Error

(AE) is almost the same for the outliers in DeepAtom and RF-Score (Figs. 11a and 11b). The median



prediction error  (and IQR) for DeepAtom and RF-Score on the PDBbind v2016 dataset  are  0.747

(0.994) and 0.84 (1.16) in pK units, respectively. Additionally the median prediction error (and IQR)

for  DeepAtom and RF-Score  on  the  benchmark  2018 dataset  are  0.663 (0.912)  and  0.81  (1.125),

respectively. As graphs in Figs. 11a and 11b indicate, inclusion of lower quality data from  general

subset for training and testing on even a larger test set has improved the median prediction error as well

as the Inter-Quartile Range for both DeepAtom and RF-Score models.

Finally we analyzed the trend of errors yielded from the DeepAtom and RF-Score models. The

errors from the former model were sorted in descending order, and the RF-Score prediction errors for

the same order were plotted, as provided in Fig. 12. The raw prediction errors are shown in Figs. 12a

and 12c. Furthermore the averaged errors with bin size of 5 are illustrated in Figs. 12b and 12d. The

error  trend are reasonably consistent,  meaning that the error for the same complex has correlation

between the two models. This correlation is depicted in Figures 13a and 13b, where the outputs from

DeepAtom is plotted versus the RF-Score predictions. As the high Pearson’s R correlation coefficients

indicate, highly similar predictions are expected from the two models for the binding affinity of an

input structure. The Pearson’s R coefficients in the case of the PDBbind v2016 and the benchmark

2018 datasets are 0.9 and 0.87, respectively.

Limitations: We close this section by raising the discussion about a few limitations of our models.

These  limitations  also  apply  to  many  machine  learning  algorithms  for  scoring  the  protein-ligand

binding affinity, with different levels of severity:

- An inherent drawback for the models is related to the data they have been trained on. The input

training data includes only the bound structure of protein and ligand. The free forms of ligand

and  protein  are  then  inferred,  assuming  that  the  differences  between  bound  and  unbound

conformations are negligible. This is not always the case; as an example, it is well known that

protein kinases exist in an ensemble of conformations, with relatively large movements in their

kinase domain [Huse2002;  Rabiller2010]. This makes kinases a challenging case for binding



affinity prediction based on the bound conformation only. It also justifies why the competitions

for binding affinity prediction, such as D3R (https://drugdesigndata.org), often test the models

on kinase proteins [Gaieb2017]. 

- The second limitation relates to defining the binding box around ligand. Models which rely on

grid box definition cannot take advantage of the structural information beyond the grid box.

Through binding to an allosteric site,  allosteric compounds impact the binding affinity of a

ligand at a protein’s binding site. In these cases, the binding affinity is not only affected by the

ligand at the binding site, but also by the allosteric compound beyond the grid box. 

- Finally, although different techniques are used to overcome the small training data, the number

of complexes with reliable experimentally determined binding affinity data is relatively small,

e.g.  compared to the image recognition field. This limits  the use of powerful deep learning

architectures because overfitting is very likely to occur. The light-weight CNN architectures

mitigate this issue to some extent.

https://drugdesigndata.org/


4. CONCLUSION

Deep  learning  models  leverage  the  data  itself  to  generate  and  extract  features  in  as  much

autonomous as possible. This work reports an improvement in the prediction performance of the model,

compared to the state of the art models developed for protein-ligand binding affinity prediction. The

correlation between predicted and experimental binding affinity data on the train and test dataset are

reasonably high, given that the only input is the holo structure of the protein and ligand in the complex,

and no further information about the protein conformational change or the other regions in the protein

is used for the prediction, except for the binding site area.

The second contribution of this study is to extend the standard datasets used for training the

binding affinity scoring algorithms. We propose our extended dataset which includes protein-ligand

complexes with only Kd, Ka, or Ki experimental data. The proposed dataset offers greater than double

the size of the PDBbind v.2016 refined subset as the standard training dataset. We observed  superior

performance of our DeepAtom model trained on this dataset, compared to RF-Score model as the state-

of-the-art in the literature; therefore we recommend it as a benchmark dataset especially for machine

learning scoring functions, where more samples potentially improve a model’s generalization power.

Future directions may include the use of kernels which make the convolutional layers invariant to

translation and rotation; this will make overfitting a less severe problem and will potentially boost the

performance. 
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Fig. 1. Ligand end-to-end distance distribution in the PDBbind v2016 refined + core subsets



Fig. 2. Featurization of an input protein-ligand structure. A grid box is defined around the ligand in

the binding site. Each channel includes only a specific view of the atoms inside of the grid box; the

three  channels  shown  here  from left  to  right  represent  ligand’s  excluded  volume,  as  well  as  the

protein’s hydrophobic and aromatic channels. 



