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Abstract

Recent advances in artificial intelligence along with development of large datasets of
energies calculated using quantum mechanical (QM)/density functional theory (DFT)
methods have enabled prediction of accurate molecular energies at reasonably low
computational cost. However, machine learning models that have been reported so far
requires the atomic positions obtained from geometry optimizations using high level
QM/DFT methods as input in order to predict the energies, and do not allow for geom-
etry optimization. In this paper, a transferable and molecule-size independent machine
learning model (BAND NN) based on a chemically intuitive representation inspired by
molecular mechanics force fields is presented. The model predicts the atomization en-
ergies of equilibrium and non-equilibrium structures as sum of energy contributions
from bonds (B), angles (A), nonbonds (N) and dihedrals (D) at remarkable accuracy.
The robustness of the proposed model is further validated by calculations that span
over the conformational, configurational and reaction space. The transferability of this
model on systems larger than the ones in the dataset is demonstrated by performing
calculations on select large molecules. Importantly, employing the BAND NN model, it
is possible to perform geometry optimizations starting from non-equilibrium structures
along with predicting their energies.
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1 INTRODUCTION

Accurate estimation of molecular energies is important for reliable modeling of various chem-

ical and biological phenomena in general. Quantum mechanical (QM) and density functional

theory (DFT) methods are the methods of choices for the calculation of accurate molecular

energies and physicochemical properties. However, application of these methods to molecu-

lar systems is computationally expensive and is impractical for large systems. For modeling

such systems, one resorts to the use of molecular mechanics (MM) force fields methods which

are computationally tractable.1–3 Force fields provide the potential energy of a molecule as

a function of nuclear positions and has empirical parameters that are derived based on their

ability to reproduce certain experimental and QM data via a detailed optimization pro-

cedure.4–6 Though the force field methods in general are widely used to model biological

macromolecules to study their dynamics, structural and thermodynamic properties, they

are considered less accurate compared to ab initio or DFT methods.

In an attempt to develop new methods for predicting energies that are of DFT quality but

are comparable to MM in terms of the computational cost, energy predictions have become

an important application of supervised machine learning algorithms.7–10 These algorithms

have been shown to efficiently recognize patterns on training data which can be applied

on unseen data. Traditionally, various regression techniques using kernel based methods11

were used that convert 3-dimensional coordinates of a molecule into fixed length feature

coordinates.12–14 Recently, deep learning has become the sought after method for various

supervised learning tasks due to their superior performance in several fields, primarily com-

puter cision and natural language processing.15–17 Various computational chemistry tasks18

including quantum mechanical property prediction,19–22 protein structure prediction,23–25

protein-protein interactions26, material property prediction,7,27,28 retrosynthesis29 and drug

discovery30–32 have been the targets of the machine learning methods and more recently deep

learning applications.8

In order to provide a molecule as an input to a supervised learning algorithm, accurate

description of a molecule as a vector is required.22,33 In other words, it is helpful to have a

vector representation that captures as much chemical information as possible. The descrip-
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tor should precisely capture the atomic environment of each atom and should be sensitive

to small changes in relative atomic positions. As hypothesized by,34 molecular descriptors

should follow these properties - rotational and translational invariance, invariance with re-

spect to the permutation of atoms, provide a unique description of the atomic positions.

Molecular descriptors in general suffer from inconsistency in terms of the size of molecules

since most supervised learning algorithms require a fixed length representation of the input.

Various approaches were proposed to tackle this problem. These approaches12–14 extend the

descriptor of every molecule in the set to the largest length descriptor by appending zeros

at the end. These methods are not readily applicable to molecules larger than the ones

trained with. Recent approaches have expressed total energy in terms of contributions from

individual atoms20,21,35 or has total energy broken down into contribution from individual

bonds36 where the individual feature vectors have fixed sizes.

