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ABSTRACT:	Sulfonamides	are	poor	nucleophiles	in	Pd	C-N	coupling	catalysis,	hindering	synthesis	of	densely-functionalized	
N,N-diaryl	sulfonamide	motifs	relevant	to	medicinal	chemistry.	Through	targeted	high-throughput	experimentation	(HTE),	
we	have	identified	the	Pd/AdBippyPhos	catalyst	system	as	an	effective	and	general	method	to	construct	this	difficult	to	access	
moiety.	In	particular,	AdBippyPhos	is	critical	for	the	installation	of	heteroaromatic	groups.	Computational	steric	parameteri-
zation	of	the	investigated	ligands	reveals	the	potential	importance	of	remote	steric	demand,	where	a	large	cone	angle	com-
bined	with	an	accessible	Pd	center	is	correlated	to	successful	catalysts	for	C-N	coupling	reactions.	

INTRODUCTION 
The	sulfonamide	functional	group,	a	metabolically-stable	

hydrogen	bond	acceptor,	is	commonly	found	in	biologically	
active	molecules	including	many	active	pharmaceutical	in-
gredients.1-4	 Sulfa	 drugs	 such	 as	 sulfamethoxazole	 have	
been	 used	 for	 decades	 as	 inexpensive	 anti-microbial	
agents,5	while	more	complex	sulfonamides	find	use	as	anti-
cancer	agents,6	antiretroviral	agents,7	 in	hepatitis	C	 treat-
ment,8	and	in	various	crop	protection	methods.9		
Through	our	work	on	GSK8175	(Figure	1),	an	NS5B	inhib-

itor	for	treatment	of	hepatitis	C,8,10	we	discovered	that	effi-
cient	access	to	the	N,N-diarylsulfonamide	motif	is	a	signifi-
cant	challenge	using	current	synthetic	methods.11-14	Medic-
inal	 chemistry	 routes	 to	 prepare	 N,N-diarylsulfonamides	
analogous	 to	 GSK8175	 focused	 on	 nucleophilic	 aromatic	
substitution	and	low	yielding	Cu-catalyzed	Chan-Lam	cou-
plings	with	aryl	boronic	acids.10	The	initial	scale-up	route	to	
GSK8175	itself	relied	on	a	multi-day	SNAr	reaction	that	re-
quired	the	toxic	solvent	HMPA.	Attempts	to	replace	this	step	
with	Pd-catalyzed	coupling	of	the	secondary	mesylaniline	to	
simple	aryl	halides	were	unsuccessful,	as	was	sulfonylation	
of	the	analogous	diarylamine	with	mesyl	chloride.	Instead,	
development	focused	on	optimization	of	the	Chan-Lam	ap-
proach,	employing	an	aryl	boronate	ester	and	a	cationic	Cu	
precatalyst.15,16	

	

Figure	1.	GSK8175,	Inspiration	for	developing	C-N	bond	cou-
pling	 for	 synthesis	 of	 N,N-diarylsulfonamides;	 prior	 catalytic	
approaches	to	arylation	of	N-arylsulfonamides;	Pd	coupling	de-
scribed	in	the	present	work.	
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The	difficulties	encountered	during	this	program	alerted	
us	to	a	broader	gap	 in	practical	synthetic	methods	for	ac-
cessing	 these	 compounds.	A	 search	of	 the	CAS	compound	
database	revealed	a	striking	paucity	of	reported	N,N-diaryl-
sulfonamides:	 of	 the	 nearly	 one	million	 reported	 tertiary	
sulfonamides,	 only	 ~6,000	 have	 the	N,N-diaryl	 substruc-
tures	shown	in	Figure	2.	We	attribute	this	to	the	difficulty	of	
N-sulfonylation	at	a	poorly	nucleophilic	diarylamine,17	and	
the	difficulty	of	arylation	at	a	poorly	nucleophilic	secondary	
sulfonamide.	Herein	we	describe	a	simple	yet	highly	effec-
tive	 palladium/AdBippyPhos	 catalyst	 system,	 which	 ena-
bles	access	to	a	wide	range	of	N,N-diaryl	sulfonamides	with	
pharmaceutically-relevant	 functionality.	 We	 believe	 this	
methodology	will	open	unexplored	chemical	space,	and	fur-
ther	the	development	of	new	potential	therapeutics,	agro-
chemicals,	and	materials.	

