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The accurate prediction of aqueous pKa values for tautomerizable compounds is a formidable task, even 

for the most established in silico tools. Empirical approaches often fall short due to a lack of pre-existing 

knowledge of dominant tautomeric forms. In a rigorous first-principles approach, calculations for low-

energy tautomers must be performed, in protonated and deprotonated forms, both in gas and solvent 

phase, thus representing a significant computational task. Here we report an alternative approach, 

predicting pKa values for herbicide/therapeutic derivatives of 1,3-cyclohexanedione and 1,3-

cyclopentanedione to within just 0.24 units. A model, with as input feature a single ab initio bond length 

from one protonation state, is as accurate as other, more complex machine learning approaches (SVR, 

RFR, GPR, PLS) using more input features, and outperforms the program Marvin. Our approach can be 

used for other tautomerizable species, to predict trends across congeneric series and to correct 

experimental pKa values. 
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Approximately 21% of the compounds that make up pharmaceutical databases are said to exist in two or 

more tautomeric forms1. Tautomerism is a form of structural isomerism that is characterized by a species 

having two or more structural representations, between which interconversion can be achieved by 

“proton hopping” from one atom to another. Issues surrounding pKa prediction for species exhibiting this 

feature have been noted a number of times in the literature. Most recently4, Connolly noted that a lack of 

experimental information on both relative tautomer stability and the properties of distinct tautomeric 

forms were the likely causes of such issues. Tautomeric species present a challenge, not just to empirical-

based approaches, but also to those that attempt to solve the pKa prediction problem using first-

principles1, 3-4. For tools implementing the latter approach (e.g. Jaguar, Schrödinger3, 5-6), the most rigorous 

protocol includes quantum chemical calculations for conformations of each tautomer, in both gas- and 

solvent-phase, and in both protonated and deprotonated forms. Therefore, without some element of 

empiricism, first-principles approaches often incur significant computational expense.  

For methods of pKa estimation that generate descriptors starting from 2D fingerprints, each 

tautomeric form of a species will correspond to a unique representation. Therefore, the user must either 

(i) possess prior knowledge of tautomeric stability in order to maximize prediction accuracy, or (ii) 

tautomer enumeration must be performed by the program based on an arbitrary user input, followed by 

selection of the optimal tautomer for calculation of chemical descriptors7-9. In a comparative study10 of 5 

empirical pKa prediction tools (ACD/pKa DB11, Epik2, 12, VCC, Marvin12 and Pallas) on 248 compounds of the 

“Gold Standard Dataset” compiled by Avdeef13, it was demonstrated that increasing the number of 

possible tautomeric forms increased prediction errors in most cases. The guanidine group of the drug 

Amiloride and the enolic hydroxyl groups of herbicides Sethoxydim and Tralkoxydim were also identified 

as common outliers for the tools they tested.  

Compounds containing a 1,3-diketo group exhibit tautomerism (shown in Fig. 1A(a)-(b)). For cyclic 1,3-

diketones, the diketo state (Fig. 1A(a)) can be transformed into two keto-enol forms (Fig. 1A(b)). 

Tautomeric states may be non-degenerate, with the ratio being influenced by the solvent environment 

and temperature14. The compounds 1,3-cyclohexanedione (1,3-CHD) and 1,3-cyclopentanedione (1,3-CPD) 

are known to possess significant keto-enol character in solution, a phenomenon attributed to the 

formation of hydrogen bonded solute dimers, and additional stabilization from solute-solvent 

interactions15.   
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Figure 1. A. (a) The diketo form of a 1,3-dione, (b) the resonance canonicals for the keto-enol form of 1,3-
diones, and (c) the resonance canonicals for the anionic state, where n=0 or 1 if the ring is five- or six-
membered, respectively. KT denotes the equilibrium constant between tautomeric states, Ka(DK) denotes 
the dissociation equilibrium from the diketo state and Ka(KE) the dissociation equilibrium from the keto-
enol state.  B. (a) The global minimum geometry of Alloxydim, a 2-oxime herbicide and Mesotrione in the 
keto-enol anti state, (b) a triketone herbicide.  C. The AIBL-pKa workflow implemented here for cyclic 𝛽-
diketones. 
 
 

1,3-CHD is a fragment prevalent to both agrochemically and pharmaceutically active compounds in 

use today. Alloxydim (Fig. 1B(a)) is currently used as a selective systemic herbicide for post-emergence 

control of grass weeds in sugar beet, vegetables and broad-leaved crops. Adding a derivatized benzoyl 

group at the 2-position in place of Alloxydim’s 2-oxime forms what is known as “triketone” herbicide (e.g. 