The recent ML based methods generate DFT-level accurate potential energy surfaces, but

their feature vectors are derived by transforming the nuclear coordinates of the constituent

atoms, rather than explicit chemically intuitive terms. Smith et al.35 used modification of

symmetry functions originally developed by Behler and Parinello37 to represent the local

environment of each atom that are further used as inputs for the neural networks. Bartók

et al. used smooth overlap of atomic positions (SOAP) to generate feature vectors.38 Schütt

et al. in their works21 20 used nuclear charges (Z) and a matrix of inter-atomic distances as

input to their model to find the energy of the molecule.

Although methods have been proposed that explicitly build feature vectors based on

the bond topology of a molecule,13,14 to the best of our knowledge they have not been

demonstrated to generate potential energy surfaces or work on molecules larger than the

ones present in the data set. In this paper, we propose a novel molecular descriptor inspired

by classical force fields terms1 - bonds (B), angles (A), non-bonded (N) interactions and

dihedrals (D), which is named as BAND in this manuscript. A molecule is broken down into

these terms and energy contribution from each of these terms is measured through several

feed-forward neural networks. The sum of energies from each of the terms gives the total

energy of the molecule. Through a series of studies that span over the conformational and

configurational space, we show that our model can predict energies and potential energy

3



surfaces accurate to DFT-level. The applicability can be extended to molecules larger than

the ones trained in the data set. We also demonstrate the ability of our model to perform

geometry optimization of molecules to minimum energy when provided with an approximate

structure over a defined bond topology. This is possible due to the nature of our molecular

descriptor which is built taking into consideration the explicit bond topology of the molecule.

2 THEORY

Deep learning39 has been shown to learn complex nonlinear functions through artificial neural

networks. BAND NN proposed here uses feed-forward fully connected deep neural networks.

These consist of multiple layers of nodes - an input layer, one or more hidden layers and

an output layer. Each node is activated through weighted inputs from the previous layer

and a non-linear activation function. The ’weights’ are the optimizable parameters which

can be trained through back-propagation of derivatives of an objective function with respect

to each of them. The objective or cost function is a measure of deviation of the predicted

output from the ground truth. As mentioned earlier, neural networks (NN) need a fixed

length input feature vector. This creates a fundamental problem of obtaining accurate fea-

ture vectors starting from typical molecular representations such as internal and Cartesian

coordinates whose dimensions change with respect to the number of atoms. Such a fixed

length representation can further be used to train the NNs to predict molecular proper-

ties. The following subsections describe the feature vector/molecular representation, their

relationship with classical force fields and the ML model used here.

2.1 BAND Molecular descriptor

A molecular descriptor that captures the essence of typical MM force field equations is used

here. Each molecule is broken down into bonded pairs (atoms that are adjacent) and non-

bonded pairs (atom pairs that are not adjacent). From this, lists of angles identified as

two consecutive bonds forming an angle and lists of dihedrals identified as three consecutive

bonds forming a dihedral angle were created. Each atom is represented by an eight dimen-

sional feature vector: first four dimensions representing the atom name (the dataset used
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here involves only four atoms C, N, O and H) and the second four dimensions representing

the atom type in terms of how many of the C, N, O and H atoms are connected to it (Figure

1) essentially capturing the atom type as referred to in force fields.1–3 Each bond is repre-

sented by a 17-dimensional vector which is the concatenation of the vectors representing the

two atoms (eight-dimensions each) that form the bond followed the bond length. For the

angle, it is the combination of the three atomic representations (twenty four) followed by

the bond angle and two bond lengths making it a 27-dimensional vector. Similarly for the

dihedral angle, it is a 38-dimensional vector made by four atomic representations followed

by the dihedral angle, two angles and three bond lengths as given in Figure 1. The nonbond

pair representation is similar to bonds where the bond length is replaced by the internuclear

distance.