Figure	2.	Reported	and	commercially-available	 tertiary	
sulfonamides	 in	 the	 CAS	 compound	 database,	 separated	
into	compound	classes.	
	

RESULTS AND DISCUSSION 
We	employed	high	throughput	experimentation	(HTE)17-

21	to	explore	the	coupling	of	sulfonamide	1	with	either	aryl	
bromide	2a	or	pyridyl	bromide	2b	using	a	number	of	Pd	
sources,	six	phosphine	ligands	(Figure	3),	and	carbonate	ba-
ses.22	This	screen	was	designed	to	comprehensively	evalu-
ate	structural	variations	of	JackiePhos	(L1)	and	BippyPhos	
(L6),	ligands	which	were	found	to	be	the	most	promising	in	
preliminary	trials.	L1	is	a	successful	ligand	in	C-N	coupling	
reactions	of	amides,14b	JackiePhos	variants	(L2	and	L3)	in	C-
N	coupling	of	hindered	amines,23	 and	BippyPhos-type	 lig-
ands	as	a	broad	ligand	class	for	C-N	coupling	reactions.24-29	
When	employing	high	catalyst	loadings	(5	mol	%	[Pd(cro-
tyl)Cl]2),	all	of	the	ligands	screened	enabled	coupling	with	
aryl	bromide	2a;	 in	contrast,	only	BippyPhos-type	ligands	
enabled	 appreciable	 coupling	 of	 heteroaryl	 bromide	 2b,	
with	AdBippyPhos	(L6)30	providing	the	highest	conversion	
to	product	(Figure	4).	Decreasing	the	catalyst	loading	was	
essential	for	enabling	the	practicality	of	a	broad	substrate	
screen	 in	 which	 >300	 individual	 substrate	 combinations	
were	targeted.	During	attempts	to	decrease	Pd	and	ligand	
loadings	 for	 larger	 scale	 reactions,	 other	 ligands	 failed	 to	
promote	the	coupling	reaction	(Table	1),	whereas	the	reac-
tion	of	1	(1	mmol)	and	2b	(1	mmol)	with	[Pd(crotyl)Cl]2	(1	
mol	%)	and	L6	(4	mol	%)	resulted	in	52%	yield	of	3b	(entry	
5).	Further	experiments	revealed	that	adding	3Å	molecular	
sieves	mitigated	decomposition	of	the	aryl	halide	(observed	
to	 occur	 via	 dehalogenation,	 hydroxylation,	 and	

etherification),	leading	to	a	59%	yield	of	3b	(entry	6).14b,22	
Higher	 yields	 are	obtained	when	performing	 the	 reaction	
with	an	excess	of	aryl	halide	(vide	infra).	
	

	

Figure	3.	Phosphine	ligands	screened	in	high	throughput	ex-
perimentation.	

	

Figure	4.	Selected	results	from	high-throughput	screening	for	
N-arylation	of	N-phenylmethanesulfonamide.	Reaction	condi-
tions:	 96-well	 plate;	 0.02	mmol	1,	 0.02	mmol	2,	 0.06	mmol	
K2CO3,	0.002	mmol	[Pd(crotyl)Cl]2,	0.008	mmol	L1-L6,	0.1	mL	
CPME	(0.2	M	in	1),	100	°C.	See	SI	for	full	table	of	results.	

Table	 1.	 Dependence	 of	 sulfonamide	 N-arylation	 on	 Pd	
loading,	ligand	identity	and	loading	for	1	mmol	scale	reac-
tionsa	

Entry	 Ligand	 Pd	
(mol	
%)	

L	
(mol	
%)	

Yield	(%)	