Mesotrione, Fig. 1B(b)). Pharmaceutically relevant compounds containing the 1,3-CHD or group include 

the antibiotic Tetracycline and its analogues. 

Recently, our approach to pKa prediction, called AIBL-pKa (Ab Initio Bond Lengths), has been proven to 

provide remarkably accurate prediction of acidity variation across congeneric series of guanidine-

containing species16 and sulfonamides17. The aim of the current work is to bring attention to the issue of 

pKa prediction for other tautomerizable compounds and to provide a simple solution to this problem for 

1,3-CHD and 1,3-CPD derivatives, an important scaffold in pharmaceutical and agrochemical research. 
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Scheme for AIBL-pKa model construction. Our proposed method of predicting pKa values16-23 (Fig. 1C and 

Methods) makes use of equilibrium bond lengths from Density Functional Theory calculations (B3LYP/6-

311G(d,p), Conductor-like Polarizable Continuum Model  (CPCM)) as input features for regression models. 

The full dataset of 71 compounds used in this work represent a wide variety of substituent types and 

patterns (generic structures and examples of dataset compounds are shown in Fig. 2A). After an initial 

analysis of the linear fit of each bond length, we investigate whether the use of multiple bond lengths as 

input features could provide an advantage in prediction accuracy and model applicability radius. For this 

task, we considered all subset combinations of the bonding distances of the fragment common to each 

species. We also compared a number of machine learning methods for their regression onto pKa values, 

namely, Random Forest Regression (RFR), Support Vector Regression (SVR), Gaussian Process Regression 

(GPR) as well as Partial Least Squares (PLS). PLS24 and SVR25-27 have been implemented in the context of 

pKa prediction many times, using many different types of descriptors. A brief overview of the theory and 

method used for these approaches can be found in Methods and Technical Section S1 of the 

Supplementary Information (SI). Further details and formalism for the validation metrics used in this work 

(r2, RMSEE, MAE) can also be found in Technical Section S2. 

         Through our analysis, we demonstrate that a powerful model may be constructed from simple linear 

regression of a single ab initio bond length, thereby potentially negating the need for the more complex 

approaches. 

 

Figure 2. A. pKa data for compounds of the dataset used were procured from both Syngenta’s database 
and literature sources. The pKa values of 17 compounds were also measured for the purpose of this work. 
Each compound either contains a 1,3-cyclohexanedione (1,3-CHD) or 1,3-cyclopentanedione group (1,3-
CPD), examples of which are shown in blue and green, respectively. Substituent variation occurs at 2, 4, 5 
and/or 6 position on 1,3-CHD, and 2, 4 and/or 5 for 1,3-CPD. The full set of structures and experimental 
pKa values can be found in Table S1 of the Supplementary Information. B. Experimental (green) pKa values 
across the series o1-o8, tk1-tk15 and dk1-dk12, are compared with Marvin predictions with the “consider 
tautomers/resonance” option (red) and without this option (blue).  
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Results  
 
Current Approaches. To exemplify the issues surrounding prediction for cyclic 1,3-diketones using existing 

empirical approaches, the commercial program Marvin (by ChemAxon) was used to estimate values for a 

series of 1,3-CHD and 1,3-CPD derivatives (o1-o8, tk1-tk15 and dk1-dk12 shown in Table S1 of the SI). The 

Marvin program uses Gasteiger partial charges28, polarizabilities and structure specific increments to 

predict pKa values using ionizable group specific regression equations10. The results are shown in Fig. 2B, 

where the green diamonds denote experimental values, blue squares represent Marvin predictions 

without the option to “consider tautomers/resonance”, while the red triangles are predictions made with 

this option. For the compounds in Fig. 2B where the blue and red points overlap, the program predicts the 

keto-enol state to be dominant, and delivers predictions that lie 0.8 units away from experimental values 

on average. However, for 60% of the compounds, the program predicts the diketo state to be dominant. 

For the series o1-o8, Marvin gives values of ~16 log units for 5 out of 8 species. For the remaining 3 

compounds, o1, o3 and o7, the program identifies the acidic proton (pKa ~17) at the 4 or 6 position on the 

1,3-CHD ring.  

         Overall, if accurate predictions are to be made (i.e. residual errors < 1 pKa unit) then the user must 

have prior knowledge of the dominant keto-enol tautomeric form (blue squares in Fig. 2B). In the 

following sections we show that our method, which uses quantum chemically derived geometric 

descriptors, avoids such problems intrinsically. Despite the increased computation time compared to 

empirical approaches, AIBL avoids the need to compute pKa values for both protonation states. Moreover, 

descriptor calculations may be carried out only in the solvent phase using an implicit approach (CPCM). 

