
Towards Autonomous Machine Learning in Chemistry
via Evolutionary Algorithms

Gaurav Vishwakarma,1, ∗ Mojtaba Haghighatlari,1 and Johannes Hachmann1, 2, 3, †

1Department of Chemical and Biological Engineering, University at Buffalo,
The State University of New York, Buffalo, NY 14260, United States

2Computational and Data-Enabled Science and Engineering Graduate Program,
University at Buffalo, The State University of New York, Buffalo, NY 14260, United States

3New York State Center of Excellence in Materials Informatics, Buffalo, NY 14203, United States
(Dated: September 7, 2019)

Machine learning has been emerging as a promising tool in the chemical and materials domain.
In this paper, we introduce a framework to automatically perform rational model selection and
hyperparameter optimization that are important concerns for the efficient and successful use of
machine learning, but have so far largely remained unexplored by this community. The framework
features four variations of genetic algorithm and is implemented in the ChemML program package.
Its performance is benchmarked against popularly used algorithms and packages in the data science
community and the results show that our implementation outperforms these methods both in terms
of time and accuracy. The effectiveness of our implementation is further demonstrated via a scenario
involving multi-objective optimization for model selection.

I. INTRODUCTION

Over the past few years, there has been a rising trend
in the use of data-driven models in the field of chemistry
for the discovery and design of new materials, advancing
computational modeling techniques and gaining insight
into chemical reactions [1–5]. Machine learning (ML),
which is a data-mining process, offers tools that are
useful for extracting complex, hidden correlations from
chemical data and are far less demanding than the tradi-
tional time-intensive computational research (i.e., molec-
ular modeling and simulation). However, ML techniques
are yet to be recognized as mainstream tools in chem-
istry that makes them less preferred over other modeling
choices.

One of the major challenges in the application of ML
is the selection of a model to use in a given problem
setting. Unlike for traditional computational research
(i.e., molecular modeling and simulation), there are no
decades of experience on which techniques do or do not
work in a given situation, nor are there many physical in-
sights to rationalize a particular methodological choice.
Fig. 1 shows a typical ML workflow where it is seen
that the performance of ML models is dependent not
just on the feature representation of the data, but also
on the hyperparameters that are selected for the learning
algorithm. Hyperparameters for ML models can take on
discrete, categorical or continuous values which renders
hyperparameter selection to be essentially an optimiza-
tion problem, however, not a traditional one, because in
discrete or even categorical hyperparameter space, gradi-
ents (that could be used in gradient descent techniques)
are not well defined.

∗ gvishwak@buffalo.edu
† hachmann@buffalo.edu

The traditional method of choice for selecting hyperpa-
rameters for an ML model has been manual selection by
intuition, and more often than not, on an ad hoc basis.
Since there are no standard guidelines for such an ap-
proach, it differs across different applications and thereby
cannot be utilized to conduct an automated hyperparam-
eter search and/or over multiple ML models. These limi-
tations highlight the need to conduct a systematic search
of the valid hyperparameter space, and the simplest im-
plementation perhaps is just a grid search over this entire
space. However, it is readily seen that grid search suf-
fers from the curse of dimensionality and the issues in its
usage are further exacerbated for hyperparameters that
take on continuous values since the valid hyperparameter
space becomes infinite.

In 2012, Bergstra et al. [6] showed that random search
was computationally more effective for hyperparameter
optimization compared to grid search and resulted in bet-
ter ML models. Although random search is an improve-
ment over grid search, it still is inefficient as information
gathered about the hyperparameter space during each of
the trials is not used to guide the future trials. Hence, for
complex, non-differentiable or high-dimensional space,
one needs to look for a solution beyond these primitive
optimization approaches.

