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Abstract The development of accurate potentials for computational simula-
tions has been an active area of research. Our group has been involved in the
development of the Gaussian electrostatic model (GEM), a force field based on
molecular densities. The philosophy of GEM is based on the pioneering work
of N. Gresh and co–workers of the reproduction of individual inter–molecular
interaction components obtained from quantum mechanical (QM) energy de-
composition analysis (EDA). The molecular densities used in GEM are rep-
resented by fitting accurate QM molecular densities using auxiliary basis sets
(comprised of Hermite Gaussians). The use of these molecular densities results
in the need to evaluate a large number of Gaussian integrals. We have pre-
viously shown that the particle–mesh Ewald (PME), and fast Fourier Poison
(FFP) methods can be used for efficiently evaluating these types of integrals.
Here, we present the latest parametrization of GEM* and its application for an
extensive study of PME and FFP for molecular dynamics (MD) simulations
using a hybrid version of our potential, GEM*. The temperature dependence
of various bulk properties is presented and discussed, as well as the effect of
various parameters affecting the performance/accuracy of both methods.
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1 Introduction

Force field (FF) development continues to receive significant attention. [1–6].
The need for extensive phase–space sampling results in the need to make var-
ious approximations to increase computational efficiency. In particular, many
FF separate the calculation of the energy in bonded and non–bonded terms.
The non–bonded interactions are usually approximated by Coulomb and Van
der Waals (VdW) terms using atom–centered point charges and atom–specific
parameters for VdW. The use of these functions provides improved sampling
efficiency. However, problems with these approximations give rise to reduced
accuracy because of the loss of charge density anisotropy, the failure to account
for penetration effects, among others [7].

Some of these issues can be ameliorated by including a better description
of the charge density distribution and/or a more detailed description of the
intermolecular interactions. For example, force fields like AMOEBA, SIBFA,
EFP, X–Pol, and NEMO employ distributed multipoles and use explicit po-
larization [8–14]. The use of atomic–centered multipoles gives a better results
for Coulimb interactions [7,15–19]. However, multipoles cannot reproduce the
charge density overlap effect, giving rise to the so–called penetration effect at
close range [7,20], although this may be ameliorated by the use of damping
functions to correct the electrostatic interactions at close distances [20–26].

The explicit description of the molecular charge density avoids the charge
penetration issue. This feature has been exploited by several methods [27–
34]. This is a key feature of the Gaussian Electrostatic Model (GEM) [35–39].
GEM uses the density fitting (DF) formalism [40–42] to expand the molecu-
lar density using Hermite Gaussian auxiliary basis sets (ABSs). Additionally,
following the philosophy promoted by Gresh and co–workers, GEM relies on
the reproduction of each individual term from ab initio QM intermolecular
interaction results from energy decomposition analysis (EDA) [43–52].

Consequently, GEM includes separate terms for each contribution includ-
ing Coulomb, exchange–repulsion, polarization, charge–transfer and disper-
sion [36,37,39]. Additionally, the use of continuous functions provides a more
accurate description of molecular properties compared to conventional point
charges [37]. We have also shown that GEM results in very accurate energies
and forces for a range of systems including homo–dimers, hetero–dimers and
molecular clusters, and it can be used in multi–scale implementations. [36,37,
53–56].

The use of Hermite Gaussians results in the need to evaluate a large number
of Coulomb and overlap integrals. Various reciprocal space methods have been
developed for the efficient evaluation of integrals [57–61]. We have previously
shown that Ewald–based methods can be extended for Gaussian distributions
for the efficient evaluation of these integrals [37]. In particular, we have ex-
tended the smooth particle mesh Ewald (PME) [62] and fast Fourier Poisson
(FFP) [63] methods to allow the evaluation of continuous Gaussian functions
in periodic boundary conditions (PBC) [37,64].
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We previously reported a water potential that included the Coulomb and
exchange–repulsion terms from GEM, combined with the polarization and a
modified Halgren function from AMOEBA, this hybrid water potential was
termed GEM* [65]. This potential employed a molecular electronic density fit-
ted at the MP2/aug–cc–pVTZ level of theory for the water monomer, and was
parametrized to reproduce BSSE–corrected MP2/aug-cc-pVTZ intermolecular
interaction energies, as well as individual EDA terms calculated at the RVS
(HF/aug–cc–pVTZ) level for dimers and selected oligomers.