 

Identifying AIBL-pKa relationships: triketones. The relationship between the structure and herbicidal 

activity of triketones (Fig. 3A) was first reported29 by Lee and co-workers. One of the primary conclusions 

of that early work was that the ortho-substituent on the phenyl ring is a requirement for the compound’s 

herbicidal activity. The authors also noted that compounds with more electron-withdrawing para-

substituents required a lower dose to obtain a 50% weed-control rating across 7 variants of broad-leaf 

plants (the metric known as Lethal Dose 50, or LD50). It was thereby deduced that a linear relationship 

exists between Hammett constants of para-substituents, log(LD50) and pKa. Therefore, a more electron-

deficient benzene provides enhanced acidity and herbicidal activity29. As there is already evidence of a 

structure-property relationship for these species, we took the set of 10 compounds from the work of Lee 

et al. as a starting point to assess the prevalence of AIBL-pKa relationships across available tautomeric 

states. 

The identities, pKa values, equilibrium bond lengths and log(LD50) values of the compounds studied by 

Lee et al. are shown in Tables S2-S5, labelled as tkn1-tkn4 and tkc1-tkc6. All tkn species possess one 2-
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NO2 group whereas each tkc species has a 2-Cl substituent (Fig. 3A). Across each subset the para- 

substituent varies. We find that the order of stability of each compound in their four lowest energy 

tautomer/conformations (Fig. 3A) is c > d > b > a. The triketo form a is ~9 kJ mol-1 less stable than the 

(endo) keto-enol anti form b, which in turn is ~29 kJ mol-1 less stable than the (exo) keto-enol syn form d. 

Although both d and c possess a stabilising intramolecular hydrogen bond, the most stable form is c by 

around 7 kJ mol-1. 

 

 

 

Figure 3. A. Tautomeric forms a-d considered for the triketone series tkn1-tkn4 and tkc1-tkc6. All energies 
are listed in Table S6 of the SI.   B. The trend in bond length variation and exchange-correlation (Vxc) 
energy of bonding interactions shown in B for tkn1-tkn4 is consistent with delocalization of electrons 
across the whole endocyclic keto-enol fragment. Conversely, the variation in bond lengths for tkc1-tkc6, 
as well as the increased co-planarity of the keto-enol group, is indicative that there is more conjugation 
with the exo-carbonyl. Table S7 of the SI lists bond lengths i to v and pKa values for the b tautomer.     

 

Experimental pKa values were regressed onto bond lengths i-viii (Fig. 3A) of the triketo or keto-enol 

fragment of tautomers a-d and the fit was assessed using r2. For all tautomers a-d, there is a significant 

improvement in r2 when the set is split into two subsets (r2 generally 0.9 or above), with one group 

containing tkn derivatives and the other containing tkc substituted compounds. The slope for the tkn 

series is consistently 22% larger (i.e. steeper) than that of the tkc derivatives. We can interpret this 

steeper gradient as the resonance electron withdrawing effect of the 2-NO2 substituent heightening the 

para-substituent’s electronic effect on dissociation propensity. The heightened acidity of the tkn 

compounds is also likely to be linked to the marked difference in geometry between the two subsets. For 

the tkc series, the exo-carbonyl group is almost co-planar with the phenyl ring, whereas for the tkn series, 

the exo carbonyl is co-planar with the keto-enol moiety. In the latter orientation (of the tkn series), the 

orbital overlap allowing hydroxyl oxygen lone pair delocalisation across the keto-enol and exo-keto group 

is possible. It may be asserted that this increased conjugative effect would result in less delocalization 

between O and H atoms, a longer, weaker O-H bond and greater propensity for dissociation. 

The bond lengths of the enol anti-conformer b exhibit the most strongly correlated relationships with 

pKa values (see Tables S2-S5). With the exception of O-H(i) and the exocyclic C=O(vii) bond lengths, all 
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pairs of subsets tkn and tkc exhibit r2 values above 0.90 (q2 > 0.9 and RMSEE ~ 0.2). This is an interesting 

result, considering that b is not the most stable tautomer according to the ranking at B3LYP/6-

311G(d,p)/CPCM. It may be asserted that the emergence of stronger relationships between geometric 

features (bond lengths) and pKa using the anti keto-enol tautomer is indicative of its prevalence in 

solution. A thorough analysis using explicit solvation to explore this hypothesis is beyond the scope of this 

work. However, preference for this conformation could be linked to its increased propensity for 

dimerization and H-bonding to solvent molecules.  

