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Abstract

In this article we describe the OpenMolcas environment and invite the com-

putational chemistry community to collaborate. The open-source project already

includes a large number of new developments realized during the transition from

the commercial MOLCAS product to the open-source platform. The paper initially

describes the technical details of the new software development platform. This is fol-

lowed by brief presentations of many new methods, implementations, and features

of the OpenMolcas program suite. These developments include novel wave func-

tion methods such as stochastic complete active space self-consistent field, density

matrix renormalization group (DMRG) methods, and hybrid multiconfigurational
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wave function and density functional theory models. Some of these implementations

include an array of additional options and functionalities. The paper proceeds and

describes developments related to explorations of potential energy surfaces. Here

we present methods for the optimization of conical intersections, the simulation of

adiabatic and nonadiabatic molecular dynamics and interfaces to tools for semiclas-

sical and quantum mechanical nuclear dynamics. Furthermore, the article describes

features unique to simulations of spectroscopic and magnetic phenomena such as

the exact semiclassical description of the interaction between light and matter, var-

ious X-ray processes, magnetic circular dichroism and properties. Finally, the paper

describes a number of built-in and add-on features to support the OpenMolcas plat-

form with post calculation analysis and visualization, a multiscale simulation option

using frozen-density embedding theory and new electronic and muonic basis sets.
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1 Introduction

At the 4th MOLCAS developers’ workshop, 30 March – 1 April 2016, in Vienna, Aus-

tria, the MOLCAS developer community decided that the source code of the MOLCAS

project would be released, where the authors agree, as an open-source project under the

GNU Lesser General Public License (LGPL)1 – the OpenMolcas project. This decision

was followed by intensive work to adapt to this new format and context. An open-source
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repository was established September 2017. In late 2018 the transition to the new open-

source format and integration platform was completed. The history of the OpenMolcas

codebase dates back much earlier in time and for a summary of it we refer to previ-

ous MOLCAS publications.2–8 Here we report on the new and recent developments and

options available in OpenMolcas.

OpenMolcas is a software package capable of performing state-of-the-art quan-

tum chemical calculations, but it is not the only one. Other packages, some of them

open source, with similar or overlapping capabilities are (a necessarily nonexhaus-

tive list): ACES,9 ADF,10 BAGEL,11 BigDFT,12 CFOUR,13 Columbus,14 Dalton,15

deMon2k,16 DIRAC,17 Firefly,18 GAMESS,19 GAMESS-UK,20 Gaussian,21 HONDO-

PLUS,22 Jaguar,23 Molpro,24 MRCC,25 NWChem,26 NRLMOL,27 ORCA,28 PQS,29

Psi4,30 PySCF,31 Q-Chem,32 TeraChem,33 Turbomole.34 A more comprehensive relation,

but restricted to open-source programs, can be found in ref. 35. A detailed comparison of

the OpenMolcas features with these other packages is out of the scope of this report, but

it can be stated that the main strength and focus of OpenMolcas is on multiconfigura-

tional wave function methods, and applications and properties for which these methods

are appropriately suited, as reflected in the contents of this article.

Apart from scientific and methodological improvements, the release of OpenMolcas in-

corporates a series of changes in code management and tools. These changes, as presented

here, are aimed at an optimal interface for software accessibility for new developers and

facilitating interaction with other codes. In this report the new developments are subdi-

vided into five different categories: novel wave function and density functional methods,

approaches to explore potential energy surfaces (PESs), implementations associated with

various types of spectroscopy, tools for post analysis of orbitals and wave functions, and

finally a set of some miscellaneous developments.

On the issue of resolving the prohibitive exponential scaling of the multiconfigura-

tional wave function a number of new techniques has been introduced to eliminate this

bottleneck. In particular, the Stochastic-CASSCF method has been implemented. Fur-

thermore, two interfaces are introduced – with the CheMPS2 and QCMaquis programs

7



– that greatly expand the potential of multiconfigurational wave functions by allowing

much larger active spaces as well as speeding up calculations with usual active spaces.

This is achieved by supplementing the full configuration interaction (full CI, FCI) solver in

the RASSCF module by the density matrix renormalization group (DMRG). With these

interfaces it is possible to perform DMRG-SCF, DMRG-CASPT2 and DMRG-NEVPT2

calculations, obtain analytical DMRG-SCF gradients or compute state interaction. More-

over, the multiconfiguration pair-density functional theory (MC-PDFT) option has been

further developed. This includes translating several KS-DFT functionals not previously

available, introducing analytical gradients for state-specific CAS-PDFT, state-interaction

PDFT (SI-PDFT) for situations where two electronic states are strongly interacting and

the use of PDFT in association with DMRG technology.

The exploration of the PESs is a significant part of any sophisticated tool for electronic

structure calculations. In spite of being a leading package for the computational study

of electronic excited states, MOLCAS has for a long time lacked the ability of comput-

ing nonadiabatic coupling vectors. The recent implementation of analytical nonadiabatic

coupling vectors for SA-CASSCF wave functions is now available, together with practical

methods for optimizing and characterizing conical intersections, and the use in simula-

tions of nonadiabatic processes. Furthermore, simulating the time evolution of matter in

the vicinity of electronic degeneracy regions is essential for understanding the rate and

the product distribution of photochemical reactions and for complementing time-resolved

experiments. Direct dynamics methods were developed to avoid the required computa-

tion and fitting of the PESs prior to dynamics simulations and to address the issue of

the exponential scaling with the system size. OpenMolcas now supports three different

tools for this. First, the DYNAMIX and SURFACEHOP modules of OpenMolcas allow

molecular dynamics (MD) simulations of adiabatic and nonadiabatic processes; there are

now options for generating starting conditions, adding external forces to the molecular

system for steered MD simulations, and simulating isotope effects. Second, the SHARC–

OpenMolcas interface allows the simulation of nonadiabatic trajectory surface hopping

dynamics including any arbitrary coupling; this means it can deal with photochemical

8



events involving internal conversion and intersystem crossing on the same footing. Third,

we report here a new interface to the Quantics package. Dynamics code for classical

nuclei is rather straightforward since information is only needed at a given position in

space; a quantum description of the nuclei has more problems because of delocalization of

the wavepacket. The new interface with the Quantics code allows a quantum mechanical

treatment of both electronic and nuclear dynamics via the direct-dynamics variational

multiconfiguration Gaussian (DD-vMCG) method.

The OpenMolcas package can generate operator matrix elements between spin–orbit-

coupled electronic states and is thus frequently used in simulation of various spectroscopic

processes. Recently, these tools have been improved. For high-energy photons the short

wavelength means that the electric field can no longer be treated as constant – as in the

dipole approximation – and electric-dipole forbidden transitions can be observed. The so-

lution, as presented here, is to either introduce higher orders in the multipole expansion

or, more elegantly, use the exact exponential form of the wave vector. Core hole states are

notoriously problematic to handle in standard computations, since these states are high

up in energy. Now there is a simple option to use projection during the CI optimization

to prevent the core hole being filled. Moreover, spectroscopy typically involves transitions

between an initial state and several final states. The standard CI algorithms are designed

to calculate ground and a relatively small number of low-lying excited states. However, to

simulate experiments as X-ray spectroscopy, hundreds of high-energy states are needed. A

new approach to the CI problem, which efficiently handles this case, is presented here. We

report also the implementation of multiconfigurational Dyson orbitals for accurate simu-

lations of molecular ionization processes. Another example is magnetic circular dichroism

(MCD) as one of the prime tools to study the electronic states of complicated metal

complexes and metalloproteins. Software tools have now been created for the easy gener-

ation of MCD spectral intensities with OpenMolcas, for molecules with degenerate ground

states. We will also discuss the computation of magnetic properties for transition metal

and lanthanide compounds. Moreover, an example in which the OpenMolcas platform

has been used as an alternative to experiments, to generate micro-hartree accuracy of
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ionization potentials, is given.

Any quantum chemical simulation needs the support of post-calculation analysis tools

to render the simulations to be more than just the matter of computing a numerical value

of the energy or some other molecular property. Such tools enable the scientist to make

qualitative conclusions from the simulations and to obtain insight in addition to quantita-

tive predictions. They typically involve the generation of orbitals, which could be natural,

canonical, or localized, and the graphical representation of these. In that respect, Open-

Molcas has recently been enhanced with the following new utilities. The Graphical User

Interface LUSCUS is a next generation of GV (Graphical Viewer) code; it is a lightweight

viewer of input and output data produced by various quantum chemical codes, in partic-

ular the OpenMolcas program suite. One of the bottlenecks in the graphical visualization

procedure is the size of the intermediate data. The ability to on-demand compute the

data for visualization is now implemented in a stand-alone code, SAGIT. Furthermore,

Pegamoid is a new orbital viewer that can read and write the native OpenMolcas orbital

formats, simplifying the process of selecting and analyzing the active space for MCSCF

calculations. Moreover, binatural orbitals, also called natural transition orbitals, are now

available in order to characterize the nature of an electronic excitation. This can be com-

puted by singular value decomposition of a transition density matrix using RASSCF wave

functions in the RASSI module. Finally, the WFA (wave function analysis) module not

only provides visualization tools but also computes quantitative descriptors, which allow

for a rigorous and completely automatized analysis of excited-state computations.

In addition, as listed below, miscellaneous utilities and functionalities have been added

to the program suite. The relativistic ANO-RCC basis set has been the spearhead of the

MOLCAS/OpenMolcas program since its introduction a decade ago. It is now accompa-

nied by an extremely small relativistic alternative, the ANO-XS basis set. The small size

of ANO-XS greatly reduces integral computation times, yet still predicts, e.g., geometries

or excitation energies with only small differences as compared to the larger ANO-RCC

basis sets. Moreover, OpenMolcas is adapted to use point groups beyond D2h. Thus, for

highly symmetrical molecules OpenMolcas can occasionally generate wave functions with
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broken symmetry. It is a problematic programming task to adapt a computational code

to use higher point groups. However, a code for a posteriori symmetrization of the wave

function, msym, has been developed and implemented in OpenMolcas. As a further de-

velopment we report on the ability to simulate muonic atoms and molecules, i.e. systems

containing one muon – a fermion with a mass about 207 times heavier than an electron.

This includes developments of muonic basis sets, book keeping of two types of fermionic

particles and basis sets in integral and wave function code, diagonal finite mass correction

and analysis of parameters associated with the finite-nucleus approximation. Finally, a

new method for multiscale electronic structure calculations has been implemented which

is based on frozen-density embedding theory (FDET).

Thus, below we will in some details describe and discuss these new tools in the Open-

Molcas program suite. The structure of the article will in all respects follow the order as

presented above. This will be followed with a brief summary.

2 Code development and tools

The tools and culture in software development have changed dramatically in the last

three decades since the initial versions of MOLCAS. The original code “would only run

on the IBM 3090 computers under the JCL operating system”,6 and although later ver-

sions made it more versatile and user-friendly, it remained for a long time a project

developed mainly in Lund (Sweden), using a set of custom-written tools for debugging,

configuring, updating and documenting the code.5 In the last few years, particularly

since the establishment of annual MOLCAS developers workshops in 2013, the MOLCAS

project has become a much more international and collaborative project, and has tried

to keep up with times and embrace the new tools and technologies that are available for

code management. Perhaps the most significant of the changes, and the one that triggers

the need for this publication, is the choice of an open-source model, as discussed in the

introduction.

The main codebase of OpenMolcas is written in Fortran language, something that
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reflects its history and background, and the popularity of Fortran in scientific program-

ming. Newer code is increasingly written in other languages: a number of libraries and

interfaces recently added to OpenMolcas are written in C or C++, and the main input

parser and driver has been rewritten in Python. The most significant changes introduced

in OpenMolcas with respect to the development environment are the use of third-party

open-source tools for code management, compilation and testing. Already in 2013 it was

decided to use git36 as a version control system for MOLCAS, in connection with the

release of OpenMolcas, it was considered important to have a source code repository that

is publicly accessible, and not only for developers. As a build and configuration system,

OpenMolcas now uses CMake,37 a system that also simplifies the combination of different

packages such as some of the interfaces reported in this paper. For testing, OpenMolcas

uses the verification tools (test suite and scripts) that were already available in MOLCAS,

but it additionally benefits from the continuous integration facilities in GitLab,38 the cho-

sen hosting platform, to ensure a fast and reliable test runs with minimal maintenance

from OpenMolcas developers.

Historically, communication between the different programs in MOLCAS has been

mostly done through files, in text or binary format. MOLCAS users will be familiar with

names like “RunFile”, “InpOrb” or “JobIph”. These files have the inconvenience that they

are specific to MOLCAS and in some cases incompatible between different versions and/or

platforms. With the release of OpenMolcas there is also an increased effort to make use of

more portable and standardized file formats for transferring data between programs and

for storing the results of calculations – orbital and CI coefficients, geometries, energies. In

particular, the most important results can now be stored in the HDF5 (hierarchical data

format) format,39 which allows efficient storage and access of structured data, including

its description. HDF5 files can then be accessed in any platform without knowledge of

the program that generated them, since the size and structure of the data are also part

of the format. We consider this an important step forward towards interoperability with

other scientific codes.

12



3 Multiconfigurational wave function methods

Important conceptual bases for understanding the motivations for some of the most im-

portant features of OpenMolcas are provided by the definition of configuration and the

distinction between static correlation and dynamic correlation. A configuration is a par-

ticular way to assign electrons to orbitals, which may be double occupied, singly occupied,

or unoccupied, and a configuration state function (CSF) is an approximate wave function

with appropriate spin symmetry (singlet, doublet, etc.) and a definite set of orbital occu-

pancies. Static correlation is also called near-degeneracy correlation, left-right correlation,

and strong correlation, and it is due to the interaction of nearly degenerate configura-

tions. A good zeroth-order wave function for a system with significant static correlation

will have appreciable coefficients for two or more CSFs. Dynamic correlation is the rest of

the correlation energy; it includes a variety of correlation effects ranging from very short

range (due to the cusp in the correct many-electron wave function when two electrons

approach one another) to very long range (as in dispersion interactions). The slow con-

vergence of dynamic correlation with respect to adding more CSFs is often the bottleneck

in making accurate calculations, and the most common way to calculate dynamic correla-

tion is usually to optimize the orbitals with a self-consistent-field (SCF) calculation, and

then include dynamic correlation by adding CSFs that are excited from a reference SCF

wave function (single excitations, double excitations, triple excitations, etc.); the addi-

tion of excited CSFs may be done by perturbation theory, configuration interaction, or

coupled cluster40–42 theory. When static correlation is negligible, good results can often

be obtained with a single-CSF reference wave function (typically a Hartree–Fock,43–46

HF, wave function); methods employing this scheme are called single-reference methods.

For strongly correlated systems, this method might be inaccurate unless one uses very

high excitation levels (quadruple excitations or higher), which are often unaffordable. A

more efficient way to treat strongly correlated systems is to use a multi-configuration

reference wave function; such methods are called multi-reference methods. Systems well

treated by single-reference methods with low levels of excitation are sometimes called

single-reference systems, and systems that are much more efficiently treated with multi-
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configuration reference wave functions are sometimes called multi-reference systems or

strongly correlated systems. Because many chemical systems of practical interest feature

electronic structures dominated by more than one electronic configuration in their ground

or excited states, as well as along reaction pathways in which they are involved, the de-

velopment of efficient methods for multi-configuration wave functions and multi-reference

correlation methods is a key challenge for quantum chemistry; it was one of the primary

motivations for the original development of MOLCAS, and it remains a key strength

of OpenMolcas. Multiconfigurational self-consistent field (MCSCF) methods, capable of

dealing with these cases, have been known since the early days of quantum chemistry, but

they gained popularity only when the complete active space self-consistent field method

(CASSCF) was developed.47–50

Density functional theory presents a similar but conceptually distinct scenario. Kohn–

Sham density functional theory (KS-DFT)51 does not involve a wave function for the

system under study, but it does involve a Slater determinant that has the same electron

density as the system under study. This Slater determinant may be considered to be a

reference wave function, and in that sense KS-DFT is a single-reference theory. Unlike

Hartree–Fock theory, though, KS-DFT is in principle exact, in that there is an existence

theorem for an exact density functional that would yield the correct electron density

and energy. However, this density functional is unknown and probably unknowable. We

must rely on approximate density functionals (ADFs), and currently available ADFs are

less accurate for strongly correlated systems than for single-reference systems.52,53 One

way overcome this is to develop density functional theories that use a multiconfigurational

reference wave functions, and OpenMolcas includes multi-configuration pair-density func-

tional theory (MC-PDFT)54 as an example of this kind of theory.

MOLCAS8 (and now OpenMolcas) has always had a strong focus in multiconfigura-

tional wave function methods and has pioneered the development of cutting-edge methods

aiming at circumventing the exponential scaling limitation in CASSCF. The restricted ac-

tive space (RAS) SCF,55,56 the generalized active space (GAS)57 SCF and the SplitGAS58

methods are examples.
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Multiconfigurational SCF methods such as the above, explicitly recover electron cor-

relation within the active space and, via the self-consistent orbital relaxation procedure,

part of the electron correlation outside the active space. In this respect it is to be no-

ticed that the orbital relaxation in MCSCF procedures is not to be compared to the

self-consistent orbital optimization in the single-reference HF procedure, as the MCSCF

orbital gradient directly depends on the multiconfigurational wave function via the gen-

eralized Fock operator. Correlation effects not included at the MCSCF level are usually

recovered by a posteriori treatments that use the preceding MCSCF wave function as

reference. Examples of these methods within the OpenMolcas package are the multicon-

figuration pair-density functional theory, MC-PDFT,54,59–61 and second-order perturba-

tion theory methods, such as CASPT2, RASPT262–64 and NEVPT2.65–71 Despite their

broad applicability, these methods rely on the qualitative correctness of the reference

wave function, or, in the case of MC-PDFT, its electron density, on-top pair-density, and

the ratio of these two.72

The rest of this section describes with more detail some of the newest approaches

implemented in OpenMolcas to work around the exponential scaling of CASSCF, while

keeping its conceptual simplicity. In particular, the Stochastic-CASSCF method (sec-

tion 3.1) uses a Monte-Carlo algorithm to solve the CI problem in the active space;

the density matrix renormalization group (DMRG) – for which two different interfaces

are presented (section 3.2) – expresses the wave function as a product of matrices, with

a reduced number of free parameters with respect to a linear combination of configu-

ration state functions (CSFs). In addition, the MC-PDFT capabilities in OpenMolcas

(section 3.3) are enhanced with analytic gradients and state-interaction functionalities.