In this contribution we present an update for GEM* by fitting the molec-
ular electronic density and parametrizing the individual terms to higher levels
of theory (vide infra). This new paremetrization is employed to test the latest
implementation of the PME and FFP algorithms in pmemd.gem as released in
the AMBER18 suite of programs. Thermodynamic, structural and dynamical
properties for this new GEM* parametrization are presented and discussed.
The remainder of the paper is organized as follows, Section 2 presents the the-
ory and details of the computational simulations, followed by presentation of
the performance of the reciprocal space algorithms using various parameters
and bulk property calculations in Section 3, followed by concluding remarks.

2 Computational Methods

This section presents the details of the GEM* force field in Subsection 2.1,
followed in Subsection 2.2 by a description of the mathematical details for
the extension of PME and FFP for Gaussian distributions in PBC. Finally,
Subsection 2.3 provides a description of the new parametrization and MD
simulations.

2.1 The GEM* force field

The initial implementation of the full GEM potential involved the use of spheri-
cal type Hermites only, resulting in what was termed GEM–0 [36]. This version,
along with the extension to Hermite Gaussians of arbitrary angular momen-
tum were shown to be highly accurate for the calculation of single energies
and forces [37]. The only drawback with these potentials was that MD simula-
tions were not possible in an efficient manner since the analytical form of one
of the terms (charge–transfer) was not available. Therefore, a compromise to
enable efficient MD simulations was realized by combining terms from GEM
with terms from AMOEBA, which resulted in the development of the GEM*
force field [65].

In brief, GEM* employs the Electrostatic and exchange terms from GEM,
combinded with polarization, modified van der Waals and bonded terms from
AMOEBA. The functional form for GEM* is thus:

EGEM∗
Total = EGEM

Coulomb + EGEM
exch−rep + EAMOEBA

polarization

+Emodified
Halgren + EAMOEBA

bonded . (1)
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The Coulomb and exchange–repulsion terms for GEM* are obtained by
evaluating the two center Coulomb and overlap integrals involving the fit-
ted densities [65]. The buffered Halgren function from AMOEBA for Van der
Waals was modified given the fact that GEM* includes a separate exchange
term. To this end, the function (modHalgren) was modified by removing the
repulsive term resulting in the following expression:

EmodHalgren = −εij

[
1.07R∗ij

(Rij + 0.07R∗ij)

]7

. (2)

The polarization and bonded terms employ the same functional forms as
AMOEBA [66]. One important difference in GEM* is that the permanent
electric fields for the calculation of the induced dipoles are calculated with
the distributed multipoles obtained from the fitted Hermites for consistency
between the Coulomb and polarization terms [67,68].

The initial implementation of GEM* was tested by developing and testing
paramterers for a model water potential [65]. These parameters were compared
with reference ab initio values for total intermolecular interactions corrected
for basis set superposition error via the counterpoise correction. The reference
data was calculated at the MP2(full)/aug–cc–pVTZ level to match the orig-
inal AMOEBA parametrization [66,69,10,70]. The molecular density used to
obtain the fitting coefficients for GEM* was calculated at the same level of
theory as above for a water molecule at the AMOEBA equilibrium geometry.

Three parametrizations were investigated, termed models 1–3. The differ-
ence among the three models involves the use of different ABSs, A1 or A2
[71,72], and/or the dataset of water oligomers used for the parametrization.
Model 1 was fitted using the A2 ABS to reproduce intermolecular interaction
energies for the canonical water dimer, several random dimers, and selected
water clusters from [73]. Models 2 and 3 were parametrized to reproduce in-
termolecular energies for the canonical water dimer only using the A2 (model
2) and A1 (model 3) ABSs. All calculations for GEM* were performed with a
modified pmemd.amoeba version in the AMBER16 suite of programs [1].

2.2 Ewald–based methods for Evaluation of Coulomb Integrals

The use of fitted densities for the Coulomb and exchange terms results in the
need to evaluate a large number of Gaussian integrals. As mentioned above,
one possibility to efficiently evaluate these integrals is to employ Ewald–based
methods. This is achieved by employing periodic boundary conditions and
performing part of the calculation in reciprocal space. The reciprocal term
for calculations involving Gaussian functions requires special care given that
the charge densities need to be gridded. This issue can be a major hurdle
for Gaussian functions with large exponents (compact Gaussians) due to the
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need to employ dense grids for an accurate representation. Alternatively, it is
possible to classify the Gaussian functions as compact or diffuse and employ
the reciprocal term only for operations involving diffuse functions.