For both subsets, the trend in the bond variation of O-H (i), C-O (ii) and C=C (iii) with pKa is such that 

more acidic compounds have longer O-H and C=C bonds but shorter C-O distances. These observations 

therefore fit with the intuition that a longer, weaker O-H bond should exhibit an increased propensity for 

cleavage. Conversely, bonds C-C (iv) and C=O (v) are found to show opposing trends between each series 

(Fig. 3B).  

The aim of this work is to derive a generally applicable model for compounds containing the diketone 

fragment. Therefore, we deemed it important to understand this disparity in C-C (iv) and C=O (v) bond 

length variation. To this end, we performed an Interacting Quantum Atoms (IQA) analysis to partition the 

interaction energy between pairwise atoms A and B into Vxc(A,B) (exchange-correlation) and Vcl(A,B) 

(electrostatics). For further methodological and theoretical details of this approach see the Methods 

section.  

  By taking Vxc(A,B) as our dependent variable in place of bond distances, we can look at how the 

extent of delocalization of electrons between two topological atoms A and B changes with pKa. In doing 

so, we find analogous relationships between Vxc(A,B) of bonds i-v and pKa values. Longer bonds exhibit 

less negative Vxc(A,B) values (i.e. there is less delocalization), and vice versa (Fig. 3B). The trend in Vxc(A,B) 

for bonds i-v across the keto-enol fragment of the tkn series is consistent with hydroxyl oxygen lone pair 

delocalization across the whole keto-enol fragment, akin to the resonance forms shown in Fig. 1A (b). 

Conversely, for the tkc series this delocalization effect is not reflected in the distance variation of iv and v. 

Further discussion pertaining to the origin of the difference in bond and Vxc variation with pKa between 

subsets can be found in Technical Section S3 of the SI. Overall, the discrepancy in AIBL-pKa trends with 

substituent type suggests that, in the search for a bond that has a relationship with pKa over a wide 

variety of substituent patterns/types, it is logical to look to the enolic hydroxyl group, i.e. O-H (i), C-O (ii) 

and C=C (iii). 

Due to the prevalence of well-correlated relationships between bonding distances and pKa for the 

keto-enol anti conformation for tkn1-tkn4 and tkc1-tkc6, this tautomeric form was used for all 

subsequent analysis on the remaining dataset. The bonds that are under investigation are those of the 

keto-enol fragment (i-v in Fig. 3B), which are common to all 1,3-CHD and 1,3-CPD compounds of the 
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dataset. Selection of these specific bond lengths therefore allows us to construct one generally applicable 

model, rather than assembling many models for more specific sub-regions of chemical space. 

Single Bond Length Models. Our data set of 71 compounds (Table S1) consists of 46 triketones and 

diketones from Syngenta, plus an additional 9 diketones and 2 triketones measured for the purpose of this 

work (experimental details can be found in Technical Section S4 of the SI). A further 8 pKa values for 

Alloxydim analogues were also obtained from the literature (Table S1). Due to a discrepancy between 

predicted and literature values, samples were procured and pKa values were re-measured for 7 of these 8 

compounds. Literature values for 6 Tetracycline derivatives were also included. The full set was split into 

70% training and 30% test set, i.e. 49:22 training to test set.  

Table 1 lists internal, cross-validation and external validation statistics of each single bond length 

regression model (i.e. the typical AIBL approach). The values listed in Table 1 are found using a reduced 

training set, due to the removal of two outliers, dk29 and tk3. The reason for the removal of these 

compounds will be discussed in the next section. The most “active” bond, i.e. the model exhibiting the 

highest r2 and lowest RMSEE is the C-O (ii) bond (0.72 and 0.57, respectively). We note that these values 

are somewhat less impressive than the threshold values used to mark the presence of an active bond in 

our other case studies (~0.90 for r2 and ~0.3 for RMSEE). This decrease in goodness of fit can be attributed 

to the higher structural diversity of the set: the model covers 5- and 6-membered rings, compounds with 

substitution at the 2, 4 and 6 position of the 1,3-CHD fragment and compounds containing more than one 

ionizable group. 

Nonetheless, the error metrics for the C-O model used on the external test set indicate a high 

level of prediction accuracy and consistency across a diverse array of analogues; the MAE and standard 

deviation of absolute errors for the test set are both 0.24. No C-O model errors exceed 1 pKa unit and only 

2 out of 22 exceed 0.5 log units (tk1 = +0.92, dk8 = -0.77). The nature of bond length variation across the 

47 training compounds matches that of the tkn/tkc series for O-H (i), C-O (ii) and C=C (iii).  