Optimization of hyperparameters of various ML mod-
els has been the focus of a number of studies in data
science. Particle swarm optimization [7], a sub-class of
Swarm Intelligence methods, has been shown to derive
ML models with good prediction accuracy [8–13]. Ge-
netic Algorithm [14], a sub-class of evolutionary algo-
rithms that is inspired from biological evolution, by itself
and in combination with other methods, has widely been
applied for optimization of hyperparameters [15, 16].
More recently, hyperparameter optimization using Gaus-
sian processes and Bayesian optimization, that do not
require the hyperparameter space to be continuously dif-
ferentiable, have been widely studied and applied for this



2

FIG. 1: A typical machine learning (ML) workflow where an ML model receives its hyperparameters and the
training data as inputs and its performance is assessed based on its cross-validation score.

task and it has been shown that models with very high
prediction accuracy can be obtained [17–21]. Comple-
mentary methods such as meta-learning have also been
used on occasion to guide the initial guesses for these
optimization methods thereby decreasing the computa-
tional overhead involved in such calculations [22, 23].

However, an extremely important criterion that has
determined the popularity or usage of such advanced op-
timization methods in the past is the trade-off between
the improvement in the model predictions vs the total
time required for the optimization. This trade-off be-
comes more pronounced when the objective function be-
ing optimized is computationally expensive.

Given the number of studies conducted in data sci-
ence involving different algorithms, one would naturally
assume that these methods can be applied to problems
pertaining to other domains as well. However, trans-
ferability of these approaches from data science to the
chemical/materials domain in particular is not guaran-
teed, since the optimization is subject to the data used
for training the model, and there exist some key differ-
ences between the data in the two domains. Variations
in the volume of data sets, representation of data (de-
scriptors), generalizability and veracity of the data are
few of the major points of concern regarding chemical
data sets as highlighted in the NSF report by Hachmann
and co-workers [2]. Hence, this work investigates the op-
timization of hyperparameters for an ML model in the
chemical and materials domain and presents one of the
first proof-of-principle applications for a chemical data
set.

In this work, we introduce a framework based on ge-
netic algorithm (GA) that performs rational model se-
lection and automatically optimizes the hyperparameters
for a given ML model. Within this framework, we explore
different strategies for GA and investigate their impact
on the performance of the algorithm with a significant
focus on the computation time. This paper further aims

to assess and benchmark our genetic algorithm frame-
work against two of the commonly used optimization al-
gorithms within the data science community, to obtain
fully optimized deep neural networks for predicting re-
fractive indices of small organic molecules. In Sec. II, we
formally present our implementation of a real-encoded
genetic algorithm within the group’s machine learning de-
velopment platform, ChemML [24], along with the back-
ground of this work and other computational details. In
Sec. III, we present and discuss results for hyperparame-
ter optimization using our GA framework as well as two
algorithms commonly used in data science. Our findings
are summarized in Sec. IV.

II. BACKGROUND, METHODS, AND
COMPUTATIONAL DETAILS

A. Method Development

We have developed an open-source machine learning
and informatics program suite, ChemML, that makes ma-
chine learning tools more accessible to expert as well as
non-expert users in the chemical and materials domain.
ChemML has been designed to accomplish a two-fold
agenda: to provide a testbed for the systematic and effi-
cient evaluation of the performance of existing ML tools
and techniques, and to serve as a development platform
for any new methods that are developed within the group.
The multi-objective GA module that this work focuses on
has been developed as part of the ChemML package in
order to automate the process of identification of the best
ML approach for any given data set.

Inspired from biological evolution, a typical GA work-
flow begins with initializing a population of candidate
solutions for the desired objective. The candidates are
evaluated based on a certain metric and a subset of them
is selected (via a selection operator) to breed new mem-



3

FIG. 2: Four different genetic algorithm selection schemes implemented in ChemML.

bers to form the next generation of candidate solutions.
The breeding is performed via two other genetic oper-
ators, crossover and mutation. The crossover operation
involves swapping a subset of the vector representation
of one candidate solution (i.e., chromosome of the can-
didate) with the same positional subset of a second vec-
tor. The mutation operator involves randomly selecting
elements of the vector representation and changing their
values in a valid and predefined range. Once the breeding
process is completed, individuals in the new generation
are evaluated and the entire process is repeated again
until a convergence criteria is satisfied.