Figure 1: (a) Four dimensional feature vector for the atom name. (b) Eight dimensional

feature vector for atom name and type. The atomic representation of two select atoms in

formaldehyde is shown. (c) Schematic representation of the feature vectors of bonds, angles,

nonbonds and dihedrals.
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2.2 Resemblance to classical force field equations

A typical force field1 equation is represented as the sum of energy contributions from the

bonded (Ebonded) and non-bonded terms (Enonbonded)). The (Ebonded) term usually involves

energy as a function of bond lengths, bond angles and dihedrals angles in addition to other

terms like Urey-Bradley and improproper dihedral terms depending on the force field, and

the (Enonbonded) term is typically a combination of an electrostatic and Lennard-Jones terms.

Etotal = Ebonded + Enonbonded (1)

Ebonded = Ebonds + Eangles + Edihedrals (2)

The molecular representation proposed here is inspired by the force field equations where

the total energy is expressed as sum of individual contributions from the bonded (bonds,

angles and dihedrals) and non-bonded terms. In the force fields, the individual terms of the

equation are expressed as a function of the nuclear coordinates in terms of bond lengths,

angles, internuclear distances, etc. along with their characteristic constants. For eg, Ebonds

is given as

Ebonds =
∑
bonds

kb(b− b0)2 (3)

Here the constant kb is the force constant that is characteristic of bond formed by the two

participating atom types, b is the bond length and b0 is the equilibrium bond length. The

atom type typically captures the nature of the atom which comprise the atomic number

and its connectivity. The molecular representation used here captures this by the eight

dimensional vector for each atom. One modification is the implicit consideration of coupling

between stretching and bending, and stretching, bending and rotation about single bonds

akin to the class II force fields40 (see Figure 1).

2.3 The Model

In this model, the atomization energy (difference between the molecular energy and that of

the constituent atoms calculated at the DFT level) is expressed as the sum of the contribu-

tions from bonds, angles (coupled with bonds), dihedrals (coupled with bonds and angles),

and non-bonds. More specifically, the contribution from each of these is estimated using a
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feed-forward fully connected neural network. Four different models were trained for measur-

ing contributions from bonds, angles, dihedrals and non-bonded terms.(See Figure 2). Each

of these bonds, angles, dihedrals and non-bonded terms share the same weights and different

types of these are differentiated by their feature vectors. This allows the model to be scalable

with the number of atoms (or other bonded/non-bonded terms) as the final energy is only

expressed as sum of the individual contribution from each term as given below.

E =
∑
bonds

EB +
∑
angles

EA +
∑

nonbonds

EN +
∑

dihedrals

ED (4)

Figure 2: Schematic representation of the neural network architecture used for BAND NN.

As an example, the list of bonds, angles, nonbonds and dihedrals for formaldehyde along

with the number of neural networks used to predict the energies of each of these are shown.
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3 METHODOLOGY

3.1 Data Selection

A subset of ANI-1 dataset41 which is a large data set of non-equilibrium DFT total energy

calculations for organic molecule with about 22 million molecular structures for 57,462 mini-

mum energy structures was used for developing the ML model. These molecules were picked

from the GDB-11 dataset42,43 that has up to 8 heavy atoms containing only H, C, N and O.

In addition to the equilibrium geometries obtained by performing geometry optimizations

on ∼57k molecules at the ωB97X/6-31G(d), Smith et al. have used normal mode sampling

to generate hundreds of non-equilibrium structures for each of the equilibrium structures

resulting in ∼22 million data points. Single point energies of these configurations were cal-

culated using the same method.44 Although most methods use the QM-9 data set,45 the

conformation space is limited to equilibrium structures only and hence does not allow for

calculating energies of non-equilibrium structures and hence geometry optimizations. All

the equilibrium configurations along with each of their non-equilibrium structures whose

relative energies with respect to the corresponding minimum energy structure are less than

30 kcal/mol were used for this study. The rationale are that, (a) most of the structure gen-

eration software (such as Gaussview46) are able to give initial geometries that are not too

far away from the minimum, and (b) most of the drug design/biomolecular simulations do

not aim to model bond breaking/forming. Hence optimization of structures generated using

standard visualization software programs and for the purposes of such molecular modeling

exercises, the chosen subset of the dataset is deemed adequate.