1	 BippyPhos	(L5)	 5	 10	 59	
2	 BippyPhos	(L5)	 1	 2	 -	
3	 AdBippyPhos	(L6)	 0.5	 1	 6	
4	 AdBippyPhos	(L6)	 1	 2	 14	
5	 AdBippyPhos	(L6)	 1	 4	 52	
6b	 AdBippyPhos	(L6)	 1	 4	 59	

aReaction	conditions:	1	mmol	1,	1	mmol	2,	3	mmol	K2CO3,	
[Pd(crotyl)Cl]2,	L5	or	L6,	CPME	(0.2	M),	100	°C.	Yield	is	deter-
mined	by	LC-MS.	b3	Å	molecular	sieves	are	used.	
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  S1 S2 S3 S4 S6 S9 S10 S11 
A1 69 28 25 0 0 32 0 22 
A2 83 29 16 0 74 69 0 68 
A3 14 5 0 0 17 22 0 31 
A4 71 26 12 0 7 13 0 55 
A5 78 19 31 0 45 48 23 13 
A6 29 0 0 0 5 59 0 75 
A7 72 36 15 0 67 0 0 72 
A9 75 0 0 0 72 0 0 79 

A10 55 8 7 0 20 30 0 75 
A11 76 0 0 0 28 0 0 71 
A12 34 1 3 24 16 13 0 0 
A13 10 0 0 0 6 38 11 0 
A15 0 0 0 0 7 16 0 3 
A19 0 0 0 0 5 0 0 33 
A20 6 0 0 0 5 0 0 24 
A21 90 6 33 0 73 18 7 78 
A22 0 6 0 0 9 0 0 56 
A23 61 12 7 0 41 66 3 44 
A24 85 42 11 0 76 36 0 80 

 

Figure	5.	Selected	results	from	evaluation	of	aryl	halides	(A1-A24)	and	sulfonamides	(S1-S12)	in	microscale	array	experiments.	See	
ESI	for	details.	Left:	Values	represent	the	LC	area	percent	of	various	sulfonamide/aryl	halide	combinations.	Reaction	conditions:	0.04	
mmol	aryl	halide,	0.04	mmol	sulfonamide,	0.08	mmol	K2CO3,	3Å	mol	sieves,	[Pd(crotyl)Cl]2	(3	mol	%),	L6	(12	mol	%),	0.5	mL	CPME,	
100	°C,	1000	rpm	tumble	stirring.	Right:	Compounds	in	red	gave	no	desired	products	under	any	conditions.	Sulfonamide	S8	under-
goes	direct	arylation	at	C2	of	the	benzothiophene	instead	of	N-arylation.22	

Figure	6.	Tertiary	sulfonamides	isolated	by	preparative	HPLC.	Yield	corresponds	to	solution	yield	versus	1,3,5-trimethoxybenzene	
by	comparison	to	1H	NMR	spectrum	of	purified	material.	Reaction	conditions:	0.4	mmol	aryl	halide,	0.2	mmol	sulfonamide,	0.6	mmol	
K2CO3,	3Å	mol	sieves,	[Pd(crotyl)Cl]2	(3	mol	%),	L6	(12	mol	%),	0.75	mL	CPME,	100	°C,	1000	rpm	tumble	stirring.	aReaction	condi-
tions:		4	mmol	aryl	halide,	2	mmol	sulfonamide,	6	mmol	K2CO3,	3Å	mol	sieves,	[Pd(crotyl)Cl]2	(1	mol	%),	L6	(4	mol	%),	10	mL	CPME,	
100	°C,	yield	corresponds	to	isolated	yield.	
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A	microscale	array	was	designed	to	evaluate	the	[Pd(cro-
tyl)Cl]2/L6	catalyst	system	against	a	large	number	of	sub-
strate	combinations	(Figure	5).	The	sulfonamides	(S1-S12)	
were	selected	to	reflect	a	variety	of	S-	and	N-substituents,	
and	different	steric	and	electronic	properties.	One	primary	
sulfonamide	(S11)	was	 included	for	comparison.	The	het-
eroaryl	halides	(A1-A24)	were	sourced	from	the	GSK	com-
pound	library	to	form	a	diverse	set	of	pharmaceutically-rel-
evant	heterocyclic	structures.31	The	reaction	outcome	was	
evaluated	by	LC-MS	analysis;	the	presence	of	cross-coupled	
products	was	initially	assessed	by	MS,	and	the	area	percent	
of	the	corresponding	LC	peak	(LCAP)	provides	a	semi-quan-
titative	metric	of	reaction	performance.		
The	microscale	array	enabled	us	to	survey	>280	substrate	