Fig. 3. Architecture of DeepAtom Model.  Each Convolutional layer is specified by its number of

channels, kernel size and stride. The 3D MaxPool layer has kernel size 3 and stride 2. For the 3D

Shuffle Groups, the numbers in parentheses denote the number of output channels and repeat time of

the unit. Only the first unit has down sampling layer, where the depthwise (DWConv) layer has kernel

size  3  and stride  2.  In  the  remaining units,  DWConv with  kernel  size  3  and stride  1,  as  well  as

pointwise (PWConv) layer with kernel size 1 and stride 1 are utilized. Eight losses are calculated based

on the shared weight fully connected layer output. 



Fig. 4. Performance of DeepAtom model during hyperparameter tuning. The bars represent the

performance of DeepAtom trained on the PDBbind v2016 refined subset and tested on the core subset.

The performance is  defined in  terms of  Pearson correlation  coefficient  between the  predicted  and

experimental pK values.



Fig.  5. Comparison  of  predictions  in  random  splitting  of  PDBbind  v2016. a)  scatterplot  for

DeepAtom; b) scatterplot for RF-Score.

a b



Fig. 6. Comparison of predictions in random splitting of benchmark 2018 dataset. a) scatterplot

for DeepAtom; b) scatterplot for RF-Score.

a b



Fig. 7. Enrichment analysis for the top 5%, 10%, and 20% most accurate predictions dissected

by source. a)  DeepAtom on PDBbind v2016 dataset;  b)  RF-Score on PDBbind v2016 dataset;  c)

DeepAtom on benchmark 2018 dataset; d) RF-Score on benchmark 2018 dataset.

a b

c d



Fig.  8. Error analysis  for the  top 5%, 10%, and 20% largest  prediction errors  dissected by

source. a)  DeepAtom  on  PDBbind  v2016  dataset;  b)  RF-Score  on  PDBbind  v2016  dataset;  c)

DeepAtom on benchmark 2018 dataset; d) RF-Score on benchmark 2018 dataset.

a b

c d



Fig.  9. Spread  of  prediction  errors  on  the  PDBbind  v2016  dataset  dissected  by  source. a)

DeepAtom errors; b) RF-Score errors.

a b



Fig.  10. Spread  of  prediction  errors  on  the  benchmark  2018  dataset  dissected  by  source. a)

DeepAtom errors; b) RF-Score errors.

a b



Fig. 11. Spread of prediction errors for the DeepAtom and RF-Score models. a) PDBbind v2016

dataset; b) benchmark 2018 dataset.

a b



Fig. 12. Trend of prediction errors. The errors for DeepAtom are sorted in descending order, and the

RF-Score errors are shown for the corresponding complexes. In the binned plots with bin size of 5,

both error trends are plotted as the bin average values. a) raw trends on PDBbind v2016 dataset; b)

binned trends on PDBbind v2016 dataset; c) raw trends on benchmark 2018 dataset; d) binned trends

on benchmark 2018 dataset.

a b

c d



Fig. 13. Correlation of predictions between DeepAtom and RF-Score. Th predictions in pK units

are plotted for DeepAtom versus RF-Score model.  a)  PDBbind v2106 dataset;  b) benchmark 2018

dataset.

a b



Table 1. Hyperparameter tuning. The DeepAtom model trained on PDBbind v2016 refined subset.

Number of
Channels

Resolution (Å)
Occupancy

Type
Averaging at

Test Time
Pearson’s R

11

1.0 Binary 0

0.703

24 0.776

60 0.776

24

0.375

Binary 0

0.788

0.5 0.784

1.0 0.776

24 1.0
Binary

0
0.776

PCMax 0.814

24 1.0 PCMax
0 0.814

36 0.832



Table 2. Comparison of model performance in terms of Pearson correlation coefficient between

the predicted and experimental pK values. The DeepAtom model was developed in this study. The

number in parentheses shows the Root Mean Squared Error (RMSE) in pK units. The best Pearson’s R

and RMSE values for each test set are shown in bold.

PDBbind v2016 core set
PDBbind v2016

(80-10-10 split)

Benchmark 2018

(80-10-10 split)

DeepAtom
0.83

(1.1)

0.79

(1.2)

0.78

(1.2)

RF-Score
0.81

(1.2)

0.75

(1.3)

0.73

(1.3)

KDEEP

0.82

(1.3)
N/A N/A