Our initial implementation of GEM introduced a method to enable the use
of Ewald–based approaches whereby a single Ewald exponent, β, was used to
classify the Gaussian functions in the ABS as compact (αi ≥ β) or diffuse
(αi < β) [37]. In this way, all contributions involving diffuse Hermites may
be efficiently calculated in reciprocal space. This approach can be employed
for systems where the molecular density has been fitted only using spherical
Hermite Gaussians l = 0 such as GEM–0, that involve both atomic, and
off–atom fitting sites [36], as well as charge densities using higher angular
momentum Hermites [37].

This approach was subsequently improved by the realization that the Ewald
exponent, β does not need to be the same for all interactions. That is, β may
be different for each Gaussian pair ij [64]. Therefore, β can be selected to be
∞ for Gaussian pairs where at least one of the functions has a small expo-
nent (diffuse). Thus, all pairs that involve diffuse Hermites can be calculated
exclusively in reciprocal space, with no direct space contribution. In this way,
for a specific θ > 0 a charge distribution qiρi is classified as compact (i ∈ c) if
αi ≥ 2θ and diffuse (i ∈ d) otherwise. Subsequently, for i, j ∈ {c}, an Ewald
exponent is selected such that 1/θ = 1/αi +1/αj +1/β, otherwise β =∞. For
GEM* (and GEM), the fitted densities are expanded in a linear combination
of Hermite Gaussians Λtuv(r, α,R).

In this way, expressions for spherical (l = 0) and higher order angular mo-
mentum charge distributions can be derived as described in Refs. [37,64,39]
and several algorithms can be employed for the various terms. In our case,
the direct space contributions are calculated using the McMurchie-Davidson
(McD) recursion. The use of the McD algorithm allows the efficient evaluation
of integrals involving high angular momentum Hermites since only vertical re-
cursions need to be employed [74]. This recursion can be used to calculate the
required erfc and higher derivatives for multipoles as well as Hermite interac-
tions [75,37]. Additionally, we have previously shown that the McD recursion
is applicable to other types of integrals such as the overlap, required for the
exchange term [37].

For the reciprocal terms, three methods were implemented: full Ewald [76],
sPME [77] and FFP [78]. The smooth PME (sPME) method is based on the
fact that the complex exponential in can be approximated by B–splines, result-
ing in a O(N(log(N)) method [77]. The FFP algorithm uses a similar method
to FFT–based approaches for the acceleratiion of density map calculations in
macromolecular structure determinations [78,37,64].

2.3 Parametrization and MD Simulation Details

The original parametrization of GEM* employed a fitted density for the water
monomer calculated using a single orientation of a reference water molecule,
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with a molecular electronic density obtained at the MP2/aug–cc–pVTZ level.
The inter–molecular interactions were parametrized using total inter–molecular
interaction energies at the MP2/aug–cc–pVTZ level, combined with energy
decomposition analysis using the RVS method with the aug–cc–pVTZ as ref-
erence [65].

In the present work, we have updated the parameters by fitting single
monomer densities for 500 water molecules in random orientations using the
A2 ABS only, with reference monomer densities obtained at the CCSD/aug–
cc–pVTZ level of theory. The calculated GEM coefficients were optimized and
averaged to obtain one single set of average coefficients. These coefficients were
used to update the parameters of the different terms of the GEM* potential.
The new parametrization has been performed by optimizing the fitting param-
eters to reproduce the interactions of 500 water dimers selected from the water
dimer surface calculated at the CCSD(T)/CBS level reported by Babin et al.
[79,80], coupled with EDA results obtained from SAPT2+3/aug–cc–pVTZ as
reported in [55] using the SAPT implementation in Psi4 [81]. Additionally,
the energies and forces of six hexamers have been employed to ensure accurate
reproduction of many–body effects as well as the value of the density and heat
of vaporization at 300K to optimize the modified Halgren parameters, simi-
larly to the initial GEM* implementation [65]. The optimized parameters were
tested against the 43500 dimers from the water dimer potential energy surface
both for total intermolecular energies, as well as individual EDA components
(see SI), in addition to various bulk properties (vide infra).

The optimized GEM* parameters were employed to perform MD simula-
tions for water boxes of various sizes in the NVT, NPT and NVE ensembles
to test the accuracy and performance of the new parameters and optimized
implementation of pmemd.gem. For the constant temperature and pressure
simulations, the Berendsen thermostat [82] and Monte Carlo barostat were
employed. Simulations for the determination of bulk properties were performed
using boxes of 1024 water molecules for at least 1 ns at various temperatures.
NVE simulations were performed on water boxes of 512 water molecules. In
all cases the polarization tolerance is 10−6, with a non–bonded cutoff of 8 Å
and similar cutoff for the direct space cutoff for the Ewald–based methods.

