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Summary8

Using the high-entropy alloys (HEAs) CoCuGaNiZn and AgAuCuPdPt as starting points we9

provide a framework for tuning the composition of disordered multi-metallic alloys to control the10

selectivity and activity of the reduction of carbon dioxide (CO2) to highly reduced compounds.11

By combining density functional theory (DFT) with supervised machine learning we predicted12

the CO and hydrogen (H) adsorption energies of all surface sites on the (111) surface of the two13

HEAs. This allowed an optimization for the HEA compositions with increased likelihood for14

sites with weak hydrogen adsorption–to suppress the formation of molecular hydrogen (H2)–15

and with strong CO adsorption to favor the reduction of CO. This led to the discovery of16

several disordered alloy catalyst candidates for which selectivity towards highly reduced carbon17

compounds is expected, as well as insights into the rational design of disordered alloy catalysts18

for the CO2 and CO reduction reaction.19

Introduction20

The application of HEAs for catalytic purposes remains highly unexplored1 but may provide21

the means of discovering new catalyst materials with better properties such as catalytic activity,22

selectivity, and stability by intelligently navigating the huge configuration space made possible23

by the vast number of combinations of elements in any ratio and their surface microstructures.224
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So far HEAs (or equivalently, complex solid solutions and multi-principal-component al-25

loys) have been studied experimentally for catalytic properties for the oxygen reduction3–6 and26

evolution,5,7 CO oxidation,4 hydrogen evolution,4,8 ammonia oxidation9 and decomposition,1027

methanol oxidation,4,6, 11–14 and azo dye degradation15 reactions.28

The carbon dioxide reduction reaction (CO2RR) and the subsequent carbon monoxide re-29

duction reaction (CORR) have the potential to transform the production of carbon based fuels30

and commodity chemicals that is currently based on carbon from fossil sources into one based31

on a closed carbon cycle and therefore no net emissions of CO2. One major obstacle with the32

large scale implementation of the electrochemical CO2RR is the selective conversion of CO2 into33

reduced products such as CO and formic acid (HCOOH), and highly reduced products such34

as methane (CH4), methanol (CH3OH), and ethene (CH2CH2). In aqueous environments one35

paramount challenge is to prevent the evolution of H2, a competing electrochemical reaction36

which causes low faradaic efficiencies of the CO2RR.1637

The only pure metal surface that has shown the potential to form valuable, highly reduced38

carbon products beyond CO and formic acid is copper (Cu) albeit at a high overpotential.1739

It is thus natural that Cu has been investigated thoroughly to understand the properties that40

make this metal a unique catalyst in governing the CO2RR selectivity. For instance, it has been41

shown that Cu has a close to optimal CO adsorption energy which accounts for the high activity42

and selectivity,18,19 and that the adsorption energies of CO together with H are descriptors for43

the different product classes formed by various metal catalysts.20,21 It was found that Cu is44

unique for the CO2RR because it binds CO strongly enough to suppress the formation of CO45

and formic acid, and at the same time binds H weakly enough to suppress the formation of46

H2. The strong binding of CO and the weak binding of H achieved by Cu thus seem to be47

necessary–but by no means sufficient–requirements for catalysts with selectivity towards highly48

reduced carbon products.49

Unbiased searches for CO2RR catalyst candidates have previously been performed,22–2450

however with an emphasis on binary alloys and without explicit regard to suppressing the51

evolution of H2.52

In this work we apply the catalytically promising multi-metallic HEAs as a basis for sug-53

gesting disordered alloy catalysts for the CO2RR and tightly related CORR.54

We recently showed that HEAs can act as a platform for the rational design of alloy catalysts55

for the oxygen reduction reaction by tuning the composition of the constituent elements to56

maximize the catalytic activity.25 In this work we extend this methodology in an attempt to57

handle the more complex problem of controlling catalytic selectivity in the CO2RR by using58
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the necessary requirements of having stronger CO binding and weaker H binding than Cu.2059