3.2 Data Pre-processing

Initial task is to make a list of all bonds, angles, nonbonds and dihedral angles for each of the

configurations in the dataset for representing along the feature vectors proposed here. For a

given molecule, the equilibrium structure was chosen to derive the molecular representation

of its own and all its non-equilibrium structures. The list of bonds were generated using

RDKit47 based on the atomic coordinates of equilibrium structure which are extended to
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corresponding non-equilibrium configurations. Once the list of bonds were derived, the lists

of angles were generated by taking all possible 1,3 neighbors that are connected to 2, and

similarly all 1,4 neighbors where 2 and 3 are connected were taken as dihedrals. For the

non-bonded lists, all pairs except 1,2 whose distances are less than 6 Å in the equilibrium

structure were considered.

3.3 Training

Keras deep learning framework48 with TensorFlow49 backend was used for all training and

validation purposes. Fully connected networks were used for bonds, angles, non-bonds and

dihedrals. Each network has an input layer, three hidden layers for each type and an output

layer that measures the energy contribution from that term. Table 1 gives the dimensions of

bond, angle, non-bond and dihedral networks used for BAND NN model. The output layer is

a one dimensional vector that predicts the energy contribution from that particular network.

The total energy contribution is the sum of energy predictions from all the networks. A

train-test-validation randomly split in the ratio of 80-10-10 was used in this work. This

resulted in ∼6.1 million data points in the training set and ∼760,000 data points each in the

test and validation sets. Adam optimizer was used for updating weights with β1 = 0.9 and

β2 = 0.999 as suggested by Kingma and Ba.50 Learning rate was set at 0.01 initially which

was then gradually decreased to 10−5 by a factor of 10. All the intermediate layers were

activated using the ReLU activation function.51 The objective minimization function is the

mean squared error between the predicted and actual atomization energies. The training

data was iterated for 20 epochs until no notable increase in validation accuracy was observed.

3.4 Geometry optimization

As mentioned above, the ANI-1 dataset includes non-equilibrium structures that span over

conformational and configurational space. This enables accurate prediction of energies at

regions not limited to only minima on the potential energy surface but also higher energy

structures. Geometry optimization involves finding the least energy structure of a molecule

(minimum on its potential energy surface) given an approximate structure over a defined
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Table 1: Dimensions of the input and hidden layers of the network architecture of BAND

NN. Output dimension for each of the network is one.

Type of Network Input dimensions Hidden Layer Dimensions

Bonds 17 128-256-128

Angles 27 128-350-128

Non-bonds 17 128-256-128

Dihedrals 38 128-512-128

bond topology. In this study, the suitability of the proposed BAND NN model to be used

for geometry optimization is demonstrated. The optimization technique used is the Nelder-

Mead’s method,52 which is a popularly used direct search method for nonlinear optimization.

The method is initialized by construction of a simplex by randomly sampling points on

the target surface. The method propagates through generation of a sequence of simplices

by repeatedly replacing the worst point on the simplex with better ones. The algorithm

terminates either when the working simplex is sufficiently small or when the differences in

function values on the vertices of the simplex is less than a threshold. The implementation of

Nelder-Mead’s optimizer method in the Scikit-learn library with the default parameters53 was

used for the results reported in the paper. Algorithm 1 (see below) describes the procedure

followed for optimization of a molecule starting from its Cartesian coordinates and a defined

bond topology.
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Algorithm 1: Procedure for Geometry Optimization

Input: atomic coordinates, bond connectivity list

Initialise x to a z-matrix computed from atomic coordinates

Initialise T ← 3. This is a hyperparameter

Initialise history ← [(∞, x), (∞, x), ...T times], terminate← False

f is the function that takes z-matrix as the input and returns energy computed from

BAND NN

while terminate = False do

energy, x = History[0]