Outliers. Two species were found to have residual errors exceeding 1.5 log units for 4 out of 5 bonds. One 

outlier is dk29, a 1,3-CPD derivative with a CH2-2-pyridyl group at the 4-position. The pKa value of 5.78 

listed for this species was identified as the pKa for dissociation of the 2-pyridyl group, rather than the keto-

enol fragment (pyridine itself has a pKa of 5.23). The other incongruous data point corresponds to tk3, 

which has a fourth keto group at the 5-position of the 1,3-CHD ring, a feature that is also present in 

compounds tk1 and tk4. The C-O bond distances of these 3 compounds sit below the trend line for the 

rest of the set, with an r2 value of 1 for a linear fit, i.e., compounds with the 5-C=O structural motif in 

common form their own high-correlation subset. More accurate predictions for compounds such as tk1 

(error = +0.92) could therefore be made using the equation of this line as a new model, rather than the 

original C-O model. Both compounds were removed from subsequent analysis.  
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Metric O-H (i) C-O (ii) C=C (iii) C-C (iv) C=O (v) 

Slope (+/-) - + x x x 

r2 (train) 0.56 0.72 0.38 0.15 0.38 

MAE (7-fold CV) (train) 0.60 0.41 0.65 0.88 0.73 

RMSEE (7-fold CV) (train) 0.75 0.57 0.89 1.10 0.90 

MAE (test) 0.31 0.24 0.43 0.67 0.56 

RMSEP (test) 0.41 0.34 0.58 0.86 0.69 

σ (test) 0.28 0.24 0.40 0.55 0.41 

r2 obs vs pred (test) 0.90 0.92 0.69 0.66 0.20 

 

Table 1. Summary of the Results for the typical AIBL ordinary least squares approach. (Upper) Statistics for 
the single bond length models obtained via ordinary least squares regression. The row labelled “slope” 
features a “+” sign for a positive slope (i.e. pKa increases with increasing bond distance), and a “-“ sign to 
denote a negative slope (i.e. pKa decreases with increasing bond distance). The squared correlation 
coefficient was not significant enough (“x”) to assign a slope direction for iiii, iv and v. 
 
 

Machine Learning Approaches. Table 2 shows the 7-fold CV and external validation statistics for optimal 

models. These were derived using PLS (4 bonds), RFR (3 bonds), SVR [linear] (2 bonds), SVR [RBF] (3 

bonds) and GPR [RBF] (3 bonds) using feature selection based on minimization of the 7-fold RMSEE of the 

training set. The 7-fold RMSEE for each of the 31 combinations/subsets are compared in Fig. 4A (the 

Model ID list is shown in Table S8, the full list of statistics for each model is shown in Tables S9-S13 and 

predictions are shown in Table S14). The optimal model for each method was then used to predict test set 

pKa values.  

Overall, all optimal models for each method include C-O as an input feature. The lowest 7-fold CV 

MAE and RMSEE correspond to the GPR model using a radial basis function kernel, which uses C-O, C-C 

and C=O as input features (MAE = 0.30, RMSEE = 0.39). However, this same GPR model also delivers the 

least accurate predictions for the 22 compounds of the external test set with an RMSEP of 0.59 and a MAE 

of 0.43. Overall, SVR [RBF] using C-O, C-C and C=O returns the lowest MAE and RMSEP for the test set 

(0.29 and 0.36, respectively) and is consistent in its accuracy (σ = 0.22). However, PLS using C-O, C=C, C-C 

and C=O also performs similarly well (MAE = 0.31, RMSEP = 0.36) and exhibits the lowest standard 

deviation of absolute errors (σ = 0.19). There is one consistently large error across every model, 

corresponding to the predicted value for tk1. This compound shows an average error across all models of -

1.21, with the lowest error exhibited by the PLS model (-0.72) and the largest for GPR[RBF] (-1.60). This 

compound was previously identified as belonging to a new subset of 5-C=O containing compounds, along 

with tk3 and tk4 for the C-O model. 

 The comparable accuracy of the single bond length C-O model for the test set, with respect to 

more complex regression methods using more input features is a remarkable result, given the simplicity of 
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the approach. This result also validates our previous work, in which models using multiple input features 

were deemed unnecessary given the strength of the correlation for individual bond distances.  