The GA module in ChemML implements four different
schemes for selecting individuals for future generations as
shown in Fig. 2. These different schemes are intended
to introduce various aspects of biological evolution apart
from those derived from the Darwinian theory such as
survival of low and average performing individuals, en-
suring diversity in future generations and allowing for
randomness in this process. The following elaborates on
the selection process at every generation of GA for each
of the four methods shown in the figure.

• Method 1: Members for crossover and mutation
are selected from the initial population via fitness-
based selection. The best n individuals are then
selected for the next generation from the overall
pool of crossover, mutation and initial population.

• Method 2: With a slight difference from the first
method, this scheme selects individuals for the next
generation using fitness-based selection, to allow for
a higher representation of members with lower rel-
ative fitness values.

• Method 3: Individuals for crossover and mutation
are selected in the same fashion as the first method.
However, the selection process of members for the

next generation follows a user-defined percentage of
best individuals from each of the three pools, i.e.,
initial population, crossover and mutation, to en-
sure diversity in the population at each generation.

• Method 4: This method differs from the first
method in the selection of individuals for mutation
from the crossover pool, instead of the initial popu-
lation, to introduce a random factor in the inherited
genes.

In most optimization problems, the desired result in-
volves optimization of more than one variable where each
variable is optimized independent of the other variables.
Thus, we also demonstrate the efficiency of our GA mod-
ule in handling such cases of multi-objective optimization
in Sec. III.

B. Data representation and model selection

In this work, we use a data set from our previous study
on small organic molecules with a high refractive index
(greater than 1.8) [25]. A subset of 20,000 molecules is
selected randomly from this data that contains their re-
fractive indices as the target property. The feature space
for these molecules is generated using the Dragon 7 soft-
ware where we only select the 1893 two-dimensional de-
scriptors. The choice of feature representation, although
simple, is computationally efficient and competitive with
more demanding representations [25].

The data is initially split into a 90% training and 10%
test set, where the hyperparameters are optimized for
a five-fold cross-validation on the training set (i.e., vali-
dation step). The hold-out test set is eventually used to
assess the performance of the model defined with the best
set of hyperparameters and trained on the entire train-
ing set (i.e., test step). A standard deep neural network



4

(DNN) is used to fit the data, and its performance is
assessed based on the prediction accuracy measured by
the mean absolute error (MAE) of the trained models.
We use Scikit-Learn[26] implementation of DNN as it is
compatible with other essential methods in the library,
and comparably efficient to run on CPUs.

We use the MAE as the objective function (i.e., the
cost function) in all the hyperparameter selection strate-
gies. In addition, the time taken to arrive at the fi-
nal set of hyperparameters is monitored to arrive at the
most cost-effective selection strategies. The computa-
tional time reported in this study for any method refers
to the time taken to complete execution of the code run-
ning parallel on the same 24 core computation node. The
regularization parameter, activation function, number of
hidden layers and the number of neurons per hidden layer
are the hyperparameters of interest for a DNN in our
study [27]. The bounds for the hyperparameter space
explored in this work are specified as:

• regularization parameter – (0.0001, 0.1)

• activation function – (logistic, identity, tanh, relu)

• number of hidden layers – (1, 3)

• number of neurons per hidden layer – (1, 250)

The ’iterations’ in this work refer to the total number
of times the objective function is evaluated or equiva-
lently, the number of times the ML model is trained. The
number of iterations that any algorithm is allowed to run
for is set at a maximum value of 1000. For all calcula-
tions involving GA, the population size is held constant
at 20, and the algorithm is allowed to run for a maxi-
mum of 50 generations. However, GA is allowed to stop
at an earlier stage if the algorithm selects the same best
individual for more than 10 generations consecutively, at
which point we say that the algorithm has converged.

III. RESULTS AND DISCUSSION

We present the results for optimization of hyperparam-
eters for two scenarios – optimization of a single objective
and a multi-objective cost function.

A. Single Objective Optimization

Here we show the performance of random search, ge-
netic algorithm (all four methods discussed in Sec. II)
and the tree of parzen estimators (TPE) algorithm from
the Hyperopt package [28] in finding the best set of hy-
perparameters for a neural network. The MAE for pre-
diction of the refractive index of small organic molecules
is the objective/cost function that is being minimized.