CO and H adsorption energies are calculated on CoCuGaNiZn and60

AgAuCuPdPt61

We chose the (111) facets of the face-centered cubic (fcc) HEAs CoCuGaNiZn and AgAuCuPdPt62

as the starting points for a composition optimization that will favor the selective reduction of63

CO2 to highly reduced products. The elements in the two selected quinary HEAs are chosen64

to have both strong and weak adsorption strengths of CO and H, and at the same time span a65

popular selection of alloy catalysts in the literature of the CO2RR (e.g. AgPd,26,27 AuPd,28,2966

CuPd,26,30 CuZn,31 GaNi,32 PdPt,26,33 and AgAuCuPdPt34). Two quinary HEAs are chosen67

as opposed to one denary because the computational efforts in the following analysis increase68

rapidly with the number of elements. This means that one 5-parameter composition space is69

explored for each HEA and not the combination of the two.70

A disordered surface comprised of many elements will naturally give rise to many different71

surface sites with distinct adsorption properties of the reaction intermediates of a given chemical72

reaction and will be determined by the microstructure of the site. Each site will contribute73

to the catalytic properties in a specific way determined to a large extent by the catalytic74

descriptors, in this case CO and H adsorption energies. The advantage that HEAs provide is a75

mean of probabilistically optimizing the catalytic properties for a given reaction by increasing76

the likelihood for surface microstructures with desired values of the adsorption energies.77

Because of the vast number of possible surface microstructures the calculation of the ad-78

sorption energies for all possible adsorption sites is impossible even with the fastest ab initio79

simulations. Knowing the adsorption energies of all possible sites on the surface, however, it is80

possible to probabilistically evaluate the selectivity of a given alloy composition.81

Herein, we shall overcome the constraint of calculating all available adsorption energies with82

the use of supervised machine learning. This allows the almost instantaneous prediction of the83

adsorption energies of all surface sites using only a subset of known DFT calculated adsorption84

energies and their corresponding surface structures as input for the machine learning regressor.85

It was found that Gaussian process regression (GPR), as implemented in scikit-learn,35 generally86

gives the smallest prediction errors for both CO and H adsorption energies, and so this model87

is used in the following.88

We assume in this work that CO adsorbs on-top and H in three-fold hollow sites, i.e. either89

fcc-hollow or hcp-hollow sites as illustrated in Figure S1. The data used to train the Gaussian90
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process regressors consist of hundreds of DFT adsorption energy calculations of on-top ∗CO, fcc91

H∗, and hcp H∗, respectively, for CoCuGaNiZn and AgAuCuPdPt, respectively, on randomly92

populated (111) facets of periodically repeated 2x2x5 slabs depicted in Figure S1. Details on93

the performed DFT calculations can be found in the section on the computational methods.94

The adsorption site is described by the neighboring atoms95

In order to train the GPR it must be fed a description of the surface microstructure which will96

make up the input of this machine learning model. Such an input can be chosen in many ways.97

To account for the ligand effect36,37 in the surface microstructure we use the elemental labels98

of the atoms around an adsorption site (on-top or 3-fold hollow) as a categorical input. It is99

our hypothesis that the adsorption energy will be uniquely given by the elemental labels and100

locations relative to the adsorbate of all atoms in the system on a given surface. Fortunately,101

most of the chemical environment around the adsorption site is expected to depend only on the102

atoms in the immediate vicinity of the adsorbate, and in order to keep a cost-effective trade-off103

between computation time and accuracy we use as input only the closest spheres of neighbors104

as illustrated in Figure 1.105

The generation of the input features follows our previously published outline,25 and consists106

of the type of adsorption site, i.e. the metal atom adsorbing ∗CO on-top (5 possibilities) and107

the three metal atoms adsorbing H∗ in a hollow site (35 possibilities), together with the counts108

of the elemental labels of the atoms in the two nearest-neighbor spheres around the adsorb-109

ing atom(s) (210, 35, and 35 possibilities for the closest surface neighbors and 35, 35, and 5110

for the closest subsurface neighbors for on-top, fcc-hollow, and hcp-hollow adsorption respec-111

tively). This is illustrated in Figure 1 for the three surface configurations of on-top, fcc-hollow,112

and hcp-hollow adsorption, giving rise to 15, 45, and 45 features in the input descriptions,113

respectively, and 5 × 210 × 35 = 36, 750; 35 × 35 × 35 = 42, 875; and 35 × 35 × 5 = 6, 125 dis-114

tinct input descriptions, respectively. Examples of how to generate these are shown in Figure S3115