Set x to a different representation of z-matrix randomly

Minimize f(x) using Nelder-Mead’s optimization procedure. This step returns

energy′, x′ at minima of f

Append (energy′, x′) to history and sort history

Set worst performer to the last element of history

if worst performer = energy′, x′ then
Set terminate = True

else
Delete last element from history

end

end

4 RESULTS AND DISCUSSION

In this section, the accuracy of the model to predict atomization energies of molecules in the

dataset and slightly larger molecules are presented. Following this, the ability of the BAND

NN model to effectively learn the configurational and conformational space is demonstrated

by predicting relative energies of isomers C11H22 and by performing potential energy scans

on large drug molecules. This is followed by discussions on the predictive ability of the model

for reaction energies of common organic reactions. Finally the importance of including the

three-body and four-body terms for accurate predictions and the capability of BAND NN

model for utilization in geometry optimizations are presented.
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Figure 3: The histograms and the cumulative distributions of the absolute errors (in

kcal/mol) calculated on (a) test set and (b) GDB-10 test set.

4.1 Accuracy of the BAND NN model

As mentioned in the section above, all the conformers that were under 30 kcal/mol in the

ANI-1 data set from the corresponding minimum energy structure were chosen for this study.

This data set had about 7.6 million conformers, and a 80-10-10 split for training, testing

and validation was done on the dataset. A mean absolute error of 1.45 kcal/mol on the test

set was obtained, which is expected to be significantly better than the small molecule force

fields in general. The distribution of the absolute errors calculated for the test set comprising

about 700,000 structures is given in Figure 3a. Predicted atomization energies of about 75%

of structures in the test dataset are within 2 kcal/mol. To test the transferability of the

BAND NN model to molecules with number of atoms more than that present in the training

dataset, energies of molecules and their high energy structures with 10 heavy atoms were

calculated (calculations on much larger systems are discussed later). Smith et al. performed

normal mode sampling on 134 randomly chosen molecules with 10 heavy atoms from GDB-

11 dataset.42,43 From these, we picked all structures whose relative energies are under 30

kcal/mol with respect to their corresponding minimum. This resulted in 1500 structures

and the mean absolute error of the atomization energies predicted using BAND NN for this

set was found to be 2.1 kcal/mol, which demonstrates the transferability of the model to

molecules larger than the ones trained with. The distribution of the absolute errors for this
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set of structures are given in Figure 3b.

Figure 4: The relative energies (in kcal/mol) of select isomers of C11H22 relative to the least

energy isomer calculated using the ωB97X/6-31G(d) level of theory, AM1 semiempirical

method and using BAND NN.

4.2 Structural and Geometric Isomers

The accuracy of the proposed model in satisfactorily predicting the relative energies of struc-

tural and geometric isomers is examined here. Several isomers of C11H22 spanning diverse

structural and geometric space, namely, linear chains, cis-trans isomers, varying ring sizes

(three to six), etc. were chosen. The energies of the optimized geometries of these isomers

were calculated using the ωB97X/6-31G(d) level of theory using the Gaussian 09 program54.

Despite the diverse set of molecules considered for this evaluation, quantitative agreement

between the DFT and BAND NN methods is observed (Figure 4). It is also found that

the neural network model significantly outperforms the semiempirical quantum mechanical

AM1 method.55 This further indicates that machine learning based methods developed with

molecular size invariant featurizations are capable of accurate modeling of molecular sys-

tems at the fraction of the computational expense that DFT or ab initio calculations would
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require.

Figure 5: Potential energy surface (in kcal/mol) corresponding to C-C and C-N bond stretch-

ing and C-C-C angle bending of methamphetamine calculated using the ωB97X/6-31G(d)

level of theory and BAND NN. The structure of the molecule along with the labels of atoms

that were used for calculating the potential energies are given above the plots.