3.1 The Stochastic-CASSCF approach

The Stochastic-CASSCF73–76 has been developed since 2015, initially for MOLCAS,8 and

is now available in OpenMolcas. The method retains the simplicity of CASSCF, while

circumventing the exponential scaling of the latter. This is obtained by replacing the

Davidson diagonalization technique,77 in its direct-CI implementation,55,78 with the full-
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CI quantum Monte-Carlo (FCIQMC) algorithm,79–87 whilst the Super-CI method47–50 is

used for the orbital optimization. Starting from the decoupled two-step Newton–Raphson

method88 for the optimization of the orbitals and CI coefficients, the Stochastic-CASSCF

procedure can be summarized in two conceptually simple steps – (i) the FCIQMC ap-

proach to optimize the CI-coefficients and obtain the one- and two-body density matrices

and, (ii) the Super-CI algorithm for the orbital coefficients optimization. The Super-CI

step is done according to standard procedures47,48,50 and will not be described here. The

FCIQMC approach for the optimization of the CI coefficients, instead, will be described

below in more detail.

The FCIQMC algorithm is a projector technique based on the imaginary-time

Schrödinger equation
∂Ψ

∂τ
= −

(
Ĥ − ES

)
Ψ. (1)

In this equation the term ES is an energy offset, referred to as the shift, that is updated

iteratively, converging to the ground-state correlation energy. In the context of FCIQMC,

ES plays the role of population control. Expanding the wave function, Ψ(τ), into a linear

combination of Slater determinants and, integrating eq. (1), with a short time-step, ∆τ ,

such that the full propagator e−τ(Ĥ−ES) can be approximated to first-order, an iterable

working equation is obtained

Ci(τ + ∆τ) = Ci(τ)−∆τ (Hii − ES)Ci(τ)−∆τ
∑
j 6=i

HijCj(τ) . (2)

A deterministic update of the CI vector from the time τ to (τ + ∆τ) would require the

storage of several arrays of the size of the CI vector and would face the same exponential

scaling limitation of the standard direct-CI approach. Instead, in FCIQMC the concept

of walkers is introduced. Walkers are signed Kronecker delta functions that reside on

a specific determinant. We define δi,iα the α-th walker residing on determinant |i〉. A

sign is assigned to each walker, sα = ±1, associated with it. Thus the signed number of

walkers, Ni, which reside on |i〉 is given by Ni =
∑

α sαδi,iα . The total number of walkers

residing in all relevant determinants is kept to a fixed value, Nw =
∑

i |Ni|. This value
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is to be considered an optimization parameter in addition to the basis set and the active

space. The larger the total number of walkers, the smaller the error due to the initiator

approximation.80 In practice, this parameter is gradually increased until convergence over

the energy estimate is reached.

The key point of FCIQMC is to allocate memory only for the populated determi-

nants, instead of allocating memory for the entire CI vector. The purpose of FCIQMC

is to generate distributions of walkers such that for a large number of total walkers and

long imaginary time limit the expectation value of the number of walkers on each deter-

minant becomes proportional to the CI coefficient of that determinant, Ci ∝ 〈Ni〉τ . In

FCIQMC, walker population dynamics simulates the imaginary-time evolution as given

in eq. (2). The dynamics consists of three steps. In the spawning step child particles are

generated from their parents into various locations of the Hilbert space. In the death step

parents walkers are stochastically removed from the simulation. In the annihilation step

parents and newly created walkers residing on the same determinant with opposite sign

are eliminated.

The expectation value of the number of walkers on each determinant in practical

calculations are never explicitly calculated. Instead derived properties are accumulated

once the walker population has reached a dynamical equilibrium. One of these properties

is the projected energy

EP =

〈∑
iNi 〈D0|Ĥ|Di〉

〉
τ

〈N0〉τ
, (3)

where the numerator and denominator are accumulated and averaged separately, D0 is

the reference determinant, and 〈N0〉τ is the time-averaged number of walkers on D0. One-

and two-body reduced density matrices (RDMs) are similarly accumulated82 to evaluate

the CASSCF energy as the expectation value of the Hamiltonian operator and to compute

the matrices required for the orbital optimization step.

Electron correlation outside the active space, also known as dynamic correlation,

can be recovered via MC-PDFT,54,59–61 using the Stochastic-CASSCF wave function as

reference.
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3.1.1 Technical details

The Stochastic-CASSCF method in OpenMolcas relies on the interface of the NECI

program, responsible for the FCIQMC CI algorithm, and the RASSCF program of Open-

Molcas, responsible for the Super-CI method as an orbital optimizer. In principle, two in-

stallation protocols can be adopted that are referred to as embedded and uncoupled forms.

In the embedded form, the NECI program is treated as a subroutine of the RASSCF pro-

gram. This form effectively leads to an automatized version of the Stochastic-CASSCF

within the OpenMolcas software. In the uncoupled form of Stochastic-CASSCF, NECI

is installed as a stand-alone program and the OpenMolcas–NECI interface is controlled

manually by the user. Dedicated keywords are required in the OpenMolcas input file

to let OpenMolcas produce the relevant files, namely the file containing one- and two-

electron integrals in the MO basis (FCIDUMP), and an input file for the NECI program

(see section S1). FCIQMC is then started externally, and the population is grown and

stabilized before one- and two-body density matrices are accumulated. Walker popula-

tion and other parameters can be tuned at this stage within the FCIQMC calculation if

necessary. Density matrices are then transferred back to OpenMolcas and used to evalu-

ate the Fock matrices necessary for the Super-CI step. After orbitals have been rotated,

the integral file is updated and a new FCIQMC dynamics in the active space can be

performed. The embedded OpenMolcas-NECI form is the recommended form for simple

cases (small active spaces, small number of walkers, loose convergence). The uncoupled

OpenMolcas-NECI form is the recommended form for difficult applications (large active

spaces, large number of walkers, tight convergence).

Geometry, spatial symmetry, AO integral evaluation, scalar relativistic effects and

additional external potentials are evaluated at the OpenMolcas level, and corrections are

made to the FCIDUMP provided to the NECI program.

With the choice of the FCIQMC algorithm as CI eigensolver, the Stochastic-CASSCF

method can be applied to larger active spaces, when compared to the deterministic analog.

Active spaces containing up to 40 electrons and 38 orbitals have been reported.75 Integral

evaluations and AO–MO transformations can be carried via resolution-of-identity (RI)
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Cholesky decomposition (CD) techniques,89–93 available within the OpenMolcas package.

The choice of the Super-CI method for the orbital relaxation together with the density

fitting techniques enable Stochastic-CASSCF calculations easily with up to 5000 basis

functions.

3.1.2 Applications of the Stochastic-CASSCF method

The Stochastic-CASSCF method has been applied to a number of chemical problems. Two

very recent cases will be summarized in this section, namely the correlation mechanism

leading to the large effective anti-ferromagnetic spin coupling, J , in corner-sharing cuprate

solids and, the enhanced σ-donation/π-back-donation mechanism that explains the sta-

bilization of the intermediate spin-states over the high spin-states in Fe (II)-porphyrin

model systems. For a more detailed description of these systems and the strategy used

within the Stochastic-CASSCF framework we refer to the literature.74–76

Corner-sharing cuprates are of great interest, as they host high-temperature supercon-

ductivity upon doping.94 Magnetic properties of undoped cuprates have been rationalized

on the basis of the Heisenberg–Dirac–Van Vleck Hamiltonian with anti-ferromagnetic

nearest-neighbor magnetic coupling constant J . The values of J in these systems are

among the largest known, with some variations upon rather small geometrical differ-

ences.95 From a quantum-chemical standpoint understanding how J directly depends on

electron correlation is a challenging problem that has been investigated by several re-

search groups.96–100 Conventional wave function theory treatment greatly underestimates

the J value. The Stochastic-CASSCF method has been used to investigate this aspect. A

cluster containing two CuO4 (or CuO6) units and all adjacent Cu2+ and Sr2+ (or La2+)

ions has been employed in these calculations. The rest of the solid has been modeled by

an array of point charges fitted to reproduce the Madelung potential due to infinite crys-

tal in the cluster region. It has been demonstrated that to capture the essential elements

of the super-exchange mechanism it is necessary to explicitly correlate the 20 valence 3d

and double-shell d′ orbitals on the Cu sites together with the six 2p and p′ orbitals on the

bridging O ion, with a total of 24 electrons, resulting in a CAS(24,26). Calculations with
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this size of active space would be impossible with standard CASSCF technology, the cor-

responding CI wave function containing ∼9× 1013 Slater determinants. The calculation

is carried out with ease using the Stochastic-CASSCF method.76

Metal-porphyrins are crucial active sites in many enzymes responsible for electron

transfer, oxygen transport and oxygen reduction. For example, the Fe (II)-porphyrin is

the active species in cytochrome P450, that binds molecular oxygen and reduces it, lead-

ing to P450 Compound 1, responsible for the hydroxylation reaction (insertion of an

oxygen atom in a C H bond) in alkyl chains. In spite of the numerous experimental

and theoretical data, a definitive understanding of the ground-state electronic structure

and its changes along the reaction pathway remain ambiguous, and an electronic expla-

nation for the relative ordering of the low-lying spin-states remains unknown. Via large

Stochastic-CASSCF(32,34) calculations,74 a complex mechanism has been proposed that

demonstrates the differential stability of the intermediate triplet spin-state over the quin-

tet spin-state in a model system of the Fe (II)-porphyrin. This mechanism involves ring

correlation at the level of the π-system, a correlated breathing process at the metal

center and charge-density redistribution. The large (32,34) active space includes the en-

tire π-system and nitrogen lone pairs, the 3d and d′ orbitals at the metal center, and

the (4s4p) shell. It has been demonstrated that ring correlation reduces the electron re-

pulsion among the π electrons, making the macrocycle a better electron acceptor. The

correlating d′ orbitals provide the necessary flexibility for the orbital relaxation induced

by charge-transfer processes from the lone-pairs of the ligand to the metal center. They

also account for radial correlation, responsible for a lower on-site electron repulsion at

the level of the metal center, and provide a larger overlap with the π orbitals thus favor-

ing charge-transfer from the metal center to the ligand. This complex mechanism can be

related to a correlation enhanced σ-donation/π-back-donation process and it is stronger

for the triplet spin-state. It was suggested in ref. 74 that smaller active spaces, even upon

second-order perturbative correction, such as in the conventional CASPT2(8,11) are not

capable to fully capture this mechanism (see section 3.2.5 for further discussion). The

Stochastic-CASSCF technique has been also used to understand the role of semi-core
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electrons. This analysis has been performed via a large CAS(40,38) active space.75

3.2 Density matrix renormalization group interfaces

After White proposed the DMRG101,102 in 1992, subsequent work103–109 established that

DMRG optimizes a matrix product state (MPS). The flexible nature of MPSs allows one

to calculate excited states in an efficient manner110 and provides easy access to higher-

order reduced density matrices and the evaluation of arbitrary correlation functions. The

standard definition of an MPS describing a state over L orbitals or sites is given by

|ψ〉 =
∑
σ

∑
a1,...,aL−1

Mσ1
1a1
Mσ2

a1a2
· · ·MσL

aL−11
|σ〉 , (4)

with basis states |σ〉 = |σ1, . . . , σL〉 and σl = |↑↓〉 , |↑〉 , |↓〉 , |0〉 for spatial orbitals. In

systems with symmetries, the matrix indices al are complemented with a quantum num-

ber label al → qlαl,111 leading to a block-sparse structure. Matrix product states will

encode a full CI wave function exactly if the matrix dimension m (the maximum size

of the indices al, called “number of renormalized block states” or “bond dimension”) is

allowed to grow unrestrictedly. In practice, a finite m is chosen which limits the amount

of entanglement that the resulting MPS is able to describe between any bipartition of an

L-orbital active space. For one-dimensional systems, so-called area laws112,113 prove that

the amount of entanglement is constant irrespective of L and that limiting m is therefore

a good approximation. For the general case in quantum chemistry, the convergence rate

in m depends on molecular topology and the choice of the orbital basis, influencing the

sparsity of the one- and two-electron integrals.114

Analogously to MPS, matrix product operators (MPOs)110,115,116 are defined as

Ŵ =
∑
σσ′

∑
b1,...,bL−1

W
σ1σ′1
1b1
· · ·W σlσ

′
l

bl−1bl
· · ·W σLσ

′
L

bL−11
|σ〉 〈σ′| . (5)

The efficient determination of the W matrices for Hamiltonian operators with long-range

interactions such as Coulomb interactions is a nontrivial task.117–119 The DMRG algo-
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rithm formulated explicitly in terms of MPS and MPO is sometimes referred to as second-

generation DMRG. Compared to the original formulation, a pure MPS/MPO implemen-

tation provides additional flexibility by allowing arithmetic operations to be performed

on wave functions and operators independently. These properties are exploited, for in-

stance, to implement a fully relativistic DMRG variant120 in QCMaquis (the first such

implementation was presented earlier121), for interfacing with multireference perturbation

theory122,123 (see section 3.2.3) and for MPS state-interaction124 (see section 3.2.4).

This section presents the interface of OpenMolcas with two established DMRG codes:

the CheMPS2 library,125 a first-generation DMRG implementation, based on a MPS rep-

resentation of wave functions (eq. (4)), and QCMaquis,111,117,126 a second-generation

program that additionally makes use of a MPO representation of operators (eq. (5)). In a

nutshell, both interfaces can replace the FCI solver from CASSCF with a DMRG imple-

mentation and be used to obtain state-specific or state-averaged DMRG-SCF wave func-

tions, and perform single-state DMRG-CASPT2 calculations,127 while QCMaquis also

supports DMRG-NEVPT2, MPSSI, and analytical state-specific gradients for DMRG-

SCF, support for the recently published analytical state-averaged DMRG-SCF gradi-

ents128 will be added in the near future.

The CheMPS2 library is a free open-source spin-adapted implementation of DMRG

for ab initio quantum chemistry. It is designed for high-performance computing, allowing

for hybrid MPI and OpenMP parallellization, and can handle a general active space up

to 40 electrons in 40 orbitals in a DMRG-SCF calculation. In a DMRG-CASPT2 calcula-

tion122,127,129,130 requiring the 2- and 3-particle reduced density matrices (2- and 3-RDM)

as well as the generalized Fock matrix contracted with the 4-RDM (F .4-RDM), an active

space of ∼30 active orbitals can be treated. Figure 1 illustrates a schematic represen-

tation of a DMRG-SCF/DMRG-CASPT2 calculation performed by the OpenMolcas–

CheMPS2 interface. DMRG-SCF calculations are performed in a manner similar to stan-

dard CASSCF calculations except that the number of renormalized state m must be pro-

vided by the user. Additionally, other parameters controlling the cost and accuracy of the

calculations, e.g. the initial guess of the matrix product state (MPS), the orbital ordering,
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the MPS checkpoint files, etc. can be optionally specified. The shared-memory (OMP)

CheMPS2 binary is then called and executed. CheMPS2 outputs, such as the 2-RDM,

are then fed to the RASSCF module, allowing the active orbitals to be optimized with

the super-CI method. If a subsequent DMRG-CASPT2 calculation is required, the active

orbitals are transformed into pseudocanonical orbitals in the last DMRG-SCF iteration,

and the 3-RDM and F .4-RDM are calculated by CheMPS2 based on this pseudocanoni-

cal orbital basis. Because the generalized Fock matrix is diagonal in the pseudocanonical

orbital basis, the calculation of the full 4-RDM is avoided, which drastically reduces the

computational cost.122

3d

4d

Pπ

σ(Fe-N)

m=?

Active space INPORB

two-electron integrals
FCIDUMP

chemps2.input

orbital ordering 
(Fiedler)

occupation guess

FOCK

chemps2 binary

OpenMP 
multithreading

chemps2.log

MPS checkpoint files

2-RDM                 3-RDM 
                         F.4-RDM

E(DMRG-CASPT2)

Figure 1: Schematic representation of a DMRG-SCF/DMRG-CASPT2 calculation per-
formed by the OpenMolcas–CheMPS2 interface. Only the number of renormalized states
m must be specified. The user can define optional parameters to speed up the calculation,
e.g. orbital ordering, occupation guess, the matrix product state (MPS) checkpoint files
from a previous calculation, etc.

Regarding the other DMRG interface described in this paper, the OpenMolcas–

QCMaquis interface, it has been designed to (i) steer a DMRG calculation with the

MPS/MPO program QCMaquis111,117,126 and (ii) exchange data such as N -particle re-

duced density matrices (N -RDMs), from QCMaquis to OpenMolcas. Figure 2 illustrates

the capabilities of the OpenMolcas–QCMaquis interface. DMRG-SCF calculations with

QCMaquis are enabled in OpenMolcas within the DMRGSCF module by specifying
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the ActiveSpaceOptimizer=QCMaquis keyword which sets QCMaquis as default active

space solver. Note that the DMRGSCF module shares the same subset of keywords, e.g.,

for the wave function model specification, orbital-optimizer convergence acceleration, and

MO analysis, that are available in OpenMolcas within the complete active space SCF op-

timizer module RASSCF. The core of the OpenMolcas–QCMaquis interface comprises

a subset of Fortran90 modules which (i) “translate” in an automated fashion the user-

provided wave function input data of OpenMolcas into the corresponding DMRG input

for QCMaquis, (ii) generate on the fly the one- and two-electron integrals in the MO

basis in the commonly used format defined by Knowles and Handy,131 (iii) invoke the

actual DMRG wave function optimization with QCMaquis, and (iv) convert any (user-

)requestedN -RDM orN ′-particle reduced transition density matrix (withN = {1, 2, 3, 4}

and N ′ = {1, 2, 3}) from QCMaquis to OpenMolcas format. The complete MPS wave

function, optimization input and output data as well as all molecular properties calculated

by QCMaquis are stored in external files in HDF5 format and are therefore available in

OpenMolcas for further external processing.