116

The prediction of adsorption energies is successful117

Feeding the GPR 80% of structures and their corresponding CO, fcc H, and hcp H DFT adsorp-118

tion energies, and using the remaining 20% for validating the prediction accuracy in a five-fold119

cross-validation, yields mean absolute errors (MAEs) in the predictions of 63 and 43 meV, 51120

and 65 meV, and 47 and 51 meV for CO, fcc H, and hcp H respectively on CoCuGaNiZn and121
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Figure 1: Adsorption site configurations.

Illustration of the neighboring atoms used to model the chemical environment around the surface site

on a (111) surface for (a) on-top, (b) fcc-hollow, and (c) hcp-hollow adsorption. The white circles

represent the adsorbing intermediate, green circles the adsorbing atoms on the surface, blue circles

the closest surface neighbors, and red circles the closest subsurface neighbors.

AgAuCuPdPt respectively. This is illustrated in Figure 2 which shows the DFT calculated122

adsorption energies vs. the GPR predicted adsorption energies. The dotted lines represent123

a ±0.1 eV deviation from the DFT values and as can be seen most predictions is within this124

boundary proving the GPR successful in capturing the most important parts of the chemical125

environment that influences the adsorption energy.126

To evaluate the selectivity of the CO2RR we develop a model in which the probability for127

weak adsorption of H∗ and strong adsorption of ∗CO are evaluated for each HEA composition.128

Setting the Cu H∗ and ∗CO adsorption energies, ∆ECu
H∗ and ∆ECu

∗CO, as the limits for overly129

weak H∗ binding and overly strong ∗CO binding respectively, we can define a measure of the130

CO2RR selectivity as the probability of surface sites with weaker H∗ binding than Cu. Similarly131

a measure of the CORR activity can be defined as the joint, independent probability of surface132

sites with weaker H∗ binding than Cu and stronger ∗CO binding than Cu.133

Using the predicted adsorption energies obtained with GPR and the probability for each134

surface microstructure given by135

Pi(f) =
M∏
k=1

fnik
k ,

it is possible to produce the activity-selectivity maps shown in Figure 3. Here, Pi is the136

probability of the surface microstructure labeled i, f is the vector of molar fractions for each137

element, M is the number of metals in the HEA, fk is the molar fraction of element k, and nik138

is the number of element k in the surface microstructure labeled i.139
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Figure 2: Predicted vs. calculated adsorption energies.

Plots showing the GPR predicted vs. the DFT calculated adsorption energies for CoCuGaNiZn (a-c)

and AgAuCuPdPt (d-f) for on-top ∗CO (a,d), fcc-hollow H∗ (b,e), and hcp-hollow H∗ (c,f). Blue

indicates data for 2x2 slabs and red 3x3 slabs. The mean absolute errors (MEAs) are calculated as a

5-fold cross-validation prediction error for the 2x2 slabs, and for the 3x3 slabs as the prediction error

when training on the set of all 2x2 slabs. The insets show the distribution of the prediction errors in

eV defined as ∆Epred − ∆EDFT.
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Figure 3: Activity-selectivity plots.

Plot of the CORR selectivity and CORR activity spaces achievable by CoCuGaNiZn (a) and

AgAuCuPdPt (b). Here, CORR selectivity (x) is defined as the proportion of sites with ∆EH∗ ≥

