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Abstract

The capability to rank different potential drug molecules
against a protein target for potency has always been a
fundamental challenge in computational chemistry due to
its importance in drug design. While several simulation-
based methodologies exist, they are hard to use prospec-
tively and thus predicting potency in lead optimization
campaigns remains an open challenge. Here we present
the first machine learning approach specifically tailored
for ranking ranking congeneric series based on deep 3D-
convolutional neural networks. Furthermore we prove its
effectiveness by blindly testing it on datasets provided by
Janssen, Pfizer and Biogen totalling over 3246 ligands and
13 targets as well as several well-known openly available
sets, representing one the largest evaluations ever per-
formed. We also performed online learning simulations
of lead optimization using the approach in a predictive
manner obtaining significant advantage over experimental
choice. We believe that the evaluation performed in this
study is strong evidence of the usefulness of a modern deep
learning model in lead optimization pipelines against more
expensive simulation-based alternatives.

In the lead optimization phase of drug discovery, the
chemical structure of a molecule is typically modified by
a medicinal chemist team with the intent of improving its
potency, selectivity, and many other pharmacokinetic and
toxicological parameters [1–3]. These modifications result
in congeneric series, a set of ligands with few atom changes
between them, usually around a unique or small number of
different scaffolds for which there are experimental struc-
tures of the complex with the target protein. Series range
from few hundreds to thousands of compounds and require
considerable human, time and financial resources for syn-
thesis and assays. It is therefore of great value to have

in silico predictive tools to accelerate this process. Series
typically feature very small potency differences, which in
turn is a challenge for predictors, as having what could
be considered a low error in other scenarios (e.g. below 1
kcal/mol) is not a guarantee for successful ranking.

It is therefore common to focus on relative binding free
energy (RBFE) simulation methods [4–13], where the dif-
ference in affinity between two ligands is computed using a
thermodynamic cycle that alchemically perturbs only the
small region associated with the changing atoms. RBFE
methods have shown good results in several studies, with
accuracy close to 1 kcal/mol and reasonable correlations.
Despite this, these methods suffer from several issues, such
as system preparation, treatment of waters, force-field se-
lection, protein flexibility and computational cost, mak-
ing their prospective application difficult in practice [14].
On the other side, many empirical [15, 16], knowledge-
based [17, 18] and machine learning [19–24] scoring func-
tions have been designed for the task of predicting abso-
lute binding affinities. They mostly tackle the problem in
a regression setup, where the binding affinity is to be pre-
dicted using a set of protein-ligand descriptors, modelling
the interaction among both. The fact that they model
absolute affinities and are trained on very chemically di-
verse bodies of data, such as iterations of the PDBbind [25]
database, limits their applicability when predicting small
structural differences between two ligands, such in the
congeneric series case. While other machine learning ap-
proaches have been presented for this task [26–28], here we
propose a modern 3D-convolutional-neural-network-based
continuous learning approach for relative binding affinity
prediction in congeneric series and show strong predictive
power using multiple blind benchmarks as well as pub-
lic datasets at negligible computational costs. This study
serves as a very large evaluation of a modern machine-
learning pipeline for lead optimization in a real-life drug
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discovery scenario, thanks to the joint collaboration with
several pharmaceutical companies.