QCMaquis-
OpenMOLCAS

interface
MPSSI

ALASKA/MCLR

DMRGSCF

NEVPT2

CASPT2

Spin-orbit coupling
Magnetic properties
Diabatization

State specific (SS) and state-
average DMRG-SCF gradients

DMRG-CI, DMRG-SCF

SS- and quasi-degenerate
DMRG-NEVPT2 energy

SS-DMRG-CASPT2 energy

Automated active
space selection

Figure 2: Schematic representation of the capabilities of the OpenMolcas–QCMaquis
interface. OpenMolcas modules that are interfaced with QCMaquis are listed on the
left, and the properties that can be obtained are listed on the right.
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3.2.1 Active space selection based on entanglement measures

The selection of an appropriate active space for multiconfigurational calculations is a task

as important as it is difficult. While several guidelines exist for this selection,132–136 it still

requires expertise with trial and error and, hence, constitutes a considerable entry barrier

to such calculations.137 An automated protocol has been proposed138 and implemented

in combination with the OpenMolcas–QCMaquis interface, which selects orbitals for

the active space based on orbital entanglement entropies139,140 from a partially converged

DMRG calculation. This protocol has become possible owing to (i) the feature of DMRG

that allows one to consider large active spaces in an exploratory fashion through limiting

the number of sweeps and the block dimension and owing to (ii) the spread of entan-

glement measures defined for one or a pair of orbitals so that rather robust thresholds

can be defined that separate strongly from weakly correlated orbitals; the former to be

chosen for an active space in a final well-converged DMRG or CASSCF calculation.

The orbital entanglement entropies are calculated from the one- and two-orbital re-

duced density matrices. The elements of these matrices can be expressed as expectation

values of strings of creation and annihilation operators and are efficiently calculated within

a DMRG algorithm. The explicit equation for the single-orbital entropy, on which the

selection protocol is based, reads

si(1) = −
4∑

α=1

wα,i lnwα,i , (6)

whereas the two-orbital entropy follows in close analogy as

sij(2) = −
16∑
α=1

wα,ij lnwα,ij . (7)

In these equations, wα,i and wα,ij are the eigenvalues of the one- and two-orbital reduced

density matrices, respectively, i, j are orbital indices, and α is one of the four (or 16)

possible occupations of a spatial orbital (or a pair of spatial orbitals). Both quantities

can be combined to give the mutual information which quantifies the entanglement of an
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orbital pair

Iij =
1

2
[si(1) + sj(1)− sij(2)](1− δij) . (8)

Both the mutual information and the single-orbital entropies are collected in entanglement

diagrams such as the one in fig. 3 that provide an intuitive interpretation of the orbital

entanglement.

It was demonstrated that CAS wave functions calculated from these automatically

selected active spaces are suitable first-order wave functions for subsequent CASPT2 cal-

culations.141 Furthermore, consistent active spaces for several electronic states and along

reaction coordinates can be identified.142 The automated active orbital space selection

has been implemented as a graphical user interface (GUI) called autoCAS143,144 that

drives OpenMolcas and QCMaquis. autoCAS is the first computer program that allows

one to run multiconfigurational calculations, for which an active space must be selected,

in a fully automated way. It can be downloaded separately free of charge from the Scine

webpage.145
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Figure 3: Entanglement diagram obtained from a DMRG wave function optimized with
the QCMaquis program with m = 250 and 10 sweeps including all valence orbitals of
butadiene that were obtained from a minimal basis Hartree–Fock calculation. A circle
with an area proportional to the single-orbital entropy is associated with each orbital.
The thickness of the connecting lines is proportional to the mutual information of an
orbital pair. The π-orbitals are those with numbers 10–13 and would be selected by the
automated protocol as implemented in autoCAS.
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3.2.2 Analytic ground- and excited-state DMRG-SCF gradients

A central feature of the traditional multiconfigurational wave function toolbox of Open-

Molcas is the availability of analytic energy gradients (with respect to the nuclear co-

ordinates) for a single (“state-specific”) or an ensemble (“state-averaged”) of electronic

states.146–148 State-specific and state-averaged gradients are, for instance, key for the

calculation of ground- and excited-state equilibrium structures, reaction paths, and for

molecular dynamics simulations. Likewise, excited-state gradients are vital for modeling

a wide range of photochemical phenomena, such as photochemical and photophysical

pathways or resonance Raman spectra. Whereas a state-specific DMRG-SCF gradient is

rather straightforward to implement,149 a formalism for state-averaged DMRG-SCF gra-

dient theory has only been recently presented and applied to an optimization of a conical

intersection in the study of the photochemistry of 1,2-dioxetanone.128 The applicability of

state-specific DMRG-SCF gradients has been demonstrated for optical spectroscopy, in

particular, for resonance Raman spectroscopy,150 and that of the state-averaged DMRG-

SCF gradients in a conical intersection optimization.128

In analogy to CASSCF, the calculation of a state-specific DMRG-SCF analytic gra-

dient, available with the OpenMolcas–QCMaquis interface, requires the one- and two-

particle reduced density matrices for a given target state in addition to the derivatives

of the Hamiltonian, i.e., the derivatives of one- and two-electron integrals, with respect

to the nuclear coordinates.149,150 The latter quantities can be calculated independently

of the parent multiconfigurational wave function. Their calculation is carried out most

efficiently in the AO-basis (to which the reduced density matrices are backtransformed

from the MO basis) which is implemented in the ALASKA module of the OpenMolcas

framework.

3.2.3 Perturbation theory with DMRG reference

While DMRG-SCF is capable of describing static correlation for large active spaces, a sig-

nificant contribution to electron correlation required for quantitative results, namely the

dynamic correlation, must be accounted for separately. Traditionally, second-order pertur-
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bation theory with a zeroth-order Hamiltonian that describes the static correlation effects

has been most popular (but coupled-cluster models combined with a DMRG reference

have also been considered151–153). Multiconfigurational second-order perturbation the-

ory in the form of CASSCF/CASPT2 became the flagship method of the (Open)Molcas

quantum chemistry package.154 In the early 2000s, Angeli, Cimiraglia, Malrieu et al.65–68

introduced another formulation of a CAS-based multireference perturbation theory, the

(second-order) n-electron valence state perturbation theory (NEVPT2). The main differ-

ence of NEVPT2 with respect to CASPT2 is the definition of the zeroth-order Hamil-

tonian: NEVPT2 uses the Dyall Hamiltonian,155 which explicitly considers two-electron

interactions among the electrons in the active space, as a model Hamiltonian to define

the zeroth-order Hamiltonian. The two-electron interactions in the reference ensure that

NEVPT2 is intruder-state free and size consistent.71 NEVPT2 allows for two different

contraction schemes to construct the first-order wave function: the partially contracted

(PC) scheme is identical to the one in CASPT2, while the strongly contracted (SC) scheme

introduces additional contractions, further simplifying the formalism.

The majority of the DMRG-based perturbation-theory methods encompass DMRG-

CASPT2122,130 (available with both the OpenMolcas–CheMPS2 and OpenMolcas–

QCMaquis interfaces) and DMRG-NEVPT2123,156 (available with the OpenMolcas–

QCMaquis interface). One of the major drawbacks of these approaches (or rather of

the internal contraction formalism157–159 on which these theories are based) is their de-

pendence on higher-order N -RDMs (N > 2), whose evaluation scales as O(L2N) with the

number of active orbitals L. For instance, in case of the four-particle RDM, its evaluation

scales formally as O(L8). While for small active spaces (small L) this is not a problem, the

fourth-order RDM evaluation becomes quickly the computational bottleneck for active

spaces of more than 20 to 22 orbitals.

Apart from the RDM scaling problem, the ability to deal with large basis sets is cru-

cial for increasing active space sizes. In particular, the transformation of the two-electron

integrals from the AO to the MO basis becomes a bottleneck. One of the flagship features

of the OpenMolcas program package is the Cholesky decomposition of the two-electron
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integral matrix, initially proposed by Beebe and Linderberg 160 and developed over the

years by Aquilante, Lindh, Pedersen and co-workers for various single- and multirefer-

ence electronic structure methods.90,93,161,162 The DMRG-NEVPT2 implementation in

QCMaquis123 and the DMRG-CASPT2 calculations with the OpenMolcas–CheMPS2

and OpenMolcas–QCMaquis interfaces take full advantage of the Cholesky decompo-

sition to handle the two-electron integrals162 and the DMRG reference wave function

(CD-DMRG-NEVPT2, CD-DMRG-CASPT2).

3.2.4 State interaction for matrix product states

In the restricted active space state-interaction (RASSI) approach of Malmqvist,163 sets

of spin-free (SF) eigenstates can be coupled under the influence of the spin–orbit (SO)

coupling and a variety of highly important molecular properties can be evaluated. A

critically important feature of the RASSI program is that the state interaction can be

performed among different sets of SF states with different spin or spatial symmetry, with

the molecular orbitals (MOs) optimized for each set of states individually. This implies

mutual nonorthogonality of the respective MO bases and requires the transformation of

pairs of MO sets to a bi-orthonormal basis.163 These nonunitary transformations require a

counter-transformation of the representations of the wave functions such that the physical

content of the latter remains intact. This feature was, until recently, only available for

CI-type wave functions but not for MPSs.

The formalism and implementation for MPS-based state interaction (MPSSI) within

QCMaquis124 includes the critical capability to work with nonorthogonal MO sets. The

approach differs considerably from Malmqvist’s but is likewise based on constructing bi-

orthogonal MO bases and concomitant counter-transformations of the MPSs. An MPSSI

flowchart for generating SO-coupled wave functions and matrix elements of operators for

molecular properties is shown in fig. 4. Very importantly, the MPSs serve as a complete

substitute for the CI-type states in calculations of SO-coupled wave functions as well

as SF and SO molecular properties with the RASSI program. For instance, ref. 124

reported relative SF and SO valence state energies and state compositions for Te2, NpO
2+
2 ,
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Figure 4: Flowchart illustrating the MPS state-interaction (MPSSI) approach to calcu-
late property matrix elements of spin-free and spin–orbit coupled MPS wave functions
according to ref. 124.

and PuO 2+
2 , as well as EPR g-factors for the actinyl species, from MPS-SO calculations

with QCMaquis and the RASSI program. The MPSSI results were in full agreement

with CASSCF and CASPT2.164 Therefore, the full suite of SO-level molecular properties

and spectra previously available in the RASSI program can now be calculated with the

potentially very large active spaces that are accessible with MPS wave functions.

3.2.5 Applications of DMRG-MRPT2

The case of the spin states of Fe (II)-porphyrin (FeP) has already been mentioned in the

context of Stochastic-CASSCF (section 3.1.2), where it was proposed (for a smaller model

system) that a small CAS(8,11) active space might be insufficient and a much larger active

space, including all ligand π as well as extra nitrogen orbitals and the 4s4p shell on the

metal center, is needed.74 Here we discuss a series of DMRG-SCF and DMRG-CASPT2

calculations performed on the lowest triplet (3A2g) and quintet (5A1g) states of FeP with

the OpenMolcas–CheMPS2 interface. The active space used is CAS(26,27), containing,

next to the CAS(8,11) space, 16 P (π, π∗) orbitals (all but the 2pz of the β carbons of the

pyrrole rings). The best DMRG calculations, using m = 10000 for the CAS(26,27) active
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space differ by less than 0.4 kJ/mol from the CAS(8,11) results, giving a quintet–triplet

gap of −68.53 kJ/mol with DMRG-SCF and −19.46 kJ/mol with DMRG-CASPT2. The

conclusion is that including the P (π, π∗) orbitals on top of the CAS(8,11) space has

a minor impact on the CASSCF/CASPT2 description of the spin state energetics in

FeP. In refs. 165,166 it was shown that an improved description should instead come

from more extensive basis sets (extrapolated to the complete basis set limit) as well as

a special (CCSD(T)) treatment of the Fe (3s, 3p) semi-core electrons. All details of the

calculations, a plot of the active natural orbitals and a discussion on the convergence and

performance can be found in the SI.

Another example of the OpenMolcas–CheMPS2 interface shown in the SI is the ge-

ometry optimization of ferrocene (Fe(C5H5)2 or FeCp2) at DMRG-CASPT2 level, this

demonstrates that the interface can easily be coupled with other modules that require

either the 2-RDM or CASPT2 total energy. The equilibrium structure of FeCp2 was opti-

mized (with numerical gradients) employing both standard CASPT2, with a CAS(10,10)

active space, and DMRG-CASPT2, with an extended CAS(14,18) active space. The num-

ber of renormalized states m is 1000, which gives converged DMRG-CASPT2 energies

for medium-sized active spaces.129 Further computational details and active natural or-

bitals can be found in the SI. The key structural parameters of ferrocene, calculated with

CASPT2, DMRG-CASPT2, and CCSD(T)167 are shown in table 1. Interestingly, the re-

sults indicate that CASPT2 and DMRG-CASPT2 give almost the same structure. As

compared to CASPT2, DMRG-CASPT2 predicts slightly longer Fe C and Fe Cp bond

distances by less than 0.005Å. The results imply that in this simple case, the size of the

active space has a minor impact on the optimized geometry. As compared to the CCSD(T)

results,167 both CASPT2 and DMRG-CASPT2 predict the same d(C C) and d(C H),

whereas they underestimate the Fe C and Fe Cp bond distances by ∼0.03Å. All cal-

culations were performed on a single Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz

machine, 256 GB RAM, and 16 MPI processes. A numerical gradient calculation with

the CAS(10,10) active space finishes in around 2 hours, while it takes ∼9 hours for the

DMRG CAS(14,18) active space. For comparison purposes, a standard CASPT2 calcula-
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tion employing the large active space requires a fairly large amount of memory (∼20 GB

per process), consequently, only 12 MPI processes can fit the machine, and a numerical

gradient calculation takes almost 8 days with this setting. It is also worth noting that

a geometry optimization cycle using CCSD(T) analytical gradients can take almost 9

days.167

Table 1: Structural parameters of the eclipsed conformation of ferrocenea

CASPT2b DMRG-CASPT2c CCSD(T)d

d(Fe Cp) (Å) 1.610 1.615 1.648

d(Fe C) (Å) 2.016 2.020 2.047

d(C C) (Å) 1.426 1.426 1.427

d(C H) (Å) 1.077 1.076 1.079

∠(Cp H) (deg.)e 0.89 1.08 0.52

aIn CASPT2, DMRG-CASPT2, and CCSD(T) calculations, cc-pwCVTZ basis set (672 basis func-
tions) was used, all 96 electrons were correlated.

bStandard CASPT2 calculation with CAS(10,10).
cDMRG-CASPT2[m = 1000] calculation with CAS(14,18).
dRef. 167.
eAngle between hydrogens and cyclopentadienyl ring, positive values means hydrogen is bent towards

metal.

As an example of a DMRG-NEVPT2 calculation with the OpenMolcas–QCMaquis

interface, we show here results of CD-DMRG-NEVPT2 for the energy gaps between the

lowest quintet, triplet, and singlet states of a large iron(II) complex, FeN2C72H100, shown

in fig. 5. This complex was chosen by the Neese group in reference calculations168 for

their DLPNO-NEVPT2 approach169 and by Coughtrie et al. in their paper on embedded

multireference coupled cluster theory.170 As the PC-variant of the CD-DMRG-NEVPT2

approach is known to be unreliable for large active spaces and small bond dimensions m

(due to the incomplete convergence of the zeroth-order wave function),123 the CD-DMRG-

SC-NEVPT2 variant was applied, given that it is much less sensitive to the convergence of

the zeroth-order wave function. The active orbitals for the initial DMRG-SCF step were

determined with the automated active space selection protocol138 using the AutoCAS

program (see section 3.2.1). The active spaces for all spin states must be equal and,

according to the selection protocol, comprise the union of the active spaces selected for

the individual spin states. In this way, 17 orbitals were selected by the protocol, resulting
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in an active space of 14 electrons in 17 orbitals. However, upon orbital optimization of

the triplet wave function, one orbital rotated out of the active space, and hence, the

active spaces for different spin states would no longer be consistent, so the orbital was

removed from the active space for all spin states, resulting in an active space of 14

electrons in 16 orbitals. In all calculations, the maximum bond dimension was set to

m = 512. Although this is a rather small value for the bond dimension, it was found

to be a suitable approximation in certain cases,123,156 especially if an accuracy of about

8 kJ/mol is considered to be sufficient. Further computational details are available in the

SI.

FeL2 with L= NH

CHH3)2C(

CHH3)2C(

CH(CH3)2

CH(CH3)2

CHH3)2C(

CHH3)2C(

Figure 5: Lewis and molecular structure of the FeN2C72H100 complex in ref. 169 (Cartesian
coordinates were taken from that reference). Color code: turquoise – carbon, white –
hydrogen.

Table 2: Excitation energy in kJ/mol relative to the quintet (5A) ground state of
FeN2C72H100. Results in refs. 169 and 170 were obtained with a CAS(6,5) (and with
a def2-TZVP basis set), whereas we chose a CAS(14,16) (and an ANO basis set; see text
for further discussion) for the CD-DMRG-SC-NEVPT2 and DMRG-SCF calculations.
“emb.” abbreviates “embedded in”.

DMRG-SC-
NEVPT2

SC-
NEVPT2

DLPNO-SC-
NEVPT2

NEVPT2
emb.