For the integral evaluation, the B–spline order is 6, with FFT grids of 643,
exchange factor of 6.6899 and exchange cutoff of 6.0 Å. All bulk–property
calculations were calculated with a split exponent of 0.15 (i.e. all Hermites
assumed as compact). For the Gaussian split performance test, the split expo-
nent was also set to 0.5, which results in one of the Gaussians being diffuse.
All MD simulations were carried out using the Beeman integrator with a 1
fs time–step. Radial and structural distribution functions (rdf and sdf) were
obtained using the Travis software [83].
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3 Results and Discussion

This section presents the results and discussion of the new GEM* parametriza-
tion with respect to calculation of bulk properties in Subsection 3.1 as well as
the performance of the new GEM* implementation in pmemd.gem and test-
ing of the two Ewald–based methods using two different Gaussian cutoffs in
Subsection 3.2.

3.1 Bulk properties

Fig. 1 Radial distribution functions (g(r)) for O–O (top), O–H (middle), and H–H (bottom)
for GEM* compared with previous GEM* parametrization and experimental data [65,84]



8 Robert E. Duke, G. Andrés Cisneros

Radial and structural distribution functions were calculated from a 1024
water box at 300 K run under NPT conditions. Figures 1 and 2 show that the
new parametrization results in an overall better agreement of the structural
features for GEM* compared with experimental data, in particular for the
O–O rdf. Interestingly, the new parameters results in slight over–stabilization
of the O–H and H–H interactions, in particular for the first solvation shell.

Fig. 2 Structural distribution functions in three orientations calculated with the new GEM*
parameters

Following the work for the initial GEM* implementation, the new param-
eters have been evaluated by calculating the density and heat of vaporization
for a range of temperatures between 250 and 320 K. The heat of vaporization
can be calculated from the difference in potential energies between the liquid
and gas phases. The average potential energy of the gas is 0.9 kcal/mol at 300
K as reported previously [65] and follows a similar trend as the bulk. As shown
in Figure 3 the new parametrization shows good accuracy for the temperature
range close to 300K, especially for the calculated heats of vaporization. How-
ever, deviations are exhibited, especially at low temperatures, in particular for
the calculated densities, which show errors as large as 4% for the lower temper-
atures. The observed deviation for the calculated thermodynamic properties
is due to the inadequate functional form for the description of the induction
and charge transfer terms, as well as other appsoximations such as the lack
of nuclear quantum effects (in particular for ∆Hvap). One more possible effect
that could affect the accuracy of the calculated densities is the relatively short
sampling times (1ns).

Another liquid property that can be used to validate the quality of the
potential is the self–diffusion coefficient, D±. In the present work, the D± have
been calculated by means of Einstein’s relation:D± = limt→∞〈MSD(t)±〉(6t)−1,
where 〈MSD(t)±〉 is the mean squared displacement of the water molecule’s
center of mass and t is the time. The calculated diffusion coefficients for the
temperature range under consideration shows very good agreement at both
low and high temperatures (Figure 4), and predict faster diffusion at high
temperatures and low diffusion rates at low temperatures.
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Fig. 3 Calculated densities and heats of vaporization for a range of temperatures

Fig. 4 Calculated diffusion coefficients for a range of temperatures

3.2 Ewald–based Methods Performance Analysis

The A2 auxiliary basis sets employed for the current version of GEM* comprise
16 Gaussian primitives with exponents ranging from 0.30 to 2566.00. Timings
for the single energy and force calculation of the Coulomb energy for various
water boxes under PBC showed significant improvement of PME and FFP
compared with full Ewald sum results [37,64]. The new implementation in
pmemd.gem for improved parallel performance maintains this trend as shown
in Table 1. The trends observed in the previous implementation are maintained
in pmemd.gem . Additionally, the use of different C–D split exponent (C–D
exp), θ, shows the possibility of increased performance. In most cases, it is
necessary to use a relatively dense grid for the accurate evaluation of the
Coulomb interaction of the entire system if a C–D split exponent is chosen
such that some integrals involving diffuse functions are evaluated exclusively in
reciprocal space (grid ≥ 100 for this example). The best performance/accuracy
is observed for sPME with a C–D split exponent of 0.5, which results in two
primitives from the A2 set designated as diffuse, using a grid of 1003. This
combination results in the evaluation of the energies and forces for this system
in 1.96 s, with an error of 0.007 kcal mol1 (0.01 µH) in the total Coulomb
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energy. It should also be noted that both PME and FFP are almost 30 times
faster than the fastest setup for the full Ewald sum.