 

Property/Metric Marvin PLS RFR 
SVR 

[linear] 
SVR 

 [RBF] 
GPR 

[RBF] 

features used - 
C-O, C=C, 
C-C, C=O 

C-O,  
C-C, C=O 

C-O, C=O 
C-O, C-C, 

C=O 
C-O, C-C 

 C=O 

hyperparameters - LV = 3 

max depth = 6 C = 1000 C = 1000 

 

= -8.21,  
-6.150, 
-12.851 

nest = 25  = 0.01 

 = 0.1  
 

 = 5 

MAE (7-fold CV) (train) - 0.41 0.46 0.43 0.40 0.30 

RMSEE (7-fold CV) (train) - 0.53 0.57 0.57 0.53 0.39 

MAE (test) 1.21 (4.70) 0.31 0.39 0.29 0.29 0.43 

RMSEP (test) 1.63 (6.32) 0.36 0.49 0.40 0.36 0.59 

σ (test) 1.12 (4.32) 0.19 0.31 0.28 0.22 0.36 

r2 obs vs pred (test) 0.61 (0.55) 0.86 0.74 0.90 0.86 0.67 

 

Table 2. Summary of the Results for optimal feature choice using PLS, RFR, SVR with linear and RBF 
kernels, and GPR with the RBF kernel. Across the top are the approaches used for regression. The 
“Marvin” column corresponds to statistics for predictions made without considering tautomers/resonance 
(without parentheses), and the values in parentheses correspond to the predictions made with 
consideration of tautomers/resonance. The “features used” row lists the combination of features that 
minimized the RMSEE of the training set for each method. These features were subsequently used in the 
model used to predict for test set compounds. The row labelled “hyperparameters” lists the values 
obtained through minimization of RMSEE of the training set during 7-fold cross validation (RFR and SVR). 
For PLS the number of Latent Variables (LV) was varied up to the number of features and the final number 
chosen on the basis of minimizing the RMSEE of the training set, which is also shown. For the GPR model, 
feature selection as carried out using 7-fold validation of each combination/subset of features using the 
training set and 100 restarts were used to locate the global maximum log likelihood of the y-values. The 
MAE, RMSEP, standard deviation of absolute errors (σ) and r2 of observed vs predicted values are shown 
for the test set. All predicted values for each model can be found in Table S14 of the SI. 

 

Marvin. A comparison between error metrics for all models shows significant improvement compared to 

Marvin (Fig. 4B and 4C), either with or without consideration of tautomer/resonance. Furthermore, AIBL 

provides predicted values that correctly suggest the dominant microstate at pH 7 is the enolate, i.e. the 

ionized form. After tautomer enumeration and selection, Marvin’s pKa values predict that 15 out of 22 

compounds would be >50% unionized at this pH. However, this result is reduced to only two incorrectly 

assigned microstates when the keto-enol form is used explicitly.  
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Figure 4. A. The 7-fold RMSEE for each model tested, for each method, where “Model ID” corresponds to 
one of 31 combinations of features out of the 5 bonds i-v chosen for consideration (see Supporting 
Information Table S7 for the full list). The C-O, ii bond is used as a feature for the Model ID numbers 
shaded in blue.    B. Experimental pKa variation across the test set (dark blue), along with Marvin 
predictions using the diketo state with tautomer consideration turned on (red), and using the keto-enol 
state with tautomer consideration turned off (pink), as well as the AIBL-pKa C-O bond model.     C. Root 
Mean Squared Error of Prediction for the test set (RMSEP, blue) and Mean Absolute Error for the test set 
(MAE, green) for each method of prediction. Marvin predictions are removed for the plot shown in the 
inlay, so that AIBL models can be compared. D. The structure of Profoxydim, for which the literature 
experimental pKa value (5.91) and Marvin’s prediction (5.44, tautomer/resonance not considered, keto-
enol form used) deviated significantly from our prediction. The new experimental value of 4.82, measured 
in this work matches our initial prediction more closely. 

  

Correction of experimental value for Profoxydim. Experimental pKa data were initially procured from 

literature sources for the series of “dim” herbicides used in this work. Upon performing the fits for the 

single bond length models, the residual error for Profoxydim (Fig. 4D) using the literature pKa value of 5.91 

was found to be anomalously high, at +1.30 units. Marvin predicts the pKa of the enolic hydroxy group to 

be 5.44, i.e. very close to this experimental value. 

Due to the excellent accuracy observed for species o1-o7 (residuals < 0.50), we decided to re-

measure all pKa values. 7 of the 8 compounds (all except Clethodim), were procured and re-measured 
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using the UV-metric method (see Technical Section S2 for details). Excellent agreement was found 

between old and new values for all compounds but Profoxydim, for which a value of 4.82 was found. This 

new value lies only 0.22 units from our original prediction (4.61), yet it lies ~1.10 log units from the 

literature value. Therefore, we demonstrate the power of the AIBL approach to check internal consistency 

of pKa values for a given congeneric series. Structures and predictions for all dim herbicides can be found 

in Fig. S2 of the SI. 