CASSCF

ic-MRCCSD(T)
emb.

PNO-CASPT2
CASSCF DMRG-

SCF

St. this work ref. 169 ref. 169 ref. 170 ref. 170 ref. 170 this work
3A 165.8 177.2 178.6 178.4 176.6 218.6 146.3
1A 241.7 — — 290.3 262.4 346.1 197.8
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Table 2 contains the quintet–triplet and quintet–singlet excitation energies calculated

with CD-DMRG-SC-NEVPT2 and DMRG-SCF along with results from refs. 169 and

170 obtained with several NEVPT2 and embedded MRCC variants. The quintet–triplet

gap of 165.8 kJ/mol deviates only by approximately 10 kJ/mol from the embedded ic-

MRCCSD(T) result from ref. 170 which may be attributed to the different basis sets

(ANO-RCC-VDZP/VQZP vs. def2-TZVP) and the different active orbital spaces from

which the reference wave function was constructed. The quality of the reference wave

function may be assessed from a comparison of the CASSCF and DMRG-SCF excitation

energies with the final results that include the NEVPT2 contribution: DMRG-SCF excita-

tion energies show a significantly smaller deviation from the DMRG-SCF plus NEVPT2

results than their CASSCF counterparts, which indicates that NEVPT2 benefits from

an improved active space for the reference wave function calculation and that this can

be provided by the suggested automated active-orbital selection algorithm. However, the

quintet–singlet excitation shows a much larger discrepancy between the DMRG-NEVPT2

results and those from the literature. First of all, the CASSCF result for the small active

space deviates even more from the DMRG-SCF result than what was observed for the

quintet–triplet excitation. Unfortunately, no NEVPT2 reference data are available for

this higher excitation. Still, the embedded NEVPT2 result from Coughtrie et al. 170 is

about 30 kJ/mol larger that the embedded MRCC result, whereas they were very similar

in the singlet–triplet case. This may also be taken as an indication that the CAS of the

reference was too small because the MRCC approach may compensate for a small-CAS

reference wave function through the coupled-cluster excitation hierarchy. Accordingly,

the DMRG-NEVPT2 result obtained for the larger active space is only about 20 kJ/mol

smaller than the embedded MRCC result.

3.3 Multiconfiguration pair-density functional theory

Multiconfiguration pair-density functional theory (MC-PDFT)54,61 combines the advan-

tages of wave function theory and density functional theory to provide a method for

efficient evaluation of the electronic energy of strongly correlated systems. In MC-PDFT
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the first step is to calculate a multiconfiguration wave function, and in OpenMolcas,

this wave function may be calculated by CASSCF,47 RASSCF,56 GASSCF,57 CAS-CI,55

RAS-CI,55 GAS-CI,171 stochastic-CASSCF73 (section 3.1), and DMRG101,102,109,172,173

(section 3.2). CASSCF, RASSCF, and GASSCF are special cases of the multiconfig-

uration self-consistent-field (MCSCF) method, and one can use either state-specific174

SCF or state-averaged175,176 SCF. The total MC-PDFT energy is expressed as

E = Vnn + 〈ΨMC|T̂ |ΨMC〉+ Vne + VC + Eot [ρ,Π] , (9)

where the first term corresponds to the nuclear-nuclear interaction; the second, the third,

and the fourth terms, respectively, correspond to the kinetic energy, the nuclear–electron

attraction, and the classical Coulomb interaction of the electronic charge cloud with itself;

and the final term is the on-top energy. In eq. (9) the kinetic energy and the classical

electrostatic energy (nuclear–nuclear repulsion energy, nuclear–electron attraction energy,

and classical electron–electron Coulomb energy) are directly obtained from the multicon-

figurational wave function, Ψ , while the rest of the electronic energy is calculated from

an on-top density functional that is a functional of the electron density ρ and on-top pair

density Π (which represents the probability of finding two electrons on top of each other)

of that reference wave function.

Computationally, eq. (9) reduces to

E = Vnn +
∑
pq

hpqDpq +
1

2

∑
pqrs

gpqrsDpqDrs + Eot [ρ,Π,∇ρ,∇Π] , (10)

where D is the one-electron density matrix, h and g contain respectively the one- and

two-electron integrals, and p, q, r, and s are general orbital indices including inactive

and active orbitals. An MC-PDFT calculation involves two steps: (1) calculation of the

multiconfiguration wave function and (2) calculation of the on-top density functional

energy. Because the post-self-consistent-field step is a calculation based on a density

functional, the computational effort for step 2 is generally negligible compared to the

cost of step 1, and this makes MC-PDFT computationally more affordable than other
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multireference methods such as those based on perturbation theory or multireference

configuration interaction.

An MC-PDFT calculation always uses multiconfiguration wave functions that are

spin eigenfunctions. MC-PDFT is free from delocalization error,177 which is sometimes

considered to be the most fundamental source of error in KS-DFT with approximate

exchange–correlation functionals. MC-PDFT is also less prone than KS-DFT to self-

interaction error.178

The decomposition of the MC-PDFT energy expression of eq. (9) into its individual

components is sometimes important for understanding chemical and physical phenomena

in molecular systems.72,179 This decomposition is available in OpenMolcas, along with

the tabulation of ρ and Π in Cartesian coordinates for plotting and visualization.

3.3.1 On-top functionals for MC-PDFT

Due to the symmetry dilemma, the spin-polarized exchange–correlation functionals of

KS-DFT are not compatible with the spin-densities of a multiconfiguration wave func-

tion. To bypass the symmetry dilemma, one uses translated54 and fully translated60

on-top functionals, which are obtained by translation of KS-DFT exchange–correlation

functionals of the spin densities and their gradients. Translated functionals are denoted

with the prefix “t,” and fully translated functionals are denoted with the prefix “ft.” If

Exc [ρα(r), ρβ(r),∇ρα(r),∇ρβ(r)] denotes a KS-DFT exchange–correlation functional, in

which ρσ is the spin density (σ = α, β), and ∇ρσ is the gradient of the density, the

translated functional is given by:

Eot [ρ(r), |∇ρ(r)| , Π(r)] = Exc
[
ρtα(r), ρtβ(r),∇ρtα(r),∇ρtβ(r)

]
, (11)
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where

ρtα(r) =
ρ

2
(1 + f(ρ,Π)) ∇ρtα(r) =

∇ρ
2

(1 + f(ρ,Π))

ρtβ(r) =
ρ

2
(1− f(ρ,Π)) ∇ρtβ(r) =

∇ρ
2

(1− f(ρ,Π))

f(ρ,Π) =

√
max

(
0, 1− 4Π

ρ2

)
,

in which ∇ρ is the gradient of that spin density. For a single-determinant wave function,

4Π
ρ2
≤ 1 in all space. However, for a multiconfiguration wave function, this ratio can be

greater than one. Notice that the translated functionals depend on Π but not on its

gradient and that the left and right derivatives of f are not equal at 4Π
ρ2

= 1, making the

gradient of f discontinuous.

Fully translated functionals also depend on ∇Π, and the first and the second deriva-

tives of the functional are continuous. Both kinds of functionals have been found to give

reasonably good results for multireference systems.

OpenMolcas supports the use of several different on-top functionals, including a trans-

lated local spin-density approximation (LSDA), various translated generalized gradient

approximations, and various fully-translated generalized gradient approximations. The

following is a list of currently supported functionals: tLSDA,54,180,181 ftLSDA,60,180,181

tPBE,54,182 ftPBE,60,182 trevPBE,183,184 ftrevPBE,183,184 tBLYP,54,185,186 ftBLYP,60,185,186

tOPBE,182,187,188 and ftOPBE.60,182,187,188

OpenMolcas also supports functionals obtained by scaling the exchange and/or cor-

relation components of the exchange–correlation functionals prior to translation. The

scaling factors may be input by the user. This allows the functionals to be modified into

an HLE-type functional,189,190 where the standard scaling factors are 1.25 for exchange

and 0.5 for correlation, but other scaling factors may be chosen.

3.3.2 Performance of MC-PDFT

MC-PDFT generally produces results that are comparable in accuracy to complete active

space second-order perturbation theory (CASPT2) but at significantly lower computa-
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tional cost191 for bond energies,59,60,177,192,193 spin-multiplet splittings,194–197 and other

excitation energies.198–201 These results are summarized in table 3. A review contain-

ing references for tests and validations on electronically excited states up to mid-2018 is

available in ref. 202.

Table 3: Mean unsigned error (MUE) of MC-PDFT using tPBE functional and CASPT2

Reference System / MUE (eV)

Property PT2 tPBE

54 6 covalent or ionic diatomics /
dissociation energy 0.3 0.3

59 10 transition metals with ligand /
average bond energy 0.24 0.19

194 11 n-acenes (from naphthalene to dodecacene) /
singlet–triplet gap 0.06a 0.13a

193 13 main-group atoms or compounds /
singlet–triplet gap 0.12b 0.24b

196 8 organic rings /
singlet–triplet gap 0.01b 0.10b

199 19 main-group atoms /
first excitation energy 0.22 0.42

201 10 doublet radicals /
first 5 vertical excitation energies 0.14 0.19

aThe reference wave function is optimized from a GASSCF calculation.57,203
bThe active space for the reference wave function uses the correlated-participating-orbital (CPO)

scheme.204

3.3.3 Analytical gradients for SS-CAS-PDFT

OpenMolcas includes analytical gradients for MC-PDFT when a state-specific CASSCF

(SS-CASSCF) wave function is used as a reference (SS-CAS-PDFT), and these gradi-

ents enable the fast and efficient determination of equilibrium and transition state struc-

tures.205 Because MC-PDFT is a nonvariational method, the computation of the gradient

requires the construction of a Lagrangian. In general, the computation of analytical gra-

dients can be performed at least an order of magnitude faster than the corresponding

gradient calculation using a numerical finite-difference method. SS-CAS-PDFT shows

good accuracy compared to experimental data for both equilibrium and transition-state

structures. Some illustrative single-processor timings for MC-PDFT calculations employ-
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ing the tPBE on-top functional are shown in table 4.

Table 4: Illustrative timings (in seconds) for a single gradient computationa using a single
processor.

cc-pVDZ cc-pVTZ

Active Space Symmetry CASPT2 tPBE CASPT2 tPBE

NH3 (6,6) Cs 16 7 32 14
HCN (8,8) C2v 9 4 17 10
CH2O (12,9) C2v 29 9 29 15
HCCH (10,10) D2h 20 6 20 11
oxirane (10,10) C2v 55 27 136 45
pyrrole (6,5) C2v 87 39 1082 212
acrolein (4,4) Cs 558 117 3390 160
butadiene (4,4) C2h 85 29 933 137
pyridine (6,6) C2v 183 32 2256 156
maleic anhydride (8,7) C2v 123 36 1148 218

aCASPT2: Numerical gradient. tPBE: Analytical MC-PDFT gradient.

3.3.4 Density matrix renormalization group pair density functional theory

(DMRG-PDFT)

DMRG (see section 3.2) is a powerful method to treat static correlation, especially in

molecular systems requiring large active-spaces. MC-PDFT can be used in conjunction

with DMRG to add additional dynamic correlation in an inexpensive way. The first

applications206,207 of DMRG-PDFT were based on an interface between the existing MC-

PDFT code in OpenMolcas and the DMRG code in the QCMaquis117,126,208 program.

An illustrative example206 of singlet–triplet gaps in polyacenes is shown in fig. 6. The

tPBE/6-31G+(d,p) combination of on-top functional and basis set was used.

3.3.5 State-interaction pair-density functional theory

The accurate description of ground- and excited-state PESs in cases where two elec-

tronic states are strongly interacting (such as near conical intersections or locally avoided

crossings) is a challenge for many electronic structure methods. A new framework, called

state-interaction PDFT (SI-PDFT),209 has been introduced to handle these situations in
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Figure 6: Singlet-triplet gaps in polyacenes.

the case of MC-PDFT. This has been recently implemented in OpenMolcas and success-

fully applied to several cases, such as the dissociation of LiF209 and the charge-transfer

reaction path of a mixed-valence compound.210 SI-PDFT is an extension of MC-PDFT

that involves the diagonalization of an N × N effective Hamiltonian to generate a new

set of N electronic states with proper PES topology in regions of strong state interaction.

This method is similar in objectives and application to the “perturb-then-diagonalize”

approaches in multireference perturbation theories such as MS-CASPT2211,212 or MC-

QDPT.213,214 An illustrative example is shown in fig. 7. The tPBE functional was used

for both a standard MC-PDFT calculation and a SI-PDFT calculation. While unphysi-

cal curve crossings are present in the standard MC-PDFT treatment, these vanish when

the SI-PDFT methodology is used because the final step in the SI-PDFT method is a

diagonalization.
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Figure 7: Dissociation of LiF calculated with a (6e,6o) active space.

4 Exploration of potential energy surfaces

Understanding the mechanism, rate and yield of chemical reactions requires exploring the

potential energy surfaces of interest. A photochemical reaction involves by definition sev-

eral PESs; the strong coupling between the different electronic states promotes efficient

nonradiative electronic transitions.215,216 One distinguishes between internal conversion

caused by nonadiabatic coupling between states of same spin multiplicity, and intersys-

tem crossing caused by spin–orbit coupling between states of different spin multiplicity.

Exploration of PESs can be performed either through optimization of specific geome-

tries and paths along the reaction, or through simulations of the actual dynamics of the

reaction in time.

Regarding optimization calculations, OpenMolcas allows one to optimize minima and

transition states, as well as minimum-energy paths and intrinsic reaction paths, using

the SLAPAF program. Since recently, it is also possible to optimize conical intersections

thanks to the implementation of the nonadiabatic coupling vector. This new feature is

detailed in section 4.1. We mention in passing that the SHARC suite (described in section

4.3) provides a module, alternative to the SLAPAF program in OpenMolcas, that allows

the optimization of excited-state minima, minimum-energy crossing points, and conical
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intersections, using OpenMolcas for calculating the needed electronic quantities.

Regarding dynamics simulations, direct methods calculate the PESs as needed along

trajectories, sampling only the relevant regions of the PESs. These nuclear trajectories

are then used to describe the nuclear wavepacket motion. One major feature that dif-

ferentiates the several direct methods able to describe (nonadiabatic) dynamics is the

treatment of the nuclear motion through the basis of nuclear trajectories.217 OpenMolcas

allows one to simulate Born–Oppenheimer and surface-hopping dynamics, by treating the

nuclei classically. New features presented in section 4.2 include thermal sampling of the

initial conditions, application of external mechanical forces and study of isotopic effects.

As an electronic structure package, OpenMolcas is also interfaced to other open-source dy-

namics codes. The interfaces to SHARC and Quantics are presented in sections 4.3 and

4.4, respectively. SHARC contains a general surface-hopping algorithm with arbitrary

couplings such as the spin–orbit coupling, while Quantics allows a quantum treatment

of the nuclear motion with the direct dynamics variational multiconfiguration Gaussian

(DD-vMCG) method.

4.1 Conical intersection optimization and characterization

A key quantity for describing photochemical processes and near-degeneracy between elec-

tronic states is the nonadiabatic or derivative coupling vector. However, until now it was

not possible to obtain this quantity with the MOLCAS package, and some approxima-

tions had to be employed for nonadiabatic molecular dynamics8 or for the location of

conical intersections.218

Since its release, OpenMolcas includes analytical nonadiabatic couplings between

state-average CASSCF wave functions, as described in ref. 219. The implementation is

based on the algorithm used for energy gradients,146,148,220 and it is compatible with both

conventional and density-fitted two-electron integrals. The availability of nonadiatabic

couplings allows the use of the projected constrained optimization (PCO) method221,222

for locating minimum-energy conical intersections (MECI). From the user’s perspective,

the only change with respect to a single-surface geometry optimization is the addition
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of an energy difference constraint – gradients and nonadiabatic couplings are computed

automatically as needed. Furthermore, the first-order conical intersection characteriza-

tion proposed in ref. 219 is also reported upon convergence, allowing the unambiguous

description and comparison of conical intersections topographies. The meaning of the

characterization parameters is illustrated in fig. 8. From these, it is possible to determine

whether the intersection is peaked or sloped – in the latter case, it is not a minimum on

the upper surface – and this is available in the output as well.
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ŷ

∆Ex(r)

∆Ey(r)

E

(b)
r

x̂
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Figure 8: Illustration of the parameters characterizing a conical intersection. The red disc
represents the horizontal plane E = E×. (a) Energy differences in the x̂ and ŷ directions
define the pitch δgh and asymmetry ∆gh. (b) The green disc represents the average energy
plane, as indicated by the small circles on its edge, the amount and orientation of its
maximum deviation from the red disc define the relative tilt σ and the tilt heading θs.

4.2 Dynamics simulations within OpenMolcas

Born–Oppenheimer and nonadiabatic dynamics can be performed within OpenMolcas

using the DYNAMIX and SURFACEHOP modules. Transitions between different elec-

tronic states can be treated by two different approaches: a) According to the quantifica-

tion of the temporal rate of mixing between electronic states,223 and b) following Tully’s

fewest switches approach224 where the initial population density matrix is defined at the

beginning of the propagation. The modular structure of OpenMolcas allows combining

other features in OpenMolcas with dynamics simulations. For example, the ESPF mod-
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ule enables hybrid quantum mechanics/molecular mechanics (QM/MM) simulations or

any other electronic structure method available in OpenMolcas can be used to obtain

the energy and gradients. Recent developments for molecular dynamics simulations have

been included in OpenMolcas. They are summarized below.

4.2.1 Initial thermal sampling

In order to obtain statistically significant predictions using molecular dynamics simula-

tions, an ensemble of trajectories has to be computed (usually hundreds of trajectories,

even in simple reactions like trans–cis photoisomerization225–230). The initial state of the

system has to be appropriately sampled in order to get a good representation of nuclear

position and momenta. OpenMolcas allows sampling of the phase-space for a thermally

equilibrated state according to the Boltzmann distribution. Given the minimum energy

structure of the system, the absolute temperature, and a second-order expansion of the

potential energy as determined with a frequency calculation, initial conditions (i.e. nu-

clear coordinates and momenta) are generated; they can be subsequently used for running

individual trajectories.