∆ECu
H∗ and CORR activity (y) as the proportion of sites with ∆EH∗ ≥ ∆ECu

H∗ times the proportion of

sites with ∆E∗CO ≤ ∆ECu
∗CO. Every point represents a composition of the HEAs and the colors indicate

the ratios (e.g. Cu-rich compositions being orange). The solid black lines represent the achievable

spaces spanned by binary alloys as labeled. Locally optimal compositions obtained when optimizing

x + y and x + 2y respectively are shown labeled Ai and Bi, as well as the pure elements and the

equimolar composition, E.
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The plots in Figure 3 show how the selectivity and activity of the CO2RR and the subsequent140

reduction of CO is expected to change as the HEA catalysts vary in composition according to141

our model. The colored areas show the space of CO2RR selectivities and CORR activities142

within which can be navigated by tuning the compositions of the HEAs. It is seen that most143

of the achievable space of selectivity and activity is bounded by the traces of the binary alloys.144

This means that an optimization of the composition to give the highest selectivity and activity145

can be expected to yield mainly binary alloys. It is also seen that moving towards the upper146

right corner, corresponding to optimal selectivity towards highly reduced carbon products, will147

yield Cu as the optimal catalyst by construction.148

With some given trade-off between CO2RR selectivity (x) and CORR activity (y) we can list149

locally optimal compositions of the HEAs for which a slight change in the molar fractions do not150

produce a better trade-off using an in-house optimization algorithm. If, for instance, CO2RR151

selectivity and CORR activity are weighted equally, corresponding to maximizing the sum x+y,152

locally optimal compositions are: Cu (2.00), Ga67Ni33 (1.12), Co25Ga75 (1.11), Co14Ga17Ni3Zn66153

(1.08), Ag2Au82Pd16 (1.08), and Ag86Pd14 (1.08), where the numbers in parentheses are the154

sums x + y for the given molar fraction. These locally optimal compositions are shown as155

subscripted A’s in Figure 3.156

However, constraints on the composition can also be applied on top of this to ensure HEAs157

containing all five metals at near-equimolar ratios so that the assumption of a disordered solid158

solution phase is expected to hold. For instance, as shown in Figure 3, optimizing under a159

constraint of a minimum of 10% of each element results in the HEAs Co10Cu10Ga60Ni10Zn10160

(1.07) and Ag14Au56Cu10Pd10Pt10 (0.81) with only some reduction in CO2RR selectivity and161

CORR activity compared to the best alloy alternatives.162

Other trade-offs between CO2RR selectivity and CORR activity can be selected to obtain163

different HEAs. In Figure 3 are shown some local optima for the case where CORR activity164

has twice the weight of CO2RR selectivity labeled with subscripted B’s.165

By inspection of the selectivity-activity maps in Figure 3, and the preceding composition166

optimization, this model has allowed an unbiased discovery of new catalyst candidates using167

only the knowledge about the catalytic selectivity and adsorption properties of Cu. For instance,168

GaNi alloys in various ratios are expected from this model to show superior ability to reduce169

CO to highly reduced carbon products compared to other disordered alloy combinations, since170

it forms the upper boundary of the achievable selectivity-activity space of non-copper alloys171

in Figure 3a. Indeed, GaNi alloys have been shown to have some selectivity towards highly172

reduced carbon products in experiments.32173

8 of 15



Every set of molar fractions, and thus every point in Figure 3, has a corresponding distinct174

distribution of H and CO adsorption energies. Examples of these distributions are shown in175

Figure 4, for six representative alloy compositions. Figure 4 also provides a graphical way of176

interpreting the CO2RR selectivity as the probability of having sites to the right of the vertical177

H adsorption line defined by Cu(111), and the CORR activity as the probability of having sites178

in the lower right quadrant defined by the H and CO adsorption lines for Cu(111).179

Figure 4 illustrates how tuning the compositions of the disordered alloys can alter the dis-180

tribution of adsorption energies, and thus change the selectivity and activity of the disordered181

alloys. As shown in Figure 4c and f, the sites whose likelihood are increased during the op-182

timization of the composition are 3-fold hollow sites with weak H adsorption (e.g. GaGaGa,183

GaGaNi, AuAuAu, and AuAuPd) and on-top sites with strong CO adsorption (Ni and Pd).184