Tetracyclines: multiprotic compounds with 50+ atoms. Aside from tautomerism, one of the more 

complex issues in the field of pKa prediction is the estimation of values for multiprotic compounds. Two of 

the species of our dataset contain a secondary ionizable group (dk26 and dk29, 2-pyridyl, pKa = ~5). In 

recent work we have demonstrated that prediction for a specific ionizable group may be performed by 

using the relevant microstate to the dissociation of interest. Therefore, in the case of dk26 and dk29, we 

performed all calculations on the cationic form of the 2-pyridyl group. To showcase the applicability of the 

AIBL model derived here in the context of larger multiprotic compounds, 6 tetracycline derivatives were 

included. For the correct microstate (the neutral state) of each species the most stable form is analogous 

to the keto-enol syn c conformation. The anti-conformation was constructed by manual rotation of the C2-

C1-O9-H10 (Fig. 3B) torsional angle from this form. For tet1, tet3, tet5 and tet6 of the training set, residual 

errors from the C-O model are below 0.1 log unit in all cases. For the test set compounds, predictions for 

tet2 and tet4 also lie within 0.1 log units. Use of Marvin with consideration of tautomers on this occasion 

identifies the keto-enol state as the relevant tautomeric form, delivering predictions of 2.83, 2.63, 2.55, 

2.92, 2.84 and 2.51, for tet1-tet6, respectively. Therefore, despite making the prediction using the correct 

tautomer, there is a distinct bias towards higher acidity for the enolic hydroxy group for these 

compounds. Structures and predictions for tetracyclines can be found in Fig. S3 of the SI. 

Future Application of AIBL. The poorer performance of Marvin, as illustrated by Fig. 4B and 4C, can most 

likely be attributed in part to a lack of coverage of this type of compound (cyclic 1,3-diketones) in their 

training data set. The predicted preference of the diketo state of many test compounds can also likely be 

attributed to the lack of knowledge on relative tautomeric stability pointed out by Connolly. The results in 

Fig. 4 illustrate the excellent performance of the C-O AIBL-pKa model in predicting the pKa variation across 

the series. Furthermore, we show that the accuracy is such that we can correct experimental values. We 

assert that a powerful future application of the AIBL approach is a method of fleshing out areas of 

chemical space that are sparse in the experimental pKa databases of empirical predictors, such as Marvin. 

Once a model has been set up with existing experimental data, hypothetical compounds with a variety of 

substituents can be assembled and their pKa values predicted and added to the training set. Therefore, 

the empirical approach is calibrated using the highly accurate AIBL approach, whilst still maintaining user-

friendly computational speed. 
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Conclusions 
 
We have shown bonding distances to be an intuitive and powerful descriptor of ionization propensity for 

much of 1,3-CHD and 1,3-CPD space. Due to the use of quantum chemically derived descriptors, the 

dominant tautomeric state is easily identified as the keto-enol form, from which chemically meaningful 

relationships are derived; a longer O-H and a shorter C-O bond are generally indicative of a species with 

heightened acidity compared to the parent compound. A simple but accurate AIBL-pKa method is 

proposed and validated; good results are derived using only simple linear regression of pKa onto C-O bond 

distances, which is shown to be applicable to a diverse array of analogues. For the test set, this simple 

model is found to outperform regression using various approaches and multiple bond lengths relevant to 

the dissociation at the keto-enol ionizable group. Furthermore, the method is applicable to multiprotic 

compounds, which along with tautomerizable species, represent one of the most challenging areas of pKa 

prediction. All of the models developed showed superior accuracy compared to the industry standard, 

represented by the program Marvin, for which the user must have prior knowledge of the dominant 

tautomeric form. Thanks to AIBL predictions, we also amend the literature experimental value for 

Profoxydim, which is corrected from a previous value 5.91 to a new value of 4.82. Based on the work 

shown here, and on previous results, we propose that AIBL-pKa is applicable to any tautomerizable 

congener series, given that pKa data exist for model calibration.   
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Methods 

Data. Structures and pKa values with references are given in Table S1 of the Supporting Information for all 

compounds studied in this work. Equilibrium bond lengths for the most stable geometries identified are 

listed in Table S7.  