4.2.2 Steered molecular dynamics

DYNAMIX has the possibility of including multiple external force pairs, each one applied

on a specific couple of nuclei. The external forces are added to the molecular force field

defined by the electronic state. This new feature allows the user to simulate the action of

external forces (i.e. mechanical effects) acting over a molecular system. The magnitude

of each force pair is defined as the magnitude of each force vector acting on each of the

two atoms. Many force pairs can be added, generating a final external force vector by

summing up all the components on each atom. Finally, the applied force pairs can be

defined as extension or compression forces. In this way different mechanochemical setups

(e.g. polymer mechanochemistry, sonochemistry or force probes) can be simulated, in a

first approach, by adding external forces.

Steered molecular dynamics can be performed in ground and excited states, permitting
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the study of photochemical processes in strained systems. Photochemistry of mechanically

affected systems, i.e. mechano-photochemistry, still remains quite unexplored, and only

few studies show the interesting properties of these processes. In this regard, it has been

shown that photochemistry can be effectively modified by mechanical means,231 where

the interplay between excited-state dynamics and external forces is far from being simple

and intuitive, as is the case of a trans to cis photoisomerization of a retinal model sys-

tem, where an extension force, expected to oppose the formation of cis isomer, is found

to enhance the photoisomerization, significantly increasing the photoreaction quantum

yield.229

4.2.3 Isotope effect

DYNAMIX is making use of the isotope feature in OpenMolcas which enables the con-

sideration of specific isotopes in molecular dynamics simulations. Typically, replacing an

atom with an isotope is associated with a kinetic isotope effect which affects the reaction

rate of a chemical process.

In a recent study of the photoisomerization in rhodopsin, the new feature helped to

reveal a new type of kinetic isotope effect.232 In this specific case, the hydrogen atoms of

the 11-cis isomerizing double bond were replaced by deuterium in three different ways: at

both hydrogens, and at the hydrogen at either the 11 or 12 position (fig. 9). The molecular

dynamics simulations together with time-resolved measurements showed that while the

reaction rate was mainly unaffected, the isomerization quantum yield was significantly

altered by the deuterium replacements. In fact, remarkably, the quantum yield was found

to decrease and increase in the monodeuterated and bideuterated cases, respectively. This

study provided further evidence on the importance of the “hydrogen out of plane” mode

for the description of the reaction coordinate of the photoisomerization of the 11-cis-

retinal protonated Schiff base chromophore of vertebrate visual rhodopsins.233,234

Changing the masses of atoms to “artifical” values may also be a useful simulation

tool to get insights into the factors that determine the yield of chemical reactions. In

a recent study of the dissociation of dioxetane compounds, this functionality was used
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Figure 9: 11-cis-Retinal protonated Schiff base and the three studied isotopomers.

to understand the effect of methylation.235 Substitution of hydrogen atoms by methyl

groups in dioxetane had been shown to lead to a longer dissociation time and it had

been previously suggested that this was due to the increase in the number of degrees of

freedom. To investigate further the effect of methylation, dynamics was simulated for the

unmethylated 1,2-dioxetane, but where the mass of the four hydrogen atoms was increased

to reproduce the moment of inertia of the methyl groups. The simulations suggest that

approximately 75 % of the increase in the dissociation time is actually due to a pure mass

effect (in contrast to the hypothesis put forward in a previous theoretical study).

4.3 Nonadiabatic semiclassical dynamics interface

OpenMolcas is interfaced with the ab initio molecular dynamics software suite SHARC

(Surface Hopping including ARbitrary Couplings).236–240 Through this interface, nona-

diabatic dynamics can be carried out based on the CASSCF and CASPT2 electronic

structure methods of OpenMolcas.

SHARC is a generalization of the surface hopping method.224 This allows describing

processes such as intersystem crossing or laser-induced transitions, which is not possible
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with standard Tully surface hopping. Furthermore, the SHARC software suite can manage

large trajectory ensembles and features many analysis tools.

SHARC OpenMOLCAS

WFoverlap

sharc.x SHARC_MOLCAS.pyQM.in1

QM.out
5
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( initial RasOrb files )

2

MOLCAS.input
&Gateway
&Seward
&RASSCF
...
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displacements
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Determinants

AO overlap
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WFoverlap.x

4

Figure 10: Flow chart of the SHARC–OpenMolcas interface. In step (1), the SHARC dy-
namics driver sharc.x writes a file with the current geometry and requests for quantities
(e.g., energies E, spin–orbit couplings (SOC)). This file is read by the interface, together
with the template and resource files that define the level of theory and the computational
parameters, respectively. In step (2), all necessary OpenMolcas input files are written
and step (3) executes the pymolcas driver. The resulting output files are parsed for all
requested quantities. Optionally (4), the WFOVERLAP is executed to obtain Dyson
norms. Finally (5), all obtained results are handed back to the SHARC driver.

The interface between SHARC and OpenMolcas is based on file communication be-

tween the two programs, see the flow chart in fig. 10. The SHARC dynamics driver (the

master process) writes a request file at each simulation time step, containing the cur-

rent geometry and a list of required electronic quantities, such as energies, gradients,

spin–orbit couplings, etc. The interface, a Python script, combines the request informa-

tion with the electronic structure settings and computational parameters. The interface

writes the OpenMolcas input files, allowing to compute multiple gradients or displace-

ments for numerical gradients in a task parallel fashion. The automatically generated

OpenMolcas input employs the GATEWAY and SEWARD modules for setup and inte-

grals, the RASSCF module for wave functions and energies, RASSI for transition dipole

moments, spin–orbit couplings, and wave function overlaps (for nonadiabatic interactions,

see below), and MCLR and ALASKA for gradients. For CASPT2 or MS-CASPT2, the

calculation of numerical gradients is directly controlled by the SHARC–OpenMolcas in-

terface, allowing a simultaneous calculation of all gradients of all states and the derivatives
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of dipole moments and spin–orbit couplings in a single loop. The nonadiabatic interaction

between the different states is described by employing wave function overlaps241 from the

RASSI module, or by nonadiabatic coupling vectors from MCLR/ALASKA. QM/MM

dynamics (CASSCF/force fields) can also be performed through the OpenMolcas–Tinker

interface. All collected electronic structure data is finally communicated back through

the interface to the dynamics driver, which propagates the trajectory to the next time

step.

It is noted that the SHARC–OpenMolcas interface can also produce Dyson norms

to approximately describe ionization probabilities (see also section 5.3) by feeding the

relevant wave function data into the WFOVERLAP program242 within the SHARC suite.

4.4 Quantum dynamics interface

While implementing a direct dynamics code for classical nuclei is rather straightforward

since information is only needed at a given position in space, a quantum description

of the nuclei has more problems. We report here a new interface between OpenMolcas

and the Quantics package243 (grown out of the Heidelberg MCTDH package244), which

allows a quantum mechanical treatment of both electronic and nuclear dynamics via the

direct dynamics variational multiconfiguration Gaussian (DD-vMCG) method.217,245,246

In practice, Quantics uses OpenMolcas to build a local harmonic approximation of the

coupled PESs, as represented in fig. 11. The dynamics can be run either in Cartesian

coordinates or in normal modes. If the latter, transformation matrices between the two

systems of coordinates are set up by reading the output file of a frequency calculation

(using the MCKINLEY module with OpenMolcas).

Along the dynamics simulation, Quantics writes input files from a template input file

to run OpenMolcas and compute the adiabatic energies, gradients, Hessians and couplings

for all electronic states involved. The electronic structure calculations are performed at

the centre point of each Gaussian basis function and subroutines in Quantics parse the

OpenMolcas output files to extract the relevant information.247 Currently possible elec-

tronic structures methods are HF, CASSCF and CASPT2. In the latter case, it is only

48



Model PES from 
points in database?

Model PES from 
points in database?

YES

NO

Database:

- potential energy 
- potential energy gradient 
- potential energy Hessian 
- molecular orbitals (if CASSCF) 
- non-adiabatic coupling 
    (if propagation diabatisation) 
- spin-orbit coupling 
    (if intersystem crossing)

QUANTICS

write input file and 
run OpenMolcas

parse output file 
and add new point 

to database

&GATEWAY

&SEWARD

&RASSCF

&RASSI

&CASPT2

&ALASKA

&MCKINLEY

Figure 11: Quantic-OpenMolcas interface. At each timestep, the database of previously
run quantum chemistry calculations is probed to build model coupled potential energy
surfaces (PESs). If suitable points exist around the desired geometry (Gaussian basis
function on the left hand side of the figure), a representation of the PES is constructed
using those points. If that region of the coordinate space has not been previously explored
(right hand side), an OpenMolcas calculation is performed, and information about this
new point is added to the database.
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the CASPT2 potential energies that are used while the corresponding energy derivatives

and couplings are approximated with their values at CASSCF level.

If several electronic states are included in the simulation, the dynamics is performed

in a diabatic basis in order to avoid singularity issues. A diabatization operation is

then realised to transform the adiabatic quantities provided by OpenMolcas into di-

abatic ones. Two diabatization schemes are available: the regularisation diabatization

method,248 which limits the application to two electronic states, and the propagation

diabatization method implemented more recently.249 The former method requires infor-

mation about a reference conical intersection geometry (which can be optimised using

the SLAPAF module with OpenMolcas). The latter method requires the calculation of

the nonadiabatic coupling vector (which can be done using the ALASKA module with

OpenMolcas) at every new electronic structure point. When dealing with states of differ-

ent spin multiplicity, a diabatization is performed in each spin-multiplicity subset, and

internal conversions within each subset is accounted for as usual in same-spin dynamics.

Intersystem crossing is treated by calculating the spin–orbit coupling terms (which can be

done using the RASSI module in OpenMolcas) at every new electronic structure point.163

In order to save time and avoid redundant electronic structure calculations, the elec-

tronic quantities calculated by OpenMolcas are stored in a database. New database points

are only calculated if the new nuclear geometry differs by some predetermined amount

from all database geometries (right basis function in fig. 11). If it is close enough to some

database points (left basis function in fig. 11), the quantities are interpolated from the

values present in the database.250 It is noted that the molecular orbital coefficients of the

CASSCF calculations are also stored in the database and used as initial guesses for new

electronic structure calculations. Also, instead of calculating the Hessian at every point,

after the first point, an update procedure can be performed using the database according

to the Powell method.246,251 By running the dynamics calculation several times, more

and more points are added to the database. The database “grows” iteratively and reaches

convergence once no new database points are needed.
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5 Spectroscopic and magnetic properties

The strong focus of the OpenMolcas package in multiconfigurational wave function meth-

ods makes it an excellent tool for the computational study of systems where multiple

electronic states play an important role. An obvious case is the study of electronic spec-

tra, involving transitions between different electronic states. A paradigmatic example is

the study of transition metal complexes, where the presence of partially filled d and/or f

shells gives rise to many close-lying electronic states of various spin multiplicities.

The workhorse for these investigations, once accurate spin-adapted wave functions

and energies are obtained, is the RASSI program.163 This program can compute the

spin–orbit interaction to yield a set of spin–orbit eigenstates, with the use of atomic

mean-field integrals,252 as well as transition properties between different wave functions.

In this section we report some recent developments and improvements for the com-

putation of spectroscopic and magnetic properties in OpenMolcas, from the exact semi-

classical treatment of light–matter interaction (section 5.1) to applications in X-ray spec-

troscopy (section 5.2), photoelectron spectroscopy (section 5.3), magnetic circular dichro-

ism (section 5.4), molecular magnetism (section 5.5), and in the context of ultra-accurate

calculations (section 5.6).

5.1 Light–matter interaction and beyond the multipole expan-

sion

All spectroscopies depend on the interaction between the system and an external elec-

tromagnetic field. For weak fields that can be treated as perturbations, the oscillator

strength for a transition from an initial state i to a final state f is:

fif (ω) ∝ | 〈i|Û |f〉 |2δ(ω − ωif ) . (12)

where ωif = (Ef−Ei)/~ is the resonance angular frequency and Û is the time-independent

part of the electromagnetic perturbation. Usually, the field is described by a plane wave
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and using only terms linear in field strength Û then becomes:

Û ∝
∑
j

[
exp(ik · rj)(ε · p̂j) + i

g

2
exp(ik · rj)(k × ε) · ŝj

]
+ c.c. , (13)

where the sum goes over all the electrons, k is the wave vector, rj is the position, ε is

the polarization vector, p̂j the momentum operator, g is the electronic spin g-factor, and

ŝj the spin operator, and c.c. the complex conjugate of the previous terms.

Traditionally, the integrals in eq. (12) are evaluated using a multipole expansion of

the electromagnetic wave:

exp(ik · rj) = 1 + i(k · rj)−
1

2
(k · rj)2 + . . . (14)

For the transition moments, taking only the zeroth-order term amounts to the electric

dipole approximation, while the first-order term is associated with electric quadrupole

and magnetic dipole interactions. The multipole expansion leads to well-recognized se-

lection rules that for certain systems and specific choices of coordinate systems can be

directly related to electronic structure. While the dipole approximation is often sufficient

for the low-energy photons in the optical region, high-energy photons have large k vectors,

rapidly oscillating fields, and higher-order terms in the multipole expansion cannot be

ignored. These higher-order terms depend on the choice of origin, at least in cases where

there are nonzero terms of lower order. For weak fields the problem of origin dependence

was recently solved by Bernadotte et al., by including all terms to the same order in

the oscillator strength and not in the transition moments, which for the second order

requires calculations up to magnetic quadrupoles and electric octupoles.253 The complete

second-order expansion is implemented in OpenMolcas and has been used to calculate

X-ray spectra of several mono- and binuclear iron complexes.254,255 Although origin inde-

pendence was first proven for the velocity gauge,253 origin independence in a finite basis

set can also be accomplished in the length gauge.256 However, what is usually referred to

as the length gauge is actually a mixed gauge, with the electric components in the length

gauge and magnetic components in the velocity gauge.256 Origin independence, in finite
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basis sets, is not conserved in this mixed gauge.257 Furthermore, when using the complete

second-order expansion the increased basis set requirements for higher-order terms in the

multipole expansion must be considered.257

A solution to the problems with the multipole expansion is to instead use the plane-

wave form of the wave vector directly: the exact semiclassical light–matter interaction258

is origin independent, cannot give negative oscillator strengths and gives what all terms in

the multipole expansion ideally should converge to.258 Further, it shows better numerical

stability with respect to the choice of basis set.259 OpenMolcas now includes an elegant

and efficient procedure using a standard Gauß–Hermite quadrature to evaluate the inte-

grals in eq. (12) in this formalism.259 Both electric and magnetic terms are calculated this

way, with the spin-magnetic term in eq. (13) being nonzero when the spin–orbit operator

in the RASSI module is used.

With the exact operator OpenMolcas now calculates the angular dependence on the

transition intensities with respect to both polarization and wave propagation direction.

This can be used to simulate experiments where the system is oriented relative to the

photon beam, e.g., in single crystals or molecules on surfaces. Although no closed formula

for the isotropically tensor averaged oscillator strengths is known, the exact value can be

approximated by averaging over different directions using a Lebedev grid.259,260 Although

the averaging over a grid increases the computational time compared to the multipole

expansion, this will only rarely affect the timing of the full electronic structure calculation.

To illustrate the capabilities of the exact operator, the angular dependence of the single

Cu 1s → 3d transition in single-crystal [CuCl4]
2– has been calculated and compared to

the experimental values, see fig. 12.259 The experimental intensity is distinguished by a

four-fold periodicity, which was used to assign the electric quadrupole contributions.261

Further, the orientation of the peak maxima can also be used to identify the symmetry

of the singly-occupied 3d orbital. Calculations with the exact operator show the same

angular dependence, including the four-fold periodicity, which illustrates how the exact

operator includes any information that traditionally have been assigned to multipole

contributions.
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Isotropic vibronic contribution
(not in calculation)

Figure 12: Angular dependence of the 1s→ 3d copper K pre-edge transition in [CuCl4]
2–.

Experimental data are normalized K pre-edge peak heights.261 Calculated values are from
the exact semiclassical light–matter interaction with intensity uniformly scaled to match
experiment.259 The isotropic contributions are due to vibronic coupling, which are not
included in the calculations.

5.2 X-ray spectroscopy and calculations of many core-hole ex-

cited states

X-ray spectroscopy involves core-hole states that are at least hundreds of eV higher in

energy than the valence excited states. In a complete-active-space approach, these states

can be included in the CI expansion by placing the relevant core orbitals in the active

space. As the number of excitations from these orbitals can be restricted to one, it is

convenient to use a restricted active space (RAS) wave function to simulate X-ray spec-

tra.262–265 For such processes, the usual bottom-up approach that includes all states is

problematic because to reach core-hole excited states all possible valence excited con-

figurations must be calculated first. A few strategies for generating core-hole states are

available for example, for some systems where it is possible to use symmetry considera-

tions, or for very small active spaces.266 However, for a standard-size active space there

can be millions of valence states. Strategies that only reach core-hole states are needed.

Two of them recently implemented in OpenMolcas are reported here.