4.3 Potential energy surfaces

From the above discussions, it is apparent that the BAND NN model is capable of prediction

atomization energies of small organic molecules very well. However, it is also important that

models such as the one proposed in this paper are able to represent the potential energy

surface of molecular systems and not just the energies for select points on the potential energy

surface. Such a proper behavior of the model is necessary for it to be useful for performing

energy minimizations, conformational analysis and force calculations in molecular dynamics

simulations. Potential energy scans with respect to bonds and angles were performed on

molecules that are significantly larger than those in the training set. Figure 5 gives the

potential energy surfaces corresponding to C-C and C-N bond lengths calculated using the
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Figure 6: Potential energy surface (in kcal/mol) corresponding to the rotation about the

central C-C single bond of n-decane calculated at the ωB97X/6-31G(d) level of theory and

using BAND NN.

ωB97X/6-31G(d) level and BAND NN. For both the bonds, the positions of the minima are

predicted accurately and the curves maintain a smooth curvature. Similarly, the potential

energy scan for a C-C-C angle indicates very good agreement between the DFT results and

the BAND NN data. To further show the chemical accuracy of the model, we performed

conformational analysis for the central C-C bond of decane molecule and found very good

agreement. The positions of the minima and maxima are predicted reasonably well along

with the energies of different conformers and transition state with a mean absolute error of

only 0.6 kcal/mol (Figure 6).

4.4 Reaction energies

In this section, the ability of the BAND NN model to predict reaction energies of simple

organic reactions is examined. Some of the most simple and common reactions in organic

chemistry (conformational differences stabilized by intramolecular hydrogen bonds, hydro-

genation, Diels-Alder reaction, aldol condensation, esterification and electrocyclic ring clos-

ing reaction) were chosen for this analysis. The reaction energies calculated for these using

the ωB97X/6-31G(d) level, AM1 method and BAND NN model along with the schematic

diagrams of the reactions are given in Figures 7. All the reaction energies obtained using
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Figure 7: (a) Select organic reactions chosen for the calculation of reaction energies. (b)

Reaction energies (kcal/mol) calculated using the ωB97X/6-31G(d) and AM1 levels of theory,

and those predicted using BAND NN.

the BAND NN model are comparable to the DFT results. Among the six reactions, largest

difference between the DFT and the BAND NN model was observed for the hydrogenation

reaction. Notably, no data pertaining to the H2 system was present in the training dataset.

Similar to the prediction of relative energies of C11H22, the reaction energies computed using

the BAND NN model outperfoms the AM1 level of theory.

4.5 Importance of 3,4 body terms

Most of the machine learning models for QM/DFT energy predictions have been done by

including only two-body terms.13,36 In this study, the energy is given as the sum of the energy

contributions from all the bonds, angles, dihedral angles and nonbonded pairs. Two other

models, one excluding the dihedrals (referred to as BAN NN model) and another excluding

the angles and dihedrals (referred to as BN NN model) were trained using the same procedure

as the BAND NN model to investigate the importance of including the 3- and 4-body terms.

The distributions of the absolute error obtained from these models are given in Figure 8.
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Figure 8: The histograms and the cumulative distributions of the absolute errors (in

kcal/mol) calculated using the (a) BAN NN and (b) BN NN models.

The atomization energies are predicted within 2 kcal/mol for only about 50% and 60% of the

molecules in the dataset in the BN NN and BAN NN models respectively. The mean absolute

errors are 2.7 and 2.4 kcal/mol (1.45 kcal/mol for the BAND NN model). The performances

of these models are inferior compared to the BAND NN model. Previous studies that utilized

’bag of bonds’ feature involved the prediction of energies of molecules that are in their

minimum energy states.13 In other words, all the angles and dihedrals in these molecule are

in their equilibrium values and hence the variances of the angles and dihedrals in the dataset

are not large. In this study, we consider high energy configurations for each of the minimum

energy structures for which the angles and dihedral angles are away from the minimum

on the potential energy surface and hence sample a larger configurational/conformational

space. This requires that the energy of the molecules is expressed as a function of angles

and dihedral angles as well. Hence, the BAND molecular representation proposed in this

manuscript is well suited for handling non-equilibrium structures compared to those that

include only 2-body terms.