The results for this optimization are shown in Fig. 3,
which plots the validation MAE for each of the algo-
rithms along with the total computation time required

FIG. 3: Comparing the performance of genetic
algorithm (GA), tree of parzen estimators (TPE) and
random search for a single-objective optimization of

hyperparameters of a deep neural network.

TABLE I: Evaluation metrics for single objective
optimization of a neural network using genetic

algorithm (GA), tree of parzen estimators (TPE) and
random search.

Validation MAE Test MAE Time (hours)
GA - Method 1 0.0654 0.0661 5.29
GA - Method 2 0.0655 0.0657 11.04
GA - Method 3 0.0655 0.0656 6.47
GA - Method 4 0.0655 0.0675 2.65

TPE 0.0661 0.0665 35.05
Random 0.0660 0.0659 35.01

for it. It is readily seen that even after a thousand iter-
ations, random search isn’t able to yield the best results
(MAE) relative to GA and TPE. The least relative MAEs
are obtained for the four methods in our GA implemen-
tation.

Although the difference between the MAEs from the
various algorithms is insignificant, the computation time
that is required to obtain such performance is the critical
source of difference. With respect to the time taken for
this optimization, methods from GA show remarkable
performance as compared to the other two algorithms.
GA methods 1, 3 and 4 converged according to the cri-
teria mentioned earlier. However, method 2 did not con-
verge on account of its inherent design and thus the ML
model was evaluated a thousand times. It should also be
noted that the average time for all four GA methods is
nearly one-fifth of the time taken by the other algorithms.

Table I summarizes the cross-validation and test MAE
for the best combination of hyperparameters obtained
from each of the algorithms tested in this work.



5

FIG. 4: Comparing the performance of the four
strategies of genetic algorithm implemented in ChemML

for optimization of hyperparameters via a
multi-objective cost function.

TABLE II: Hidden layer sizes of a deep neural network
architecture for single and multi-objective optimization

using genetic algorithm (GA).

Hidden Layer Sizes
Algorithms Single Objective Multi - Objective

GA - Method 1 180, 20, 200 20, 100
GA - Method 2 120, 160, 80 100, 80, 100
GA - Method 3 160, 20, 180 120
GA - Method 4 60, 120, 100 40, 40

B. Multi-Objective Optimization

In the previous scenario, the neural network could get
significantly large since the number of neurons in each
of the three hidden layers could go up to a maximum of
250. Such a large neural network requires a considerable
amount of computation time for training. Generally, it
has been observed for neural networks that increasing
the number of neurons at each hidden layer improves the
model performance, however, at the expense of a propor-
tional increase in the training time. In this scenario, in
addition to minimizing the MAE, we seek to minimize
the number of neurons in the neural network architec-
ture. Shrinking of these models leads to a decrease in
the number of tunable parameters. Thus, we can train
low-variance models faster, and simultaneously make a
trade-off for the MAE values to keep the performance as
good as highly parameterized models.

Since random search and TPE algorithm do not sup-
port multi-objective optimization directly, we perform
this calculation on just the four methods implemented
in ChemML - GA. The results are summarized in Tables
II and III which show the hidden layer sizes for single and
multi-objective optimization, and the validation and test
MAE and the time required for the computation respec-

TABLE III: Evaluation metrics for multi-objective
optimization of a deep neural network using genetic

algorithm (GA).

Validation MAE Test MAE Time (hours)
GA - Method 1 0.0656 0.0658 5.87
GA - Method 2 0.0655 0.0655 10.73
GA - Method 3 0.0656 0.0666 4.7
GA - Method 4 0.0658 0.067 3.03

tively. It is noted that all the four GA methods are able
to shrink the neural network model to a large extent.

Fig. 4 plots the validation MAE and the computa-
tional time for the four GA methods, and it is seen that
GA methods 1, 3 and 4 converged while method 2 did
not converge. The plot also shows an interesting result
where there is no significant change in the MAE of the
four methods compared to the single objective scenario.
This indicates that the model is quite insensitive to the
number of neurons at each hidden layer. Such an in-
sight into the neural network architecture (that can vary
across different datasets) is hard to obtain a priori or
with the traditional/primitive methods for selection of
hyperparameters. This scenario brings to the foreground
the significance of multi-objective optimization for ML
models.