A convenient solution to this problem is to define a fixed orbital function χ and a
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parameter λ, and add a term to the molecular Hamiltonian

Ĥsh = Ĥ + λP̂ [χ] . (15)

Here, Ĥsh is the shifted Hamiltonian, P̂ [χ] is an orthogonal projection on the space of

wave functions where orbital χ is doubly occupied. This is multiplied by λ and can be

implemented by modifying the two-electron MO integrals at the CI step. These integrals

are recomputed at each macroiteration while the added term is using the same fixed

function χ all the time. The penalty term has the effect of raising the energy of those

configurations with a filled core hole to be above those with a single hole, which are now

the lowest in energy. Our experience shows that it is easy to find a suitable shift λ, such

that this scheme is stable across changing orbitals and structure, and it has been observed

to give only a slight energy variation with the input shift parameter. Obviously, special

basis functions may have to be supplied to allow the orbitals of the core-hole states to

relax accurately, or if inner-valence correlation is important, e.g. for Auger. The following

example shows the calculation of core–valence excitations for H2O close to equilibrium,

using a specifically prepared basis set. Two calculations were performed: one without the

projected shift, and the other with the shift. The orbital energies in table 5 show large

differences between without and with the core hole present. The results of the subsequent

RASSI calculation are displayed in table 6, showing that it is possible to access states very

high in energy (compared with typical valence excitations). For other examples, please

see the on-line poster in ref. 267.

Table 5: Orbitals used for H2O. Starred are valence/Rydberg orbitals, unoccupied in
the ground state. Orbital energies (Eh), for the ground state, and for the excited states
(average, hence approximate).

1a′ 2a′ 3a′ 4a′ 5a′∗ 6a′∗ 7a′∗ 1a′′ 2a′′∗

ground −20.6 −1.36 −0.72 −0.59 0.03 0.03 0.04 −0.51 0.04
excited −21.3 −1.78 −1.13 −1.02 −0.07 −0.01 0.01 −0.97 0.01

For the general case, another simple technique is to remove from the CI all configu-

rations with fully occupied core orbitals, the so-called core–valence separation (CVS).268
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Table 6: States, excitation energies (eV), dipole and velocity Einstein A coefficients (ps−1),
and polarization (Cs).

Excitation (RASSI) Energy Dipole Velocity Polarization
5a′ ← 1a′ (O1s) 537.2 0.124 0.139 A′

6a′ ← 1a′ (O1s) 539.1 0.316 0.289 A′

7a′ ← 1a′ (O1s) 539.8 0.065 0.052 A′

2a′′ ← 1a′ (O1s) 537.7 0.075 0.065 A′′

Because of the large energy separation between configurations with and without core

holes, the latter do not contribute significantly to the core-hole excited states. For active-

space methods the CVS is closely related to the generalized active space method.57 Using

the special case of RAS, the core orbitals can be placed in RAS1 allowing at least singles,

for single-core-hole excited states, or doubles, for double-core-hole excited states. The

core-hole excited states are found by applying a core-hole (ch) projection operator Pch

PchΨ = Ψch (16)

on the RASSCF calculation, which for single-core-hole excited states removes all config-

urations in Ψ that are fully occupied in RAS1.254,269 This ensures that the lowest-energy

state in Ψch is a core-hole excited state in the RASSCF optimization. It is noted that

although the core-hole and valence states are calculated separately and are thus not or-

thogonal, transition intensities can still be calculated in the RASSI module163,270 since

the different wave functions use the same CI expansion.

In X-ray spectroscopy, even if the computation of all valence states can be avoided

using one of the two strategies discussed above, the number of excited states needed

to describe the process of interest can be very large. In transition metal complexes, the

density of states is very high so that, for an X-ray absorption spectrum that typically spans

10 eV, several hundred final states are required.266 This creates difficulties for standard

techniques such as a multi-root Davidson77 or Davidson–Olsen algorithm.271 A modified

CI algorithm has therefore been implemented to allow for more efficient calculations of a

large number of states.

The Davidson–Olsen algorithm is the quasi-Newton method applied to the CI prob-

56



lem. It uses an approximate Hamiltonian H0, typically diagonal, to compute successive

corrections to an approximate CI vector C(i)
j . The next CI vector C(i+1)

j is then found

by diagonalizing a small Hamiltonian in the basis of all CI vectors at the current itera-

tion and their corresponding correction vectors. To improve convergence, the correction

vectors of a few previous iterations are often included. When calculating a very large num-

ber of states, this scheme (hereafter called Version 1) encounters some problems. First,

storing several hundred CI or correction vectors from a few iterations can put severe

constraints on memory. Second, the higher-lying states typically get increasingly difficult

to converge, which leads to a large number of CI iterations and makes the CI calculation

very costly. Finally, as the number of previous correction vectors stored increases, they

tend to have significant linear dependence, which can lead to numerical instability during

the orthonormalization and sometimes even divergence.

The OpenMolcas CI algorithm has been significantly improved for calculations with

hundreds of states. The first aim was to improve stability of the algorithm to better deal

with linear dependencies in the correction vectors. A simple and quick fix in order to have

a more reliable (but slower) convergence was to reduce the number of past iterations for

which the CI vectors were saved to two instead of five. This version of the algorithm is

called hereafter Version 2. As a more general alternative to this, a more comprehensive

change of the code was realized. While the original implementation (Version 1) saved

the last five correction vectors for each state, this new implementation instead sets an

upper limit to the total number of correction vectors to around 400, which was found to

be the best compromise between speed, flexibility and stability. Improvements were also

made to reduce the risk of divergence in case of near-linear dependency by performing

additional orthogonalizations and normalizations. This leads to what we call Version 3

of the algorithm. Finally, a very important improvement is to stop computing correction

vectors for converged states. As lower roots converge significantly faster than the higher

ones, this leads to a drastic reduction of the number of vectors to compute during the

majority of the Davidson–Olsen iterations. This final version is referred to as Version 4

and is now the new default option in OpenMolcas.
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Savings in computational time with the modified CI algorithm depend on the size

of the system and the active space. The improvement is most significant with a larger

active space because then the CI step dominates the computational cost. As an example,

we simulated the X-ray Kα emission spectrum of [Fe(bmip)2]
2+, a calculation with ten

valence and four Fe 2p and 1s core orbitals in the active space (145 404 CSFs for the ground

state), using up to 90 core-hole excited states in each irreducible representation, which

was needed to get the desired orbitals in the active space. The calculation consists of 1

calculation of the initial 1s core-ionized state and 3 independent calculations of the 2p→

1s final states of different irreducible representations. RASSCF failed to converge in the

old MOLCAS/OpenMolcas implementation (Version 1) because of numerical instabilities.

The new algorithm does not suffer from such issues, and compared to the Version 2

calculation, the number of CI iterations is reduced by a factor of 3.6, while the saving in

computational time is a factor of 4, see fig. 13.269 Skipping the calculation of correction

vectors for the converged low-lying states not only reduces significantly the computational

time but also the number of iterations. The reason is that as the lowest states converge,

more and more of the vectors used as basis for the Davidson diagonalization correspond

to the remaining higher states, which can thus converge faster.

5.3 Photoelectron spectroscopy and Dyson orbitals

For the simulation of molecular ionization processes and photoelectron spectroscopy, it

is routinely necessary to evaluate integrals between wave functions with N and N − 1

bound electrons. The information about the molecular system may then be conveniently

compressed into a one-electron quantity

φDO
fi (x1) =

√
N

∫
ΨN−1f (x2, x3, . . . , xN)ΨNi (x1, x2, . . . , xN) dx2 · · · dxN , (17)

58



N
um

be
r o

f C
I i

te
ra

tio
ns

0

3200

6400

9600

12800

16000

Ti
m

e 
(h

)

0

60

120

180

240

300

Version 1 Version 2 Version 3 Version 4

Time (h)
CI iterations

Figure 13: Total RASSCF time and total number of CI iterations for the calculation of
X-ray emission spectrum of [Fe(bmip)2]

2+. Version 1 refers to the original algorithm. In
Version 2, the number of past iterations for which the correction vectors are saved is
reduced. Version 3 contains stability improvements and a cap on the number of stored
vectors instead. Additionally, in Version 4, the corrections are not computed for the
already converged lower-energy states.

commonly known as the Dyson orbital (DO). In the second quantization formalism, the

Dyson orbital φDO
fi may in a given orbital basis φm be computed as

φDO
fi =

∑
m

cfi,mφm (18)

cfi,m = 〈ΨN−1f |âmΨNi 〉 , (19)

where âm annihilates a single electron from orbital φm.

A new feature now natively available in the RASSI module is the calculation of multi-

configurational Dyson orbitals including spin–orbit (SO) coupling, similarly to what has

previously been implemented with an external software.272,273 Within the RASSI frame-

work for spin-free (SF) states, eq. (19) is efficiently evaluated within a biorthonormal

basis274 φA to obtain cSFfi,A. As the basis φA may vary for different combinations of f and

i, the Dyson orbitals are subsequently re-expressed as cSFfi,Z in the atomic basis φZ through

standard transformations. Dyson orbitals for spin–orbit coupled states are obtained as
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superpositions of those computed for the spin-free states

cSOfi,Z =
∑
k,l

ξ∗f,kξi,lc
SF
kl,Z , (20)

where ξf,l denotes expansion coefficient l of spin–orbit state f in the basis of the spin-

free states.163 Both types of Dyson orbitals are, optionally, exported in Molden format

for further use. The current implementation supports states obtained from RASSCF and

RASPT2 calculations, both with and without the explicit use of symmetry.

Applied to photoelectron spectroscopy, the ionization cross section σfi of the transition

ΨNi → ΨN−1f is within the dipole approximation proportional to the squared photoelectron

matrix element |Dfi|2. Assuming a simple factorization ψel
kΨ

N−1
f for the final state and

the strong orthogonality condition,275 it can be written as

σfi ∝ |Dfi|2 = 〈ψel
kΨ

N−1
f |µ̂|ΨNi 〉

str. orth.
=

∣∣〈ψel
k |µ̂|φDOfi 〉

∣∣2 , (21)

where ψel
k is the continuum wave function of the ejected photoelectron. As ψel

k is currently

not representable within OpenMolcas, eq. (21) cannot be directly evaluated. However,

assuming the transition dipole integral between ψel
k and the normalized Dyson orbital

to be constant, commonly called the sudden approximation (SA), the ionization cross

section σfi can be approximated by the squared norm of the Dyson orbital:

σfi ∝ |Dfi|2 = ‖φDO
fi ‖2

∣∣∣∣∣
〈
ψel
k

∣∣∣∣∣ µ̂
∣∣∣∣∣ φDO

fi

‖φDO
fi ‖

〉∣∣∣∣∣
2

︸ ︷︷ ︸
≈constant

SA≈ ‖φDO
fi ‖2 . (22)

The SA cross sections obtained from eq. (22) are in the RASSI output referred to as

Dyson amplitudes and provide a direct estimate of the relative cross sections. Note that

the SA is inadvisable in cases where, e.g., the photoelectron has a low kinetic energy

or the Dyson orbitals of the relevant transitions have strongly differing characters. Still,

fig. 14 (a)–(c) illustrates how accurate photoelectron spectra may be obtained even for

complex molecules from the RASSI Dyson amplitudes. Figure 14 (d) shows in addition
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how the shape of the Dyson orbitals facilitates spectral assignments. Recent publications

have further demonstrated the applicability of the Dyson orbitals for simulation and

analysis of photoelectron spectra272,273,276–278 and we expected them to find their use also

for simulations of, for instance, Auger-electron and nonresonant X-ray emission spectra.
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Figure 14: Comparison of photoelectron spectra obtained from Dyson amplitudes as
implemented in RASSI and from cited measurements. (a) Valence extreme ultravio-
let photoelectron spectrum of H2O(g).272 (b) Fe2p X-ray photoelectron spectrum of
[Fe(H2O)6]

2+.272 (c) I4d X-ray photoelectron spectrum of I –
3 .279 (d) Dyson orbitals (real

part) for selected transitions (53.6 eV and 56.8 eV) from the I –
3 calculation shown in panel

(c), clearly assigning the features to I4d ionization from the central (53.6 eV) and terminal
(56.8 eV) sites.

5.4 Magnetic circular dichroism spectroscopy

Magnetic circular dichroism280 (MCD) spectroscopy probes the differential absorption

coefficient ∆ε for left versus right circular polarized light in the presence of a static

magnetic field pointing in the light wave’s propagation direction. It may reveal more

information than regular absorption spectra, especially when spectral bands overlap,281

because the MCD intensities of different transitions may have different signs. It is also able
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to provide information about the magnetic properties of the electronic states. However,

MCD spectra can be complicated to analyze, and the analysis benefits greatly from

theoretical support. With commonly applied approximations, the MCD for an electronic

transition is given by

∆ε

E
= γB

[
−A

(
∂f(E)

∂E

)
+

(
B +

1

kBT
C
)
f(E)

]
. (23)

Here, γ = 2µBNAπ
3 log e/(250hc) in Gaussian units, and f(E) is a line shape function

in terms of the photon energy E. Equation (23) and the expressions for the A, B, and C

terms were first derived by Buckingham and Stephens.282,283 We focus here on the C term,

which dominates the MCD for a molecule with a degenerate ground state, especially at

low temperature. For a transition from a populated state A with components |Aa〉 and

degeneracy gA to state J with components |Jλ〉, the isotropic C term in eq. (23) reads280

C = − i

3gA

∑
a,a′,λ

〈Aa′|L̂+ 2Ŝ|Aa〉 ·
[
〈Aa|D̂|Jλ〉 × 〈Jλ|D̂|Aa′〉

]
. (24)

Here, L̂ and Ŝ are the dimensionless orbital and spin angular momentum one-electron

operators, and D̂ is the one-electron electric dipole moment operator. The “nonrelativistic

with spin” level of theory used for the operators in eq. (24) is commonly applied in

calculations of absorption spectra and magnetic susceptibilities of compounds with even

the heaviest elements, and therefore it should be adequate for MCD as well. An orbital

angular momentum in the ground state is required for a nonvanishing MCD C-term

spectrum. Consequently, if the ground state at the nonrelativistic or scalar relativistic

(SR) level has only spin degeneracy, the C term is zero. In such a case, MCD C terms

may appear via spin–orbit coupling (SOC), if it mixes components of other – orbitally

degenerate – spin states into the ground state. Other systems may already have a ground

state orbital angular momentum in the nonrelativistic limit.

The functionality of OpenMolcas is very powerful for investigating MCD spectra the-

oretically.285 Ref. 284 reported the first ab initio wave function-based MCD calculation

for an actinide complex, namely for the octahedral 5f1 system [UCl6]
–, using RASSCF
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Figure 15: MCD spectrum (5 K) of [UCl6]
–. MCD C term calculations based on RASSCF

and RASPT2 calculations of doublet and quartet spin states and treatment of SOC
by state interaction with the RASSI module. Calculated ∆ε generated from Gaussian-
broadened vertical C term spectra. Experiment taken at 7 T field strength. Figure taken
from ref. 284. Reproduced by permission of the PCCP Owner Societies.

and multi-state RASPT2 calculations followed by treating the SOC via state interaction.

[UCl6]
– is one of the aforementioned cases where the C term spectrum is entirely a rel-

ativistic effect, i.e. due to SOC. The calculated and experimental UV–Vis range MCD

spectra are compared in fig. 15. The PT2 spectrum, although over-correcting the blue-

shifted SCF spectrum, is in reasonably good agreement with the experimental MCD (also

first reported in ref. 284). A collection of open-source utility codes and scripts286 was de-

veloped for the purpose of generating MCD intensities conveniently for a large number

of transitions from SO-RASSI calculations. When the keyword PRPR is present in the

RASSI input, the matrix elements for the electric dipole moment, the electron spin, and

the orbital angular momentum for the calculated set of SO states are printed to a set of

files, which is convenient for post-processing. The MCD intensities for vertical transitions,

and broadened spectra, are then generated with the software tools of ref. 286. Code for

A and B terms287 is also available in the repository.
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5.5 Molecular magnetic properties

In the field of molecular magnetism, the SINGLE_ANISO module8 has allowed the com-

putation of the parameters of all magnetic Hamiltonians and the field- and temperature-

dependent thermodynamic properties for mononuclear complexes and fragments. The

POLY_ANISO module now allows the computation of the magnetic properties of polynu-

clear complexes using a semi-ab initio approach. The necessity for such an approach is

dictated by the current computational difficulties with a full ab initio treatment of polynu-

clear compounds containing several transition metals or lanthanide ions. In the proposed

approach, the first step consists of dividing the investigated polynuclear compound in sev-

eral mononuclear fragments containing one magnetic centre only. This fragmentation does

not imply that the ligand framework needs to be altered: replacing a neighbouring mag-

netic centre with its diamagnetic closely-related metal ion suffices. For example, the effect

of a neighbouring Er3+ site could be reasonably well simulated by a diamagnetic Lu3+,

containing a completely filled 4f shell. Ab initio calculations using the SINGLE_ANISO

module are then performed for each of such fragments. The features of POLY_ANISO

can be divided in three groups: modeling of magnetic exchange interactions, decompo-

sition of magnetic exchange interactions, and computation of magnetic thermodynamic

properties. Both SINGLE_ANISO and POLY_ANISO also have the ability to generate

in an automatic way various plots, via an interface to gnuplot utility.288

Modeling of exchange: The total magnetic interaction between two metal centers is a

sum of the anisotropic exchange interaction and dipole–dipole magnetic interaction. The

dipole–dipole magnetic interaction is evaluated exactly by using the total magnetic dipole

moment matrix elements calculated on the basis of local multiplets of the corresponding

metal sites available from the fragment SINGLE_ANISO calculations.