4.6 Geometry Optimization

Though there has been quite a few ML models to predict atomization energies of small or-

ganic molecules have been published in the last two years, there are few shortfalls. Some of
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Table 2: Input structure: Difference (kcal/mol) between the single point energies on the

initial structure and the DFT optimized structure obtained at the ωB97X/6-31G(d) level.

BAND optimized: Difference (kcal/mol) between the single point energies on the BAND

NN optimized structure and the DFT optimized structure obtained at the ωB97X/6-31G(d)

level. The structures of the molecules are given in Figure9

Molecule Name Input Structure BAND Optimized

1 5.5 1.7

2 10.7 3.1

3 4.9 1.5

4 9.1 3.4

5 17.5 7.6

these models cannot be applied to molecules larger than the ones in the training set, most of

them cannot be applied to structures that are not in their minima on the potential energy

surface and they have not been used for geometry optimizations. The condition that the

geometry optimized using the DFT level has to be provided for the ML model to predict

the energy is not desirable, since the geometry optimization involves calculation of the DFT

energy. The next useful step in applying machine learning for molecular systems is to be

able to develop models that allow for geometry optimization such that one could start from

a structure away from the minimum and use the model along with an optimization method

to reach the minimum. BAND NN model has been trained on high energy structures with

explicit topology of the molecule as defined by the featurization used here. Nelder-Mead’s

optimization method has been used for updating the geometric parameters starting from

a non-equilibrium structure. Starting from a reasonable guess structure of ocatane and

2-methylprop-2-enol, geometry optimization was performed. Figure 9 gives the energy of

these molecules with respect to the optimization step number. The energies of the two

molecules gradually decrease with respect to the optimization step and reaches convergence.

For another test, few structures were generated using the GaussView program46 (as an ac-

ceptable way of generating initial geometries in electronic structure theory calculations), and
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Figure 9: BAND NN atomization energies (kcal/mol) of 2-methylprop-2-enol and octane

with respect to the optimization step number.
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Figure 10: Molecules that were optimized starting from initial geometries generated using

the GaussView program. Energies are presented in Table2

optimizations were performed using the Nelder-Mead’s optimization employing the BAND

NN. The single point energies of the initial and optimized geometries obtained using the

ωB97X/6-31G(d) level are given in Table 2. In all the cases, the optimizer converged the

molecules to structures whose energies are significantly lower than those of the initial struc-

ture. Though the results are not perfect for all the systems, it is clear that it is possible

to use an appropriate molecular representation that will allow for geometry optimizations

and that optimal structures can be obtained from this method. Implementation of gradient

based methods may further improve the efficiency of the geometry optimization process.

CONCLUSIONS

A chemically intuitive molecular descriptor inspired from classical force field equation has

been developed for prediction of atomization energy of small organic molecules. BAND NN

model was trained on a subset of ANI-1 data set by choosing molecules that were at most

30 kcal/mol higher than the corresponding minimum. It was shown to accurately predict

atomization energies with a mean absolute error of 1.45 kcal/mol on the test set. It accurately

predicted the atomization energies of molecules randomly sampled from GDB-10, which are

larger than the molecules in the data set. The model was demonstrated to be sensitive to

structural and geometric isomers, generate accurate potential energy surfaces and predict

reaction energies to DFT level accuracy on larger molecules. These experiments demonstrate
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that the model is transferable to larger molecules. In recent years, several methods have been

proposed to predict atomization energy for ground state molecules, but for a model to be

practically useful it should also be able to predict potential energy surfaces accurately. BAND

NN model proposed in this work not only predicts the atomization energy for equilibrium and

off-equilibrium structures but also can be used to perform geometry optimization. Further

work in this area to develop robust transferable models using deep learning methods aimed

at predicting accurate potential energy surfaces of molecular systems is expected to be more

fruitful for state of the art problems in computational chemistry.
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