Table 1 Accuracy and performance of Ewald, sPME and FFP for single Coulomb en-
ergy/force calculations of a 512 GEM* water box using a B–spline order of 8. All calculations
were performed on an i7-5820K@3.3GHz using a single core.

grid size = 2003

C–D exp PME FFP Ewald
ECoul t (s) ECoul t (s) ECoul t (s)

0.100 -7761.784660 6.72 -7761.784660 156.62 – –
0.250 -7761.784659 6.04 -7761.784659 52.52 – –
0.500 -7761.784724 6.42 -7761.784718 21.99 – –
1.250 -7761.775239 6.51 -7538.336333 12.26 – –
2.000 -7761.760290 6.46 6817.189360 10.17 – –

grid size = 1503

PME FFP Ewald
ECoul t (s) ECoul t (s) ECoul t (s)

0.100 -7761.784660 4.56 -7761.784660 62.55 – –
0.250 -7761.784661 4.37 -7761.784659 21.74 – –
0.500 -7761.784238 4.24 -7761.784720 10.17 – –
1.250 -7761.658504 4.26 -7619.653416 5.71 – –
2.000 -7761.692765 4.83 2518.484768 4.85 – –

grid size = 1003

PME FFP Ewald
ECoul t (s) ECoul t (s) ECoul t (s)

0.100 -7761.784659 2.50 -7761.784660 19.42 -7761.784660 410.56
0.250 -7761.784643 2.13 -7761.784659 7.59 -7761.784659 408.89
0.500 -7761.791994 1.96 -7761.784723 3.82 -7761.784677 406.25
1.250 -7757.544636 1.93 -7709.917195 2.47 -7758.809650 410.10
2.000 -7787.095605 1.92 -2837.159878 2.53 -7787.734594 387.86

grid size = 503

PME FFP Ewald
ECoul t (s) ECoul t (s) ECoul t (s)

0.100 -7761.784675 1.95 -7761.784660 4.22 -7761.784660 64.51
0.250 -7761.788669 1.46 -7761.784888 2.21 -7761.784659 64.05
0.500 -7734.891895 1.18 -7753.682565 1.42 -7747.938468 65.00
1.250 57367.505736 1.26 -41549.335491 1.22 45434.658996 64.72
2.000 -7761.692765 1.16 -13677.969316 1.17 9852.239609 61.69

The stability of the present implementation of these methods was tested
by performing a short (200 ps) run of the 512 box under NVE conditions.
Figure 5 shows that performing the evaluation of integrals involving diffuse
Gaussians exclusively in reciprocal space results in energy conservation for the
simulation time. For comparison, an NVE simulation with a C–D exp of 0.15
(all Gaussians considered as compact) is presented to show energy conservation
in this regime as well.

Finally, Figure 6 shows a comparison between the performance of the orig-
inal implementation of GEM* in the modified pmemd.amoeba implemented in
AMBER16, with the new pmemd.gem implementation released in AMBER18.
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Fig. 5 Total energy vs. time for a 512 water box using the NVE ensemble with two different
C–D exp (0.15 and 0.5).

As can be observed, good scaling is found for a water box of 1024 molecules.
In particular, the evaluation of 100 MD steps running on Stampede2 shows
a 2–fold improvement for the new pmemd.gem implementation, with a top
performance of 22 MD steps per second on 432 cores.

Fig. 6 Performance comparison between the initial and current implementations of GEM*.
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4 Conclusions

This contribution presents the implementation and testing of two Ewald–based
methods compared with full Ewald sums for the evaluation of integrals in-
volving Gaussian distributions as applied for the GEM* potential. A new
parametrization of GEM* employing very high accuracy data for intermolec-
ular interactions for total and EDA contributions is also presented and tested
by determining various bulk properties. Our results show that the new GEM*
implementation at the higher level of theory provides an accurate reproduction
of the water dimer surface and gives accurate results for bulk properties around
300K, although deviations are observed especially at low temperature. These
deviations are likely due to the very approximate functional form employed to
reproduce the dispersion and charge–transfer contributions, a new version of
GEM with a more accurate functional form is currently under development.
The use of Ewald–based methods is shown to provide a viable approach for
the evaluation of a large number of Gaussian distributions under PBC with
high accuracy, in particular when evaluating some of the Gaussian primitives
exclusively in reciprocal space.

5 Supplementary Information

SAPT2+3/aug–cc–pVTZ components compared with individual GEM*, and
total intermolecular interaction energies for the full 43500 water dimers are
provided as a csv file.
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