The easiest simulation of anisotropic exchange interaction is achieved within the Lines

model,289 involving one effective exchange (Lines) parameter per interacting pair. This

parameter quantifies the hypothetical isotropic exchange interaction between the ground-

state spins of the corresponding magnetic ions, which would arise in the absence of spin–
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orbit coupling. The anisotropic exchange is modeled via the projection of this effective

isotropic model over chosen spin–orbit multiplets of individual metal centers obtained in

the corresponding fragment SINGLE_ANISO calculations. The Lines model is expected

to be accurate in three cases: (i) the two interacting sites have uniaxial (Ising) magnetic

anisotropy (reduces to generally noncollinear Ising exchange), (ii) the two interacting

sites are completely isotropic (obviously reduces to Heisenberg exchange); and (iii) one

site is isotropic while the other possesses Ising magnetic anisotropy (reduces most often to

collinear Ising exchange).290 For all other cases of intermediate anisotropy of interacting

sites, the Lines model is believed to be a reasonable approximation. The Lines exchange

parameters are the only unknown parameters in this approach and are usually found from

a least-squares fit of the experimental magnetic data. Alternatively, the Lines exchange

parameters can be extracted/estimated from broken-symmetry density functional theory

calculations (BS-DFT).291,292 To this end, the anisotropic magnetic ions are replaced by

the closest isotropic metal ions. Then the extracted BS-DFT exchange parameters J12 for

a given pair of ions (1, 2) in such hypothetical complex is converted into the corresponding

Lines parameter JL
12 for the original complex with the formula JL

12 = (Si1/Sa1)(Si2/Sa2)J12,

where the terms Si and Sa stand for the spin of the corresponding isotropic ion and the

genealogic spin of the anisotropic metal ion in the original compound, respectively. This

approach was validated on several compounds.293

The POLY_ANISO module contains also several extensions going beyond the sim-

ple Lines model: (i) the three-axes exchange Hamiltonian containing three exchange pa-

rameters parameters for each interacting pair, corresponding to the diagonal form (i.e.,

written in the main exchange axes) of symmetric anisotropic exchange Hamiltonian;294

(ii) antisymmetric or Dzyaloshinsky–Morya (DM) exchange interaction, requesting three

parameters (the DM vector); (iii) the general anisotropic nine-parameter exchange model

including both previous interactions; and (iv) biquadratic terms in the exchange interac-

tion.294 Another extension of the Lines model concerns more involved (many-parameter)

effective exchange interactions in the Lines approach instead of a single-parameter one.

The total magnetic interaction matrix is then written straightforwardly for the basis
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of the products of the on-site eigenstates obtained in the fragment ab initio calculations,

and then diagonalized.295 The obtained eigenstates alongside with the spin and magnetic

dipole moment integrals expanded in the obtained exchange-coupled basis, are then fur-

ther employed for the computation of the parameters of all magnetic Hamiltonians and

magnetic properties.

Full decomposition of magnetic exchange interactions using irreducible ten-

sor technique: The implemented models of magnetic interaction (e.g. Lines model)

describe the exchange interaction between local pseudospins.296,297 The Lines parameters

are not directly transferable between different compounds (given that their local pseu-

dospins might differ). In order to overcome this problem, the full decomposition of all

the interaction models implemented in POLY_ANISO program has been developed and

implemented using the irreducible tensor technique,298 for all interacting pairs. As re-

sult, a set of parameters J(k1, q1, k2, q2), where ki, qi represent the rank and projection

of the local irreducible tensor operator Oki,qi on site i. The interaction Hamiltonian can

be recovered exactly by summing up all contributions (eq. (25)). The parameters are

given using the extended Stevens operator basis296,299,300 and could be used directly in

connection with the EasySpin function in MATLAB.301

Ĥ1,2
exch =

∑
k1,q1,k2,q2

Jk1,q1,k2,q2Ok1,q1Ok2,q2 . (25)

Thermodynamic magnetic properties: The POLY_ANISO module is able to com-

pute basic static magnetic properties for polynuclear compounds. For the computation

of the molar magnetization, the Zeeman matrix is built on the basis of several low-lying

energy states (user-defined size) and diagonalized. The resulting eigenstates are used to

compute molar magnetization where Zeeman states are being populated according to the

Boltzmann distribution law. Contribution to the magnetization arising from the states

which did not enter explicitly into the Zeeman matrix is considered within the second-

order perturbation theory. The computation of molar magnetization (and torque) takes

into account also the contribution of local excited states which were not accounted for
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exchange coupling. Molar magnetic susceptibility (tensor and powder) is computed using

the zero-field limit of the molar magnetization, where the implemented expressions do not

require the Zeeman Hamiltonian to be explicitly computed, enabling significant speedup

in computation of these properties compared to the computation of molar magnetization.

The magnetic susceptibility is computed in several formulations: (i) the derived formulas

for zero-field limit, (ii) using the “experimental” formulation asM/B (inaccurate but em-

ployed quite often), and (iii) as derivative of the magnetization with respect to applied

field dM/dB (i.e. the rigorous definition). Intermolecular interactions are accounted for

in a mean-field approach, using a single parameter (zJ). This parameter is usually quite

small in magnitude and influences magnetic susceptibility, torque and magnetization at

very low temperatures. For each temperature point, the main values and main axes of

the susceptibility tensor are given.

This methodology has been successfully applied for the investigation of anisotropic

magnetism in Dy3 triangles,302 Co7 wheels,303 Ln (N2)
3– Ln radical-bridged dilan-

thanides304 and many other compounds (see fig. 16). POLY_ANISO and SIN-

GLE_ANISO are actively used also for the investigation of the structure of blocking

barriers of single-molecular magnets, molecules which display magnetic bistability of

intra-molecular origin.

5.6 Ultra-high precision computer spectroscopy.

The accuracy of computer simulations can challenge that of experiments, suggesting that

it may be worth to compute rather than measure some properties. This alternative way

to achieve accurate reference data is pursued by some scientists using the OpenMolcas

platform. In this context we would like to mention the open-ended implementation of

the OpenMolcas platform in handling one-particle electronic basis functions with high

angular momentum, allowing the evalution of electron repulsion integrals and their stor-

age in FCIDUMP format, using the same code used for the Stochastic-CASSCF approach,

discussed in section 3.1. This feature has been used, for example, in the computational

prediction of the carbon atom’s first ionization energy to within 1 cm−1 accuracy306 from
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Figure 16: An example of application of the POLY_ANISO module for the ab initio
construction of magnetization blocking barrier of a Co (II)–Gd (III)–Co (II) trinuclear
complex.305 The magnetic relaxation path, outlining the blocking barrier is traced by the
red lines, whose intensity scale the transition magnetic dipole matrix elements between
the connected multiplet states.

computer spectroscopy.307 This calculation involved six fully correlated electrons in the

neutral carbon atom, with an aug-cc-pCV8Z basis set (569 basis functions, including up

to l angular functions). In the language of CAS spaces, this would be a CAS(6,569), which

is by far the largest CAS calculation ever done to micro-hartree precision as far as we are

aware.

6 Analysis and visualization

As discussed above, OpenMolcas offers a broad range of quantum-chemical methods to

describe large molecules with many correlated electrons and orbitals, and to compute

many excited electronic states efficiently. Setting up these calculations is a nontrivial task,

requiring input from the user, who should have a sufficient understanding of the system

under study and the method being applied. The analysis can be challenging if states

with different characters mix, if multiconfigurational character and double excitations

are present, or if a large number of states are to be analyzed.

To help the user prepare and analyze calculations, OpenMolcas contains, or is easily

interfaced with, suitable tools. Apart from widespread capabilities, like the computation of
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Mulliken populations and electric multipole moments, OpenMolcas includes, for example,

the LOPROP program308 for computing local properties and supports the generation of

various types of orbitals – canonical, natural or localized with several methods. The

generated orbitals, in the form of lists of coefficients, are usually not very informative,

and some visualization tool becomes necessary in order to better appreciate the shape

and structure of the orbitals. Traditionally this has been done by exporting the orbital

and basis-set information in Molden309 format. However, it should be pointed out that

there are several different ways to choose the orbitals (e.g. state-averaged and state-

specific natural orbitals, and natural transition orbitals) and that it is not always clear

which orbital representation is optimally suited. Therefore, a number of tools have been

developed that allow to easily switch between these different representations.

Recent developments in OpenMolcas provide additional tools to visualize and manip-

ulate the orbitals (section 6.1), as well as to analyze their properties (section 6.2), and

more options for the analysis of wave functions and transitions, including tools that allow

for a completely automatized analysis of the wave function character and provide a rig-

orous route to comparing the wave functions produced by different methods (sections 6.3

and 6.4). In this section we describe the most significant of these new capabilities.

6.1 Graphical interface and orbital visualization

OpenMolcas, as other high performance computing programs, requires numeric data as

input and can produce a vast quantity of data as output. Raw numeric data (atomic

coordinates, orbital coefficients, electron populations and bond orders, etc.) are often

very difficult to comprehend. As a typical example, an essential step in CASSCF and

related calculations is selecting the active space, a task for which an orbital viewer is

of great help. With MOLCAS, the tools of choice have been either third-party programs

capable of computing and rendering isosurfaces “on the fly”, from the basis set and orbital

coefficients information (in Molden format), or more specific programs which rely in the

precalculation of the volumetric data and use custom formats.

First, in order to make these tasks easier, a program with GUI: LUSCUS has been de-
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veloped310 as a stand-alone program (distributed under the Academic Free License (AFL)

version 3.0311) convenient for manipulation and visualization. Although some data pro-

duced by quantum chemistry programs can be stored in standardized or well-established

formats, for complex data the formats are often unique and thus GUIs are strongly bound

to the computational code. LUSCUS uses a native data format (see fig. 17) to read or

write visualizable data, which is supported by OpenMolcas. Other chemical formats can

be used with LUSCUS since they are automatically converted to and from LUSCUS data

format by external plug-ins. Plug-ins convert data on demand without the need of user in-

tervention. Therefore, from the user’s point of view, LUSCUS is capable of manipulating

a number of chemical formats, making it not only a graphical front-end for OpenMolcas,

but also a powerful general-purpose chemical viewer and editor.

Figure 17: Interaction of LUSCUS and various data files: LUSCUS can only operate
with .lus files (the native LUSCUS format) and separate plug-ins (both simple and
interactive) are used to convert the data.

Complementarily, a new stand-alone program has been developed to generate precom-

puted volumetric data: SAGIT (stand-alone grid independent transformer).312 This code

is operated via command line and can be useful to generate volumetric data for many

orbitals simultaneously, or in batch mode, where a GUI is not needed; it can also be used

as a plug-in for LUSCUS to visualize orbitals on the fly.

With the release of OpenMolcas, a new orbital viewer has been developed which tries

to suit the most typical needs of OpenMolcas users. Pegamoid313 is written in Python and

is easily installable in modern computer systems. It can open orbital or volumetric files in
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a variety of formats generated by OpenMolcas. Most significantly, it can open, display and

save orbital files in the new HDF5 format generated by OpenMolcas, which has several

advantages compared to other formats: (i) as outlined in section 2, it is a portable self-

documented format that allows easy transfer and access of data, (ii) it is directly usable

by OpenMolcas programs, e.g. as starting orbitals for the RASSCF program, (iii) it is

not affected by limitations in the Molden format, like the maximum angular momentum

in basis functions or the mixture of Cartesian and spherical harmonic type of functions.

With respect to formats with volumetric data, the main advantage is that its size is not

excessive even with large basis sets, and that the desired quantities to be visualized need

not be precomputed.

Apart from simply viewing the orbitals saved in a particular file, Pegamoid (as well as

LUSCUS) can also assign them to different orbital spaces (frozen, inactive, RAS1, RAS2,

RAS3, secondary, deleted) and save them in a new file that can be used as input for

OpenMolcas programs. When the orbital file contains the necessary information (e.g. an

HDF5 file generated by a state-average RASSCF run), it is also possible to visualize, with-

out further post-processing, natural orbitals and occupations for the different electronic

states, electron density differences, natural difference orbitals and natural transition (or

binatural) orbitals between the states314 (see fig. 18).

Pegamoid’s goal is to be a quick and convenient tool for viewing orbitals, selecting

active spaces and identifying states. While it has options to control the display quality

and features, the generation of high-quality eye-catching pictures often requires the use of

other packages that offer a wider range of options. For this purpose, Pegamoid can be used

to save the desired volumetric data in the Gaussian .cube format,21 which can then be

used by other programs to render pictures with customized colors, textures, backgrounds

and additional elements.

6.2 Property integrals of individual orbitals

OpenMolcas supports the computation of property integrals of molecular orbitals in the

SEWARD module, including the multipole moments, Cartesian moments, electric po-
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Figure 18: Pegamoid interface, showing the difference density between two electronic
states of uracil (an n→ π∗ transition).

tential, electric field, electric field gradients, diamagnetic shielding, one-electron Darwin

contact term, etc. It supports any orbitals calculated in SCF, RASSCF, CASPT2 or other

modules. With natural orbitals, the sum of the occupation-number-weighted orbital prop-

erty integral is the total electronic part of a property integral, so the occupation-number-

weighted orbital property represents how much each orbital contributes to a property

integral of an electronic state. For analysis purposes, one has the option of printing, for

each molecular orbital, these property integrals weighted by the occupation number of

each orbital, or printing these property integrals for each orbital without the weighting. In

case one is insterested in the property integral for an unoccupied orbital, the nonweighted

option is required, as otherwise any property integral would trivially be zero. This can be

useful when analyzing Rydberg states to determine which orbitals are Rydberg orbitals.

It can also be helpful when deciding which orbitals to include in the active space of an

MCSCF calculation and when determining whether the excited states from different MC-

SCF calculations correspond to the same state.315 For these examples, to determine how

diffuse each orbital is, the second Cartesian moment 〈r2〉 and its components (〈x2〉, 〈y2〉,

〈z2〉, 〈xy〉, 〈yz〉, 〈xz〉) of each orbital can be calculated. An example input file making

use of this capability can be found in the Supporting Information.
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6.3 Binatural or natural transition orbitals for excitation char-

acterization

There is a frequent need to quantify the difference between two states, and to visualize

the difference for easily understood characterization. Assuming we have at hand corre-

lated electronic wave functions, the usual difference density is often insufficient. However,

recalling that the usual natural orbitals are the eigenfunctions of the one-electron reduced

density matrix of a single state, a simple extension is to use the singular value decomposi-

tion (SVD) of the transition density matrix of two states to characterize their difference.

This approach was used for single-determinant wave functions316 and for TDDFT and

CIS wave functions,317 where the orbitals were named natural transition orbitals, and

independently by Mayer.318 An SVD has also been used to relate orbitals of fragments

of a composite molecule.319 Prior usage seems to have been proposed mostly for specific

applications, but in ref. 320 it was suggested to use orbitals computed as singular vectors

of the one-electron transition density matrix as a technical tool to analyse the difference

of pairs of general states, regardless of whether these were single-determinant states or

indeed if they were actually computed to be eigenstates of any Hamiltonian. For general

discussion of the SVD itself, see e.g. the articles by Stewart.321,322

The binatural orbitals, or natural transition orbitals, are obtained as the left and

right singular functions of the reduced one-electron transition density matrix, γPQ. The

binatural orbitals and their associated amplitudes encode in a compact way the whole

γPQ and can be used to analyze the transition between two electronic states.

The states would usually be either two noninteracting, computed states, or they can be

two different approximations. They could also be e.g. states computed with and without

some perturbation, or indeed any two states that allowed us to compute the transition

density matrix in a suitable basis – maybe, but not necessarily obtained as an orbital

basis that was used for the two states. The transition density matrices and the binatural

orbitals are computed by the RASSI program within OpenMolcas.

There is one limitation: what is obtained is the difference of the states as expressed

by a one-electron operator. One can easily extend this to form two-particle “binatural
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geminals”. Also, one might have use for “Dyson amplitudes”, as seen in section 5.3, or

“one-particle-two-holes” amplitudes, e.g. for core hole states.

6.4 Detailed analysis of multireference wave functions

The wave function analysis module WFA323 does not only provide visualization meth-

ods but also computes a number of quantitative descriptors with the aim of eliminating

personal bias in the assignment of state characters and allowing for an automated anal-

ysis of large data sets. WFA is based on the open-source wave function analysis package

libwfa.314,324 One focus of libwfa is the analysis of excited states in terms of two-body

electron–hole distributions within exciton theory.325 To visualize the excitations in real

space, binatural or natural transition orbitals317,326 and the more compact electron and

hole densities314 are available. Electron–hole correlation effects can be elucidated using

population analysis techniques.326,327 Central tools of libwfa are excited-state descriptors

quantifying spatial and statistical properties of excited states such as exciton size,325

charge-transfer distance and correlation coefficient.324 Furthermore, it supports the anal-

ysis of one-electron difference density matrices (1DDM) between different states, which

is particularly important to study orbital relaxation effects.323,328,329 Finally, an effective

number of unpaired electrons330,331 can be computed from natural orbital occupations.

The WFA module is interfaced to the SCF, RASSCF, and RASSI modules of Open-

Molcas. Through the RASSI interface, also other modules can be accessed such as the

CASPT2 module and QCMaquis (DMRG and DMRG-NEVPT2, see section 3.2).

Previously, the described analysis methods were used to analyze single-reference com-

putations addressing a wide range of phenomena, such as the analysis of electronic delo-

calization in DNA,332 excitonic band structure in conjugated polymers,327 and the visual-

ization of solvent effects in push–pull systems.333 We hope that through the new interface

between OpenMolcas and libwfa, enabling the use of multireference methods, this scope

can be significantly extended. Furthermore, the implemented analysis methods provide

a rigorous route toward benchmarking excited-state calculations334,335 and can give new

insight into specific failures of the different computational protocols employed.329,336
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Figure 19: Analysis of the singlet and triplet excited-states of the Re(CO)3(bpy)Cl com-
plex computed at the MS-CASPT2 level using the WFA module: (a) molecular structure
and definition of the Re(CO)3 (red), bpy (blue), and Cl (green) fragments; (b) excitation
energies; (c) electron (cyan) and hole (orange) densities of the S1 state; (d) decomposition
into different local and charge transfer contributions; (e) charge transfer distance using
two different descriptors.

Presenting a practical application of the WFA module, the excited states of the transi-

tion metal complex Re(CO)3(bpy)Cl are analyzed (fig. 19). Computations were performed

at the MS-CASPT2 level using a CAS(12,12) active space considering 19 singlet and 18

triplet states. The excitation energies of these states are presented in fig. 19 (b), illustrat-

ing the high density of low-lying states in this system. A direct analysis of these states in

terms of canonical orbitals is not only tedious but is also quite challenging as the effects

of different interacting configurations have to be disentangled. Therefore, we present here

three alternative routes of analysing these states, as implemented in the WFA module:

a visual analysis of electron and hole densities, a fragment-based decomposition of the

excitations, and an analysis in terms of statistical descriptors.