The BindingDB protein-ligand validation sets [29] were
used to pretrain our models, see methods for details. For
testing, we also extracted well-known publicly-available
literature test sets [30] used for benchmarking RBFE cal-
culations. Furthermore we include a recent freely-available
BRD4 bromodomain dataset [31]. In regards to internal
pharmaceutical data, we tested on five different congeneric
series from Janssen R&D. Three chemical series (sets 1,
2 and 3) were phosphodiesterase 2 (PDE2) inhibtors with
bioactivity versus PDE2, PDE3, and PDE10 [32,33] (pub-
lication number WO2018083103A1), the fourth series were
proto-oncogene tyrosine kinase (ROS1) inhibitors (pub-
lication number WO2015144799A1) and the final beta-
secretase 1 (BACE1) inhibitors [34]. We tested six con-
generic series with Pfizer, three of which target a kinase,
and the remaining an enzyme, a phosphodiesterase (PDE)
and an activator of transcription. The sizes of these vary
from 93 molecules up to 362, for a total of 955 tested
compounds. Lastly, Biogen tested the proposed proce-
dure on two different series, composed of 196 and 220 ana-
logues targeting a tyrosine-protein kinase and a receptor-
associated kinase, respectively. All the tests regarding in-
ternal pharmaceutical data were carried out blindly by
providing fully-containerized software to our collaborators,
who executed the application and reported corresponding
results. Furthermore only one pretrained model model
was provided without any opportunity to overfit to each
specific test set. The size of the sets presented here allow,
to the best of our knowledge the largest evaluation yet of
a modern machine learning pipeline in lead optimization.

We have recently reported a machine learning approach
that can learn based on 3D features of the binding site
interactions [20]. A similar encoding was used here that
represents the protein-ligand binding by voxelizing both
using a 24Å pocket centered box. The contribution of
each atom to each voxel is inversely proportional to their
euclidean distance r and the van der Waals radius rvdw
of the first (see methods). We use several channels for
both protein and ligand, in the sense that the atomic con-
tribution to each voxel depends on their type, which are
thoroughly defined in the methods section.

The neural network we propose has a novel zero-
symmetric architecture whose main building blocks are
3D-convolution operations. Convolutional neural network
(CNN) architectures have become the de-facto workhorse
in computer vision problems [35–37], providing state-of-
the-art performance. Following this success, many appli-
cations in bioinformatics and computational chemistry fol-
lowed [38–47]. In this work we focus on predicting relative
affinities for close analogues in lead optimization, there-
fore, our approach is to build a network whose input is
a pair of ligand binding voxelized representations belong-
ing to the same series. A two-input convolutional neural
network is designed, with fixed weights on both legs (see
methods). The inputs are forwarded through several con-
volution and pooling operations and then flattened into a
192-dimensional latent vector. The symmetry property of
relative binding affinity requires that inverting the order of
the ligands should change the sign of the predicted value.
We embed such symmetry in the network by computing
the difference between these latent vectors, representing

a latent description of difference in binding. A final lin-
ear layer with no bias is then applied to the result of this
difference, ensuring zero-symmetry by design and produc-
ing the desired predicted difference in affinity. Calculat-
ing relative affinities from an absolute prediction leads to
concatenation of the errors from two separate predictions.
Here, the model itself only focuses on what contributes
to the differences, and errors of absolute binding are can-
celed.

In the proposed continuous-learning approach, we ex-
plicitly use the fact that congeneric series are sequen-
tially generated in a lead optimization campaign, and fol-
low an incremental training and testing procedure. For
each congeneric series at a given time the affinity of previ-
ously tested ligands is known experimentally: differences
for these are taken as training data, while for test data
we predict differences between unknown and known ones.
While this approach is less ambitious than having a pre-
dictor for relative affinity with no experimentally tested
data (such as a physical-based model), its applicability is
general, since it is the common scenario that medicinal
chemists face in lead optimization campaigns. The train-
ing for the BindingDB sets starts with a reference struc-
ture in each series, for which we take the crystal struc-
ture ligand if available or the structure with the lowest
average maximum common substructure (MCS) distance
to the rest. Ligands from the rest of the series are then
sequentially added in a random order. It is well known
that either a random [48] or scaffold-based training test
split produce overoptimistic results when testing machine-
learning algorithms on activity benchmarks. Since the in-
dustrial datasets in our study include a compound creation
time-stamp, we also evaluate a more realistic temporal
split [49], where at each training step we consider the first
n tested ligands and the differences of the posterior ones
against the first are taken. The performance of the ma-
chine learned models is reported as the root mean squared
error (RMSE) and either Pearson’s correlation coefficient
R or Spearman’s ρ between experimental and predicted
affinity differences. We note that in all blind tests a single
model was provided, and no explicit attempt to optimize
hyperparameters in each set was made.