combinations	and	identify	potential	targets	for	preparative-
scale	 reactions.	 In	particular,	we	wished	 to	 rapidly	deter-
mine	the	viability	of	different	heterocyclic	structures	which	
are	 ordinarily	 challenging	 in	 C-N	 coupling	 reactions.32,33	
High	 yielding	 reactions	 (>50%	 LCAP	 coupling	 product)	
were	 observed	with	 six-membered	 heterocycles	 (such	 as	
substituted	pyridines	and	pyrazines),	 five-membered	het-
erocycles	 (such	as	 furans,	 thiazoles,	 and	 thiophenes),	 and	
fused	heterocycles	(such	as	quinolones,	azindoles,	and	ben-
zothiazoles).	 In	 total,	70	of	 these	microscale	 reactions	 re-
sulted	in	>10%	LCAP	of	cross-coupled	product.	Within	the	
substrate	sets,	only	five	of	the	24	aryl	halides	and	four	of	the	
12	 sulfonamides	 failed	 to	 give	 any	 products	 in	 the	 array.	
Several	of	 these	are	 substrates	 containing	 five-membered	
azoles	 (A8,	 A16-18,	 S12),	 which	 remain	 challenging	 for	
many	Pd-catalyzed	reactions.	
To	confirm	the	viability	of	this	method	for	practical	syn-

thesis,	 a	 representative	 set	 of	 sulfonamide	 products	 was	
isolated	on	preparative	scale	(0.2	mmol	to	2	mmol)	(Figure	
6).	Product	3a	is	formed	quantitatively	using	the	optimized	
conditions,	giving	excellent	isolated	yield	at	lower	Pd	load-
ing	(2	mmol	1,	4	mmol	2,	2	equiv	K2CO3,	1	mol	%	[Pd(cro-
tyl)Cl]2,	4	mol	%	L6,	3Å	mol	sieves,	0.2	M	CPME,	100	°C,	2h).	
3b-3s	 were	 synthesized	 on	 a	 10-fold	 smaller	 scale	 (0.2	
mmol	1,	0.4	mmol	2,	2	equiv	K2CO3,	3	mol	%	[Pd(crotyl)Cl]2,	
12	mol	%	L6,	3Å	mol	sieves,	0.2	M	CPME,	100	°C,	24h)	and	
isolated	 by	 mass-directed	 preparative	 HPLC.	 N-arylation	
proceeds	chemoselectively	in	the	presence	of	a	tert-butyl-
carbamate-protected	 N-H	 bond	 (3h-3k)	 as	 indicated	 by	
NMR	analysis.22	High	yields	of	products	with	ortho-substi-
tuted	N-arylsulfonamides	can	be	obtained	using	these	con-
ditions	 (3k-3m),	 though	 sulfonamides	with	 less	 electron-
rich	S-substituents	(3n-3p)	generally	result	in	lower	yields	
(i.e.,	S-Tol	versus	S-Me).	
Having	 found	 bipyrazolylbis(alkyl)phosphine-based	 lig-

ands	 are	 more	 effective	 than	 conventional	 biarylbis(al-
kyl)phosphine	or	biarylbis(aryl)phosphine	 ligands	 for	 the	
arylation	 of	 secondary	 sulfonamides,	 we	 turned	 to	 steric	
modelling	 using	 DFT	 optimized	 geometries	 (PBE0/6-
31+g*)	in	order	to	identify	specific	ligand	features	that	are	
correlated	with	high-yield	couplings.	The	steric	character	of	
palladium-phosphine	complexes	is	determined	using	meth-
ods	 developed	 by	 Guzei	 and	 coworkers34	 and	 previously	
used	by	Sigman.35	Relevant	features	derived	from	the	maxi-
mum-cone	angle	conformations	are	shown	in	Table	2.	Of	the	
ligands	investigated	in	our	initial	screens	(Fig.	4),	those	able	
to	promote	 the	synthesis	of	3b	 in	>50%	solution	yield	all	