The pKa data for the compounds investigated in this work have been procured from various 

sources. 16 triketones, labelled tk-1 to tk-15, tk18 and tk19 were procured from the Syngenta and are 

analogues of the herbicide Mesotrione. A further 20 diketone compounds were procured from Syngenta, 

which are labelled as dk-1 to dk-12 and dk22 to dk29. These values were obtained using the UV-vis metric 

approach with a Sirius T3 instrument at standard conditions (see Technical Section S2 of the SI for more 

details). A set of 10 compounds of triketone (tk) type labelled in as tkn1-tkn4 and tkc1-tkc6 were taken 

from the work29 of Lee et al. Samples of 11 diketones (dk), labelled dk-13 to dk-21, tk16 and tk17 have 

been procured and measured for the purpose of this work, using the potentiometric metric method with a 

Sirius T3 instrument at standard conditions. Finally, literature values were procured for 8 “dim” herbicides 

Alloxydim, Cycloxydim, Butroxydim, Clethodim, Sethoxydim, Tepraloxydim, Tralkoxydim and Profoxydim 

were procured, samples were purchased for all except Clethodim (due to unavailability) and pKa 

measurements were taken using the same apparatus and experimental procedure as described above and 

in Technical Section S1. Literature values for 6 tetracycline derivatives (tet1 – tet6) were obtained from 

literature sources. 

 

Quantum Chemical Calculations. An ensemble of 15 conformers were generated for each tautomeric 

form of each compound tkn1-tkn4 and tkc1-tkc6 using the conformer generator plug-in within the Marvin 

program2. Geometry optimization and frequency calculations were then performed using B3LYP/6-

311G(d,p) with CPCM implicit solvation for each conformer of every ensemble using GAUSSIAN0930. 

Conformers were ranked according to internal energy and the most stable species was taken as the global 

minimum. For the anti and syn conformers of the keto-enol state, an input geometry for the higher energy 

anti-conformation was manually generated by rotating the orientation of the O-H bond of the syn 

conformer by 180°. This process of generating the keto-enol anti state 16-19, 21-23 was repeated for the 

remaining 61 species.  

 

IQA Calculations. The extent of electronic delocalization between two atoms can be calculated within the 

context of a topological energy decomposition framework called Interacting Quantum Atoms (IQA). 

Originating from the Quantum Theory of Atoms in Molecules31 (QTAIM), IQA has been used to analyze a 

large variety of chemical phenomena32-35. By decomposing the total energy of a system into intra- and 

interatomic terms, we derive the exchange-correlation potential energy Vxc, which is the sum of the 

exchange energy Vx, and the correlation energy Vc. The former term usually dominates and denotes the 
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Fock-Dirac exchange, which describes the ever-reducing probability of finding two electrons of the same 

spin close to one another (i.e. the Fermi hole). The latter term is associated with the Coulomb hole and 

the electrostatic repulsion between electrons. The absolute value of Vxc evaluated between two atoms 

can be taken as the extent delocalization of electrons between them and so can be interpreted as a 

measure of covalency. These values were obtained by the AIMAll program36 (version 14), using DFT-

compatible IQA partitioning, and using default parameters on wavefunctions obtained at the B3LYP/6-

311G(d,p) level using CPCM. 

 

Models. Model training and error evaluation were performed using scikit-learn37. Initially, Ordinary Least 

Squares (OLS) regression of single bond distances and pKa, and validation was performed using r2 and 7-

fold CV RMSEE and MAE to assess the linear relationships between bond lengths and pKa. A random 70:30 

split of training set to external test set was then performed (i.e. training set = 49, test set = 22). We 

compared the results of using more than one bond length of the keto-enol fragment using Support Vector 

Regression (SVR) with a linear and Radial Basis Function (RBF) kernel, Random Forest Regression (RFR), 

Partial Least Squares (PLS) and Gaussian Process Regression (GPR) with an RBF kernel. We also compared 

our test set prediction errors results to those obtained using the program Marvin. Each model was 

evaluated using error-based metrics, Mean Absolute Error (MAE), standard deviation of absolute errors 

(σ), Root-Mean-Squared Error (RMSEP) and the r2 of observed vs predicted values. An overview of the 

AIBL workflow used in the context of cyclic -diketones is shown in Fig. 1C.  

  The optimal hyperparameters for the SVR models, C, ε (and 𝛾 for the RBF kernel) and RFR 

(number of estimators nest, maximum depth) were found in each case by applying a grid search 

(GridSearchCV in scikit-learn). The final hyperparameter values were chosen to minimize a 7-fold cross 

validation RMSEE.  

The GPR model was implemented in python using the GPR package called George. The squared 

exponential (SE) kernel, or RBF, was used to setup the GPR models with a unique length scale 

(hyperparameter) for each dimension, also known as the automatic relevance determination kernel of the 

SE-ARD, 

2
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1 | |
( , ) exp

2

N

d

x x
SE ARD x x

=
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− = − 
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The hyperparameters for this kernel were found by maximizing the log-likelihood function using the 

training set. The implementation for this used the gradient descent BFGS algorithm (implemented by 

scipy) on the negative gradient of the log-likelihood function (therefore finding the maximum of the 

function). As there can be many local maxima, the optimizer was restarted with random weights 100 

times in an attempt to find the global maximum. 
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