The results for the two scenarios presented in this work
indicate that among the four methods for GA, the fastest
convergence is achieved via method 4. However, a faster
convergence does not necessarily guarantee the best pos-
sible model predictions since there is a good chance of
the model getting stuck in a local minima. On the other
hand, non-convergence of a method, as in the case of
method 2, is also undesirable in most cases since time
is an extremely important factor in such calculations.
Methods 1 and 3 fall somewhere in between in terms
of convergence but have nearly the same prediction ac-
curacy as methods 2 and 4.

We have been employing our implementation of GA in
a number of real-world application studies, not only for
model selection, but also for feature selection and molec-
ular library generation. These studies include discovery
and design projects for new high-refractive-index poly-
mers for optical applications [29–35], deep eutectic sol-
vents for supercapacitors [36], and organic semiconduc-
tors for photovoltaics and other applications [37] (using
data of the Harvard Clean Energy Project [38–42]).

IV. CONCLUSIONS

In conclusion, we have assessed and benchmarked
our implementation of Genetic Algorithm within the
ChemML program suite against two popularly used ap-
proaches in the data science community, random search
method and the TPE algorithm from Hyperopt package.
The four selection schemes implemented in Genetic Algo-



6

rithm outperform these approaches in terms of both time
and accuracy. We have also shown that genetic algorithm
is very accurate and efficient at optimizing multiple ob-
jectives simultaneously.

This work serves as a proof-of-principle study for a
single machine learning model and chemical data set,
and can, in-principle, be extended to different classes of
chemical problems and types of data sets via a meta ma-
chine learning approach, i.e., we subsequently (machine)
learn, which ML approach performs best for a given sce-
nario. In this direction of future work, we compile the
results of the hyperparameter optimization presented in
this paper together with descriptors characterizing the
corresponding data sets and chemical problems and mine
this data to systematically derive insights and technical
guidelines as mentioned before.

The Genetic Algorithm module presented
in this paper is available to download from:
https://github.com/hachmannlab/chemml.

SUPPLEMENTARY MATERIAL

Electronic supplementary material accompanies this
paper and is available through the journal website. It
provides details of the computational data displayed in

the figures throughout this paper, i.e., , the final set of
all the hyperparameters that were obtained from each of
the optimization algorithms for both single-objective and
multi-objective scenarios.

COMPETING FINANCIAL INTERESTS

The authors declare to have no competing financial
interests.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation (NSF) CAREER program (grant No. OAC-
1751161), and the New York State Center of Excel-
lence in Materials Informatics (grant No. CMI-1148092-
8-75163). Computing time on the high-performance com-
puting clusters ’Vortex ’, ’Alpha’, ’Beta’, and ’Gamma’
was provided by the UB Center for Computational Re-
search (CCR). The work presented in this paper is part
of GV’s MS thesis [34]. MH gratefully acknowledges sup-
port by Phase-I and Phase-II Software Fellowships (grant
No. ACI-1547580-479590) of the NSF Molecular Sciences
Software Institute (grant No. ACI-1547580) at Virginia
Tech [43, 44].

[1] Mojtaba Haghighatlari and Johannes Hachmann. Ad-
vances of machine learning in molecular modeling and
simulation. Current Opinion in Chemical Engineering,
23:51–57, 2019.

[2] Johannes Hachmann, Theresa L Windus, John A
McLean, Vanessa Allwardt, Alexandra C Schrimpe-
Rutledge, Mohammad Atif Faiz Afzal, and Mojtaba
Haghighatlari. Framing the role of big data and modern
data science in chemistry. Technical report, 2018. This
NSF workshop report compiles the opinions of a group of
active researchers in the field regarding the current chal-
lenges and future opportunities offered by data-driven
approaches in the chemical domain.

[3] Kirstin Alberi, Marco Buongiorno Nardelli, Andriy Za-
kutayev, Lubos Mitas, Stefano Curtarolo, Anubhav Jain,
Marco Fornari, Nicola Marzari, Ichiro Takeuchi, Mar-
tin L Green, et al. The 2019 materials by design roadmap.
Journal of Physics D: Applied Physics, 52(1):013001,
2018.