have	estimated	cone	angles	(ECAs)	>195°;	however,	those	
that	give	the	highest	solution	yields	also	result	in	compara-
tively	lower	G(Pd)	–	which	is	defined	as	the	percentage	the	
Pd	center	shielded	by	ligand	atoms.34	The	JackiePhos	series	
(L1-L3,	entries	5-7)	features	progressively	larger	cone	an-
gles	and	lower	G(Pd)	values,	and	within	the	BippyPhos	se-
ries	(L5,	entry	3	and	L6,	entry	1)	exhibit	large	cone	angles	
(196-210°)	and	low	G(Pd)	(19.3-21.4%).	
While	further	study	is	required	to	thoroughly	assess	this	

correlation,	our	working	hypothesis	 is	 that	 ligands	with	a	
low	G(Pd)	provide	a	binding	pocket	for	the	weakly	coordi-
nating	sulfonamide	substrates,	while	a	large	ligand	cone	an-
gle	 promotes	 the	 challenging	 C-N	 reductive	 elimination	
through	remote	steric	pressure.36	Prior	work	has	implicated	
both	N-metallation	and	reductive	elimination	as	potentially	
rate-limiting	for	Pd-catalyzed	C-N	couplings	of	amides	and	
sulfonamides.17,37-39	Thus,	while	previous	catalyst	develop-
ment	 efforts	 focused	 on	 generating	 a	more	 electron-defi-
cient	 Pd	 center	 to	 improve	 amide/sulfonamide	 binding17	
and	reductive	elimination,40	we	propose	that	steric	effects	
are	likely	to	be	critical	in	expanding	the	scope	of	this	cou-
pling	reaction.		
	

Table	2.	Steric	parameters	for	biaryl	and	bis(pyrazolyl)	
phosphine	ligands.	

Entry	 Ligand	 ECAa	(°)	 G(Pd)b	(%)	
1	 AdBippyphos	(L6)	 209.7	 19.34	
2	 AdBrettPhos	 217.9	 24.56	
3	 Bippyphos	(L5)	 202.7	 20.78	
4	 CyBippyphos	(L4)	 195.8	 21.40	
5	 JackiePhos	(L1)	 163.4	 19.34	
6	 JackiePhos-NMe2	

(L2)	
193.7	 19.35	

7	 JackiePhos-OiPr	(L3)	 190.5	 20.60	
8	 Me4tBuXPhos	 173.0	 28.00	
9	 tBuBrettPhos	 175.5	 26.59	
10	 tBuXPhos	 205.8	 24.78	
aECA	=	Estimated	Cone	Angle.	bG(Pd)	=	%	Pd	shielded	

by	ligand	atoms.	

	

CONCLUSION 
We	have	identified	a	superior	Pd	catalyst	system	for	chal-

lenging	N-arylations	of	secondary	sulfonamides.	While	sev-
eral	ligands	are	suitable	for	the	synthesis	of	simple	tertiary	
sulfonamides,	AdBippyPhos	(L6)	is	particularly	adept	at	in-
stalling	 pharmaceutically-relevant	 heteroaromatic	 moie-
ties.	By	using	an	array	of	microscale	experiments,	we	were	
able	to	simultaneously	determine	the	catalyst’s	amenability	
to	different	heterocyclic	electrophiles	and	various	sulfona-
mide	structures.				Compatible	heterocycles	include	substi-
tuted	 pyridines,	 pyrazines,	 thiazoles,	 thiophenes,	 furans,	
benzothiazoles,	and	azindoles,	while	five-membered	N-con-
taining	heterocycles	such	as	pyrroles	or	pyrazoles	remain	
challenging.	 A	 number	 of	 tertiary	 sulfonamide	 products	
have	been	isolated	on	0.2-2	mmol	scale	in	good	to	excellent	



 

yields.	We	propose	that	the	success	of	L6	is	related	to	spe-
cific	 steric	 properties,	 as	 evidenced	by	 the	 large	ECA	and	
G(Pd)	determined	through	the	steric	modelling	of	Pd-phos-
phine	 complexes.	 This	 interplay	 of	 ligand	 cone	 angle	 and	
G(Pd)	provide	a	set	of	criteria	for	evaluating	new	potential	
ligand	scaffolds	for	sulfonamide	arylations;	work	to	test	this	
hypothesis	is	currently	underway.	
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