As a first option, the densities of the excited electron and the excitation hole, de-

rived from the one-electron transition density matrix (1TDM),314 are computed. These

densities, computed for the S1 state of the complex, are shown in fig. 19 (c). This rep-

resentation shows the main state character in an intuitive way, i.e. the hole (orange) is

located on the Re and Cl atoms whereas the electron (cyan) is located on the bipyridyl

(bpy) ligand. However, the problem of any visual analysis is the required time and the
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dependence of the outcome on the subjective reasoning of the person analysing.

To overcome these problems of visual analysis, a completely automatized way to as-

sign the state-character in transition metal complexes has been developed329,335 and it is

presented as a second option here. First, the system needs to be divided into different

fragments; in the present case a useful partition is the Re(CO)3 unit (red), the chlo-

rine atom (green) and the bpy ligand (blue), as represented in fig. 19 (a). Subsequently,

the excitation process is partitioned into different local contributions on the individual

fragments and charge transfer (CT) between them using a 1TDM population analysis pro-

cedure yielding the so-called charge-transfer numbers.314,326 The outcome of this analysis

is presented in fig. 19 (d). The left-most bar graph corresponding to the S1 state shows

that this state is predominantly of Re(CO)3→bpy CT character (yellow bar, 61 %) with a

secondary contribution of Cl→bpy character (green bar, 26 %). More generally, fig. 19 (d)

shows the low-energy states to be generally of Re(CO)3→bpy character with the exception

of T3, which is a locally excited state on bpy (blue bar).

A downside of the CT number analysis is that its application requires an a priori

definition of the fragments used for the decomposition. When intuition is untrustworthy,

it is possible to automatize the fragment definition process.335 Alternatively, we can

move away from the population-analysis concept altogether leading to the third option,

exemplified here through the computation of a CT distance in real space. Two different

formulae are employed considering either (i) the distance dh→e between the barycenters

of hole and electron densities as computed from the 1TDM or (ii) the distance dD→A

between the barycenters of the detachment and attachment densities337 as computed

from the 1DDM.324 The results are shown in fig. 19 (e) and, without going into too

much detail, we want to mention two observations. First, the CT distance mirrors CT

character as identified in fig. 19 (d), i.e. the CT distances of the local states (red and blue

bars) are close to zero while they are significantly enhanced for the CT states. Second,

CT distances obtained from the 1TDM and 1DDM differ significantly where the latter

are always lower. This difference can be interpreted to originate from orbital relaxation

effects,323,328,329 i.e. the total amount of charge separation is lowered as the orbitals adjust
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to the primary excitation process.

7 Additional features

In this final section on new options and utilities in OpenMolcas, we present developments

for a new multiscale option, accurate and compact basis sets, symmetrization of wave

functions, and simulations of muonic molecular systems.

7.1 Multiscale simulations by frozen-density embedding theory

The toolbox of electron correlation methods present in OpenMolcas would not be com-

plete without the possibility to combine them in a multiscale fashion. Among the different

possibilities for multiscale modeling in OpenMolcas, the one based on frozen-density em-

bedding theory (FDET)338–340 provides a robust tool to treat systems and problems of

different nature. This multiscale approach is a first-principles description of a complex sys-

tem as combination of two interacting subsystems. One portion of the system, subsystem

A, is selected to be described at the molecular orbital level – e.g., through a Kohn–Sham

determinant,338 or an interacting wave function339 – whereas the second (subsystem B,

so-called “environment”) is accessed through a simpler descriptor, namely its electron

density. The interaction between the electrons of A with subsystem B is nonetheless

accounted quantum mechanically through the action of the following (orbital-free) em-

bedding potential:

vemb[ρA, ρB, v
nuc
B ](r) = vnucB (r) +

∫
ρB(r′)

|r′ − r|dr
′

+
δT nad

s [ρA, ρB]

δρA(r)
+
δEnad

xc [ρA, ρB]

δρA(r)
+
δ∆F [ρA]

δρA(r)
.

(26)

The first two terms in eq. (26) represent electrostatic contributions due to the nuclei

of system B and to its electron density ρB(r), respectively. The next two terms are

instead purely quantum mechanical and originate from the nonadditive contribution to

the noninteracting kinetic energy functional Ts[ρ] and the exchange-correlation functional
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Exc[ρ], respectively. By nonadditive contribution of a generic density functional G[ρ], we

refer to a bifunctional of the electron densities of A and B, namely to Gnad[ρA, ρB] =

G[ρA+ρB]−G[ρA]−G[ρB]. Finally, the last term in eq. (26) is not related to the interaction

between the two subsystems, but it rather ensures consistency with the Hohenberg–Kohn

theorem upon introduction of approximations in the description of subsystem A. This

term is however neglected in most practical applications of the theory.339

The one-electron operator corresponding to the potential of eq. (26) can then be added

to the environment-free Hamiltonian (ĤA) of the quantum mechanical method of choice

for subsystem A in order to proceed with the electronic structure calculation. Naturally,

this way to proceed simplifies the computational effort compared to the corresponding

quantum mechanical calculation on the entire (A + B) system. One limitation of the

current OpenMolcas implementation is the need to use explicitly basis functions on B

as well as A. For true multiscale simulations, where for example ρB(r) is obtained from

statistical averages,341 the use of a real-space representation is certainly desirable, and

will be implemented in a future release of the software. Nonetheless, it should be pointed

out that the overhead for the presence of basis functions on B is somewhat handled

intelligently so that correlation methods need not to include orbitals from subsystem B

explicitly (see section S15).

If the exact functional forms for T nad
s [ρA, ρB], for Enad

xc [ρA, ρB] and for ∆F [ρA] were

known, eq. (26) would produce an exact quantum mechanical model for the interacting

subsystems, but in practice various approximations to these functionals are available

that guarantee a sufficient accuracy. Some of such approximate functionals are included

in the current OpenMolcas implementation of FDET342–345 as detailed in the software

documentation. Noticeably, the construction of the embedding potential through eq. (26)

requires the user to make another important choice, namely that of which ρB(r) is to

be used. This is a key issue for the correct use of FDET, and despite the lack of a

general answer to the question, the many studies present in the literature show the general

trend that the results do not depend strongly on the choice of ρB(r).346 In practice,

with any physically justified ρB(r), deviations in the predicted oservables are smaller
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than the errors introduced by other sources, such as the basis set used, the choice of

the approximants for T nad
s [ρA, ρB] and Enad

xc [ρA, ρB], or the quantum mechanical method

selected to describe subsystem A.

As OpenMolcas is specialized in multiconfigurational wave function methods,7 the

combination with FDET represents a somewhat unique tool for investigating complex

systems especially in their excited states and for notorious DFT-hard situations. With

this in mind, an effort has been put into the development of a variant of FDET, known

as linearized FDET,343 that shows some advantages compared to the conventional FDET

approach, as it inherits useful properties of the corresponding wave function method.

Linearization consists of approximating the nonadditve functionals so that they become

linear in ρA(r), by means of a Taylor expansion around a reference density ρrefA (r), which

can be assumed not to differ significantly from the stationary density of the embedded

subsystem. Among the many advantages of linearized FDET, we point out the fact that

the eigenstates of the embedded Hamiltonian are orthogonal, hence they can be directly

related to the true ground and excited states of the embedded subsystem. Also, differ-

ences in the computed eigenenergies of the embedded Hamiltonian can be used to assign

excitation energies in much the same way as it is done for the calculation on the isolated

system A.

7.2 Development of new ANO basis sets

Basis sets based on the atomic natural orbitals (ANO) approach347 are the workhorse

of the MOLCAS/OpenMolcas program packages. The ANO contraction scheme offers

a fast convergence towards the uncontracted form of the basis set. Thus, ANO basis

sets even in small contracted forms – say valence double zeta plus polarization functions

(VDZP) – usually are able to yield accurate results, which makes them the perfect choice

for calculations where the bottleneck lies in the correlation part. With the focus on fast

convergence by contraction and application in accurate correlated calculations, ANO

basis sets were allowed to contain a larger number of primitive basis functions than other

comparable basis sets.348,349
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Accompanying the nonrelativistic ANO-L basis set,350 the more compact ANO-S basis

set351 had been available, thus allowing more economic treatment of large molecular sys-

tems where the integral computation time can rival the correlation part. For relativisitic

calculations, however, so far only the relativistic core-correlated ANO-RCC basis set352

had been developed for the second-order Douglas–Kroll–Hess (DKH2) Hamiltonian. The

large size of this basis set in terms of primitive basis functions made integral calcula-

tions for extended systems rather costly. To make also relativistic calculations for large

systems more economic, a new compact relativistic basis set, the ANO-XS basis set,353

has recently been developed. The number of primitive basis functions in the ANO-XS

basis set is about half that of the ANO-RCC basis set. This greatly reduces the computa-

tional costs in the integral computation time, especially when used in combination with

Cholesky decomposition.

The ANO-XS basis set is available for light atoms (Z ≤ 20). Its main intent is to

be used in combination with the larger ANO-RCC basis set in relativistic calculations

containing heavy atoms such as the chromium complex shown in fig. 20, constituting a

part of a metal-organic framework (MOF). When using the ANO-RCC basis set with

VDZP contraction for all atoms, the total number of primitive basis functions is 4573.

Replacing the basis set for all atoms except chromium with the ANO-XS basis set reduces

the number to 2014.

7.3 Symmetrization of wave functions

At the early stage of quantum chemistry, the symmetry of molecules played an important

role as an efficient way to reduce the size of the computational problems. Today this

aspect is not as important, since the absolute majority of computed systems have no

symmetry elements except of identity.

Many computational codes, including OpenMolcas, use only Abelian point groups

(D2h and subgroups) for calculations. In this case the result of any symmetry operation

on a matrix element is a multiplication by 1 or −1.

If a molecule has a symmetry higher than D2h, the computational code will use a
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ANO Basis Sets On a MOF Template

Figure 20: Basis set combination of ANO-RCC and ANO-XS for the calculation of a MOF
template.

lower symmetry and as a result, the computed density or wave function can present a

broken symmetry. In some cases, this deviation from symmetrical solution will be small,

but in other cases this error will be significant,

Rewriting the computational codes for the purpose of handling an arbitrary point

group is a rather complicated programming task. Instead, there is a more simple approach,

which involves symmetrization of the computed wave function according to any specified

symmetry, e.g. the symmetry of the molecular structure. The procedure of symmetrization

of the wave function can be applied at the end of the calculation, or during the iterative

procedure of computing the wave function (e.g. in a self consistent cycle). The details of

the algorithm of symmetrization are described in ref. 354. Prior to an SCF calculation the

point group is determined. The orbital spaces for each irreducible representation (irrep)

are then calculated for the supplied basis. At each iteration the symmetric orbitals are

projected out and partner functions determined. Coefficients are then averaged over the

partner functions. Since the dimension of each irrep space is known, the symmetrization

step will also verify that the projected subspaces belong to the correct symmetry species.

This is required since no restriction is placed on the rotations during the iterations, and

large symmetry breaking may occur.

81



A mathematical library (libMSYM) has been designed for two independent tasks: au-

tomatic detection of the point group, and symmetrization of the computed wave function

according to a given symmetry.355 Version 2.0 of the library can be integrated into the

OpenMolcas code, and produce SCF calculations with wave function symmetrized at any

SCF cycle. The usage of libMSYM is especially important if approximate integrals are

used in the calculations. Two examples below demonstrate the abilities of the library.

As a first example, in tetrafluoromethane (CF4), belonging to the Td point group, the

HOMO orbitals belong to the T1 irrep. After removing three electrons from the molecule

and running a UHF/DFT calculation the symmetry will break even though T1 is 3-

dimensional. By applying symmetry restrictions in the SCF calculation the charges will

be evenly distributed between 3 orbitals of T1 symmetry as can be seen in fig. 21.

Figure 21: Orbitals for CF4 (point group Td) before (upper row) and after (lower row)
symmetrization.

The second example is a symmetry-broken solution. The structure of the (NO2)2 dimer

is totally symmetric, and belongs to the D2h point group. However, if we add a positive

charge, the wave function (at UHF level) becomes unstable and the electron is localized

at one of the monomers. By enforcing the symmetry with the libMSYM library, we obtain

a fully symmetric solution. The total dipole moment is of the order of 10−13 D.
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7.4 Calculations of muonic atoms and molecules

The overwhelming majority of chemical studies, experimental and computational, are

concened with “normal” matter, constituted of electrons, protons and neutrons. However,

a large number of other elementary and composite particles are known which could, in

principle, replace the ordinary fermions, although their lifetimes are usually so short that

the practical significance is doubtful. An outstanding case is that of the muon, whose

lifetime of 2.2 µs has allowed its detection combined with normal matter. The muon is a

lepton, with similar properties to the electron, but with a mass about 200 times larger.

Muons can replace electrons in normal molecules and, due to their heavier mass, their

density is concentrated much closer to the nuclei. The radiation emitted as a muon falls

down to lower energy levels can give information about the nuclear charge distribution

and, to some extent, about the electronic structure. Recent developments in muonic X-

ray spectroscopy for nondestructive elemental analysis356–358 have spurred the interest of

theoreticians to predict the properties of muonic atoms and molecules.

Calculations of systems including electrons and/or muons are now possible with Open-

Molcas.359 There are a few issues to take care of. One-particle and exchange integrals

are always vanishing between electrons and muons, since they are distinguishable, but

Coulomb integrals are always nonzero, regardless of which particles they refer too. Due

to the heavy mass of the muons, the Born–Oppenheimer approximation becomes less

valid, especially for the lighter nuclei, which cannot be assumed infinitely heavier than

the muons. To account for this, OpenMolcas allows including the so-called finite nuclear

mass correction (FNMC)360 term to the kinetic energy. In addition, since the muonic

density is much more concentrated close to the nucleus, the muonic energy levels are

much more sensitive to the nuclear size and charge distribution, and a point-like nuclear

model is expected to be inaccurate. In OpenMolcas finite nuclear size effects can be in-

cluded through a Gaussian charge distribution. Finally, the description of muons requires

the use of specialized basis sets, with exponents much larger than those typically used

for electronic basis functions. Such a basis set has been recently developed for elements

from H to Ar and Cu.359 Initial calculations for atoms and molecules where one electron
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was replaced with one muon showed satisfactory agreement with experimentally available

data, suggested a mislabeling of one of the peaks for Cu and allowed the estimation of

the sensitivity of muonic X-ray energies to chemical environment.

8 Summary

OpenMolcas – an open-source community development platform – is based on the source

code of the MOLCAS package. The program suite is now also a fully operational user’s

alternative. This move has been done under the leadership of the (Open)Molcas devel-

opers to promote the use and the development of the multiconfigurational wave function

paradigm. The report includes technical details of the development platform and also a

large number novel implementations. For the first part it was described how the Open-

Molcas code is developed and managed. This arrangement will allow easier contributions

from new developers and a more direct interaction with other software, as already exem-

plified by some of the interfaces reported in this work. For the second part it is reported

an array of new options in OpenMolcas, which include new techniques in wave function

models, tools for molecular dynamics and potential energy surface exploration, methods

for computing spectroscopic and magnetic properties, utilities for graphical representation

of results, and other additional new features. These items are summarized below.

The range of applicability of the CASSCF procedure has been extended by a num-

ber of new implementations and interfaces. The report describes in some detail the

Stochastic-CASSCF approach, two DMRG options – the OpenMolcas–CheMPS2 and

the OpenMolcas–QCMaquis interfaces – and new features available for the MC-PDFT

method. Furthermore, new tools for exploration of the electronic PES and various types

of MD have been implemented. More specifically, we report on availability of analytical

nonadiabatic coupling vectors and associated optimization and characterization of conical

intersections, on new options for the DYNAMIX module, and on two interfaces for molec-

ular dynamics – SHARC for semiclassical dynamics and Quantics for on-the-fly quantum

dynamics. A number of options and features have been implemented to improve the ca-
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pacity of OpenMolcas to address issues associated with different types of spectroscopy.

These options include the use of the exact semiclassical operator for the light–matter

interaction, the treatment of core holes, the generation of Dyson orbitals, the simulations

of MCD spectra, the POLY_ANISO module for the simulation of magnetic properties

of polynuclear complexes, and the use of OpenMolcas in association with ultra-accurate

simulations. The OpenMolcas package has additionally been supplemented with a list

of new tools for post-calculation analysis. These include LUSCUS – a general purpose

GUI, a stand-alone grid generator SAGIT, the orbital visualizer Pegamoid, the genera-

tion of natural transition orbitals in the RASSI module, and the WFA module to analyze

excited-state simulations. Finally, some additional features were described, such as the

ANO-XS basis set, a multiscale option using frozen-density embedding techniques, im-

plementation of higher point groups through the libMSYM library, and options to handle

both the negatively charged muons and electrons at the same time.

To conclude, we have reported on the new development and application environment of

the open-source quantum chemical electron structure and molecular dynamics simulation

package OpenMolcas. This report described a robust software development environment.

This and the documentation of a large array of new developments should stimulate more

developers to join the OpenMolcas community, in particular those interested in multi-

configurational electron structure theory, and various types of molecular dynamics and

spectroscopies. Moreover, to the reader, and potential user, we hope that the case has

been made that OpenMolcas – a free-of-charge tool – can provide a strong and dynamic

platform for state-of-the-art simulations. The user can virtually get access to new options

and features as soon as the developer deems them stable for use in production calculations.

Looking towards the future and new development one would in particular look forward

to a robust implementation of a QM/MM interface, a better platform infrastructure to

facilitate efficient massively parallel simulations, integral-direct RI techniques, and the

use of new technologies, such as machine learning, to accelerate current procedures but

also open for new ways in which ab initio data are used.
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