[4] Matthias Rupp, O Anatole Von Lilienfeld, and Kieron
Burke. Guest editorial: Special topic on data-enabled
theoretical chemistry, 2018.

[5] Connor W Coley, William H Green, and Klavs F Jensen.
Machine learning in computer-aided synthesis planning.
Accounts of chemical research, 51(5):1281–1289, 2018.

[6] James Bergstra and Yoshua Bengio. Random search
for hyper-parameter optimization. Journal of Machine
Learning Research, 13(Feb):281–305, 2012.

[7] James Kennedy. Particle swarm optimization, pages 760–
766. Springer, 2011.

[8] XC Guo, JH Yang, CG Wu, CY Wang, and YC Liang. A
novel ls-svms hyper-parameter selection based on particle
swarm optimization. Neurocomputing, 71(16-18):3211–
3215, 2008.

[9] Hugo Jair Escalante, Manuel Montes, and Luis Enrique
Sucar. Particle swarm model selection. Journal of Ma-
chine Learning Research, 10(Feb):405–440, 2009.

[10] Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok,
Luciano Sanchez Ramos, and José Ranilla Pastor. Par-
ticle swarm optimization for hyper-parameter selection
in deep neural networks. In Proceedings of the genetic
and evolutionary computation conference, pages 481–488.
ACM, 2017.

[11] David JJ Toal, NW Bressloff, AJ Keane, and CME
Holden. The development of a hybridized particle swarm
for kriging hyperparameter tuning. Engineering opti-
mization, 43(6):675–699, 2011.

[12] Bruno Feres De Souza, Andre CPLF De Carvalho, Ro-
drigo Calvo, and Renato Porfirio Ishii. Multiclass svm
model selection using particle swarm optimization. In
2006 Sixth International Conference on Hybrid Intelli-
gent Systems (HIS’06), pages 31–31. IEEE, 2006.

[13] Pablo Ribalta Lorenzo, Jakub Nalepa, Luciano Sanchez
Ramos, and José Ranilla Pastor. Hyper-parameter se-
lection in deep neural networks using parallel parti-
cle swarm optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion,
pages 1864–1871. ACM, 2017.

[14] J.H. Holland. Adaptation in Natural and Artificial Sys-
tems: An Introductory Analysis with Applications to Bi-



7

ology, Control, and Artificial Intelligence. M.I.T.P., 1992.
ISBN 9780262581110. URL https://books.google.

com/books?id=5EgGaBkwvWcC.
[15] Mingyuan Zhao, Chong Fu, Luping Ji, Ke Tang, and

Mingtian Zhou. Feature selection and parameter opti-
mization for support vector machines: A new approach
based on genetic algorithm with feature chromosomes.
Expert Systems with Applications, 38(5):5197–5204, 2011.

[16] Steven R Young, Derek C Rose, Thomas P Karnowski,
Seung-Hwan Lim, and Robert M Patton. Optimizing
deep learning hyper-parameters through an evolution-
ary algorithm. In Proceedings of the Workshop on Ma-
chine Learning in High-Performance Computing Envi-
ronments, page 4. ACM, 2015.

[17] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning al-
gorithms. In Advances in neural information processing
systems, pages 2951–2959, 2012.

[18] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu,
Kilian Q Weinberger, and John P Cunningham. Bayesian
optimization with inequality constraints. In ICML, pages
937–945, 2014.

[19] Katharina Eggensperger, Matthias Feurer, Frank Hut-
ter, James Bergstra, Jasper Snoek, Holger Hoos, and
Kevin Leyton-Brown. Towards an empirical foundation
for assessing bayesian optimization of hyperparameters.
In NIPS workshop on Bayesian Optimization in Theory
and Practice, volume 10, page 3, 2013.

[20] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros,
Nadathur Satish, Narayanan Sundaram, Mostofa Pat-
wary, Mr Prabhat, and Ryan Adams. Scalable bayesian
optimization using deep neural networks. In Interna-
tional conference on machine learning, pages 2171–2180,
2015.