One way to interpret the factors that determine the optimal compositions is thus a trade-off185

between strong CO adsorbing elements that both in numbers and through the ligand effect186

cause the weakest possible adsorption of H. The superior ability of alloying with Ga compared187

to the other elements that adsorb CO weakly (i.e. Zn, Ag, Au) thus seem to be related to a188

perturbation that weakens the adsorption of H in 3-fold hollow sites where strong H adsorbing189

elements (i.e. Co and Ni) are present.190

Conclusion191

We have presented a framework for the unbiased discovery of new catalyst candidates for the192

CORR using the two disordered HEAs CoCuGaNiZn and AgAuCuPdPt as starting points.193

Using the necessary –but by no means sufficient– criteria of weak H adsorption and strong194

CO adsorption we predict locally optimal disordered alloy compositions as shown in Figure 3195

and simultaneously provide an understanding of how affecting the distribution of adsorption196

energies by tuning the composition impacts the affinity for H2 formation and CO reduction.197

Knowing only the catalytic properties of Cu the model is able to suggest, for instance, GaNi198

as a locally optimal catalyst candidate for the CORR, which is known experimentally to show199

some affinity towards highly reduced carbon products.32 This demonstrates the model’s ability200

to predict valid candidates without prior knowledge of their catalytic properties.201

Computational methods202

All calculation were performed with DFT with the RPBE38 functional using the Atomistic203

Simulation Environment (ASE)39 and the GPAW code40,41 using a plane-wave expansion of the204
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Figure 4: Adsorption energy distributions.

Plot of the distributions of H∗ and ∗CO adsorption energies for six disordered (111) alloys using as

starting point CoCuGaNiZn (a-c) and AgAuCuPdPt (d-f) showing equimolar compositions (a,d),

optimal compositions with a minimum of 10% of each element (b,e), and locally optimal compositions

without constraints (c,f). The histograms on the axes show the distributions of H∗ and ∗CO adsorption

energies with colors indicating the adsorption sites as indicated for a selection of peaks on a gray

background that represents the total distribution of all adsorption sites. The square plots show the

joint, independent distributions of H∗ and ∗CO adsorption energies with probability indicated by the

colorbar. The dashed black lines show the adsorption energies of Cu as predicted by the regressors.
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wavefunction.205

Adsorption energies were calculated on planar periodic 2x2x5 slabs and 3x3x5 slabs illus-206

trated in Figure S1 with a plane-wave cutoff at 400 eV and a Monhorst-Pack k-point sampling207

of the Brillouin zone of (4,4,1) for CoCuGaNiZn and (8,8,1) for AgAuCuPdPt. The slabs were208

relaxed to a maximum force of 0.1 eV/Å on the atoms and in the case of CoCuGaNiZn the209

calculations were performed with spin polarized orbitals. A 10 Å layer of vacuum was added210

on the top and bottom of the slab and the positions of the atoms where fixed for all but the211

two top layers which were allowed to relax. The energy of the gas phase reference molecules212

CO and H2 were calculated in identical super cells and with the same DFT parameters as for213

the slabs. The adsorption energies of CO and H were calculated as214

∆E∗CO = E∗CO − E∗ − ECO (1)

∆EH∗ = EH∗ − E∗ −
1

2
EH2 (2)

where ∆E∗CO and ∆EH∗ are the adsorption energies of CO and H, E∗CO and EH∗ are the DFT215

energies of the relaxed slabs with the adsorbate, E∗ is the DFT energy of the slab without any216

adsorbate, and ECO and EH2 are the DFT energies of the molecular gas phase references.217

The lattice parameter for the slabs was chosen as the weighted average of the DFT calculated218

lattice parameters of the constituent elements in the top layer of the slab. We expect this lattice219

parameter to most accurately account for the effect of strain on a real HEA surface.220

The lattice parameters corresponding to a minimum in energy of the individual elements221

listed in Table S1 were calculated for a primitive fcc unit cell with a plane-wave cutoff of 400 eV222

and a Monkhorst-Pack k-points sampling of (14,14,14) with spin-polarized orbitals for Co and223

Ni, and spin-paired orbitals for the other elements.224

Keywords225

Electrocatalysis, CO2 reduction reaction, CO reduction reaction, high-entropy alloy, multicomponent alloy,226

complex solid solution, rational design, adsorption energy prediction.227
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