[21] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hen-
nig, and Frank Hutter. Fast bayesian optimization of ma-
chine learning hyperparameters on large datasets. arXiv
preprint arXiv:1605.07079, 2016.

[22] Matthias Feurer, Jost Tobias Springenberg, and Frank
Hutter. Initializing bayesian hyperparameter optimiza-
tion via meta-learning. In Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, 2015.

[23] James Bergstra, Daniel Yamins, and David Daniel Cox.
Making a science of model search: Hyperparameter op-
timization in hundreds of dimensions for vision architec-
tures. 2013.

[24] Mojtaba Haghighatlari, Gaurav Vishwakarma, Doaa Al-
tarawy, Ramachandran Subramanian, Bhargava Urala
Kota, Aditya Sonpal, Srirangaraj Setlur, and Johannes
Hachmann. Chemml: A machine learning and informat-
ics program package for the analysis, mining, and mod-
eling of chemical and materials data. ChemRxiv, page
8323271, 2019. doi:10.26434/chemrxiv.8323271.v1.

[25] Mojtaba Haghighatlari, Gaurav Vishwakarma, Moham-
mad Atif Faiz Afzal, and Johannes Hachmann. A
Physics-Infused Deep Learning Model for the Prediction
of Refractive Indices and Its Use for the Large-Scale
Screening of Organic Compound Space. ChemRxiv, pages
1–9, 2019.

[26] F Pedregosa, G Varoquaux, A Gramfort, V Michel,
B Thirion, O Grisel, M Blondel, P Prettenhofer, R Weiss,
V Dubourg, J Vanderplas, A Passos, D Cournapeau,
M Brucher, M Perrot, and E Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learn-

ing Research, 12:2825–2830, 2011.
[27] Alexios Koutsoukas, Keith J. Monaghan, Xiaoli Li, and

Jun Huan. Deep-learning: investigating deep neural
networks hyper-parameters and comparison of perfor-
mance to shallow methods for modeling bioactivity data.
Journal of Cheminformatics, 9(1):42, Jun 2017. ISSN
1758-2946. doi:10.1186/s13321-017-0226-y. URL https:

//doi.org/10.1186/s13321-017-0226-y.
[28] James Bergstra, Dan Yamins, and David D Cox. Hyper-

opt: A python library for optimizing the hyperparame-
ters of machine learning algorithms. In Proceedings of the
12th Python in science conference, pages 13–20. Citeseer,
2013.

[29] Mohammad Atif Faiz Afzal, C Cheng, and Johannes
Hachmann. Combining first-principles and data mod-
eling for the accurate prediction of the refractive index
of organic polymers. The Journal of Chemical Physics,
148(24):241712, 2018. doi:10.1063/1.5007873.

[30] Mohammad Atif Faiz Afzal and Johannes Hachmann.
Benchmarking DFT approaches for the calculation of po-
larizability inputs for refractive index predictions in or-
ganic polymers. Physical Chemistry Chemical Physics,
21:4452–4460, 2019. doi:10.1039/C8CP05492D.

[31] Mohammad Atif Faiz Afzal, Mojtaba Haghighatlari,
Sai Prasad Ganesh, Chong Cheng, and Johannes
Hachmann. Accelerated discovery of high-refractive-
index polyimides via first-principles molecular modeling,
virtual high-throughput screening, and data mining. The
Journal of Physical Chemistry C, 123:14610–14618, 2019.
doi:10.1021/acs.jpcc.9b01147.

[32] Mohammad Atif Faiz Afzal, Aditya Sonpal, Mo-
jtaba Haghighatlari, Andrew J Schultz, and Johannes
Hachmann. A Deep Neural Network Model for Pack-
ing Density Predictions and its Application in the Study
of 1.5 Million Organic Molecules. ChemRxiv, page
8217758.v1, 2019. doi:10.26434/chemrxiv.8217758.v1.

[33] Mohammad Atif Faiz Afzal. From virtual high-throughput
screening and machine learning to the discovery and ra-
tional design of polymers for optical applications. PhD
thesis, University at Buffalo, 2018.

[34] Gaurav Vishwakarma. Machine Learning Model Selec-
tion for Predicting Properties of High-Refractive-Index
Polymers. Master’s thesis, University at Buffalo, 2018.

[35] Mojtaba Haghighatlari. Making Machine Learning Work
in Chemistry: Methodological Innovation, Software De-
velopment, and Application Studies. PhD thesis, Univer-
sity at Buffalo, 2019.

[36] Aditya Sonpal. Predicting Melting Points of Deep Eu-
tectic Solvents. Master’s thesis, University at Buffalo,
2018.

[37] Mojtaba Haghighatlari, Ching-Yen Shih, and Johannes
Hachmann. Thinking globally, acting locally: On the
issue of training set imbalance and the case for local ma-
chine learning models in chemistry. ChemRxiv, pages
1–10, 2019.

[38] Johannes Hachmann, Roberto Olivares-Amaya, Sule
Atahan-Evrenk, Carlos Amador-Bedolla, Roel S
Sánchez-Carrera, Aryeh Gold-Parker, Leslie Vogt,
Anna M Brockway, and Alán Aspuru-Guzik. The
Harvard Clean Energy Project: Large-scale computa-
tional screening and design of organic photovoltaics on
the world community grid. The Journal of Physical
Chemistry Letters, 2(17):2241–2251, 2011.



8

[39] Roberto Olivares-Amaya, Carlos Amador-Bedolla, Jo-
hannes Hachmann, Sule Atahan-Evrenk, Roel S Sánchez-
Carrera, Leslie Vogt, and Alán Aspuru-Guzik. Acceler-
ated computational discovery of high-performance mate-
rials for organic photovoltaics by means of cheminformat-
ics. Energy & Environmental Science, 4(12):4849–4861,
2011.

[40] C. Amador-Bedolla, R. Olivares-Amaya, J. Hachmann,
and A. Aspuru-Guzik. Organic Photovoltaics. In K. Ra-
jan, editor, Informatics for Materials Science and En-
gineering Data-driven Discovery for Accelerated Ex-
perimentation and Application, chapter 17, pages 423–
442. Butterworth-Heinemann, Oxford, 2013. ISBN 978-
0123943996.

[41] Johannes Hachmann, Roberto Olivares-Amaya, Adrian
Jinich, Anthony L Appleton, Martin A Blood-Forsythe,
Laszlo R Seress, Carolina Roman-Salgado, Kai Trepte,
Sule Atahan-Evrenk, Suleyman Er, Supriya Shrestha,
Rajib Mondal, Anatoliy Sokolov, Zhenan Bao, and Alán
Aspuru-Guzik. Lead candidates for high-performance
organic photovoltaics from high-throughput quantum
chemistry - the Harvard Clean Energy Project. Energy

& Environmental Science, 7(2):698–704, 2014.
[42] Steven A Lopez, Edward O Pyzer-Knapp, Gregor N

Simm, Trevor Lutzow, Kewei Li, Laszlo R Seress, Jo-
hannes Hachmann, and Alán Aspuru-Guzik. The Har-
vard organic photovoltaic dataset. Scientific Data, 3:
160086, 2016.

[43] Anna Krylov, Theresa L. Windus, Taylor Barnes, Eliseo
Marin-Rimoldi, Jessica A. Nash, Benjamin Pritchard,
Daniel G.A. Smith, Doaa Altarawy, Paul Saxe, Ce-
cilia Clementi, T. Daniel Crawford, Robert J. Harrison,
Shantenu Jha, Vijay S. Pande, and Teresa Head-Gordon.
Perspective: Computational chemistry software and its
advancement as illustrated through three grand challenge
cases for molecular science. Journal of Chemical Physics,
149(18):180901, 2018. ISSN 00219606.

[44] Nancy Wilkins-Diehr and T. Daniel Crawford. NSF’s in-
augural software institutes: The science gateways com-
munity institute and the molecular sciences software in-
stitute. Computing in Science & Engineering, 20(5):26–
38, 2018. ISSN 1521-9615.