We first present results concerning our validation on the
495 protein-series datasets from the BindingDB, where the
proposed model achieves an average correlation coefficient
above 0.4 and an RMSE below 1.25 (pIC50 units) even
when only one binding-energy difference is taken per con-
generic series (Supplementary Fig. 1). This suggests that
the method works reasonably well in the very low-data sce-
nario, such as the beginning of a lead optimization cam-
paign. A noticeable performance boost is seen as more
differences are included in training, with a correlation co-
efficient above 0.62 and an RMSE below 1.05 when another
four different ligands from the same congeneric series are
known in advance, with performance plateauing beyond
five additional training ligands. A comparison against an
absolute affinity model is also provided (i.e. one of the legs
of the architecture), where as expected it can be appreci-
ated that it performs considerably worse than its relative
counterpart.

Now we present results on the Wang et. al. [30] and
BRD4 inhibitor datasets [31]. In this and the rest of cases,
we pretrained a model with all difference pairs available
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Figure 1: Average Pearson’s correlation coefficient R (±1 standard deviation) based on 25 independent runs on different
sets for the Janssen PDE2, PDE3 and PDE10 targets.
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Figure 2: Average Pearson’s correlation coefficient R (±1 standard deviation) based on several independent runs on
two sets for the Janssen ROS1 and BACE targets.

in the BindingDB database, which provides a prior for
further fine-tuning. We then mixed new available data
as training in each sequential iteration of each set with
the rest of the BindingDB database for only 3 epochs,
significantly reducing computational overhead. A FEP
baseline provided by Wang et. al. [30] is used for com-
parison. The model efficiently interpolates differences for

unseen ligands, achieving considerably high correlation co-
efficients and low errors in all series with as few as 3-4
additional ligands and associated activity pairs, surpass-
ing in many cases the much more expensive FEP baseline
(Supplementary Fig. 2). For instance, for the MCL1 tar-
get, after testing 3 ligands, the correlation coefficient is
above 0.8, surpassing the FEP baseline, and the RMSE is
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Figure 3: Results over 5 runs on Biogen’s Tyrosine-Protein Kinase and Receptor-Associated Kinase using a temporal
split, and MM-GBSA and QSAR random forest pipelines as baselines.

Table 1: Spearman’s ρ performance results between experimental and predicted absolute affinities provided by Pfizer
I&I, where other empirical, simulation, and machine-learning based affinity prediction methods are compared on
several congeneric series. Performance is poor for most tested model except for the sequential approach proposed here,
with Pearson correlations averaging over 0.5 with as few as 10% used analogues from the congeneric series at hand.
* Calculated LogP as available in rdkit

Target # ligands Mol. Weight (ρ) cLogP (ρ) * MM-GBSA (ρ) KDEEP (ρ) This work
(10% training, ρ)

This work
(20% training, ρ)

This work
(30% training, ρ)

Kinase #1 362 0.19 0.06 0.56 0.42 0.49 0.64 0.73
Kinase #2 106 0.1 0.28 0.25 0.25 0.25 0.41 0.51
Kinase #3 95 0 0.04 0.25 -0.27 0.3 0.3 0.31
Enzyme 93 0.43 0.24 0.01 0.49 0.43 0.26 0.59
Phosphodiesterase 100 0.37 0.36 0.67 0 0.49 0.64 0.73
Activator of
transcriptions 199 0.13 0.08 0.66 0.29 0.72 0.84 0.94

Weighted avg. 0.19 0.14 0.47 0.25 0.49 0.59 0.69
Simple avg. 0.2 0.18 0.4 0.18 0.45 0.52 0.64

below 1.2 (pIC50 units).
The same evaluation procedure was taken for the com-

pounds available in the Janssen PDE sets (Fig. 1 and
Supplementary Fig. 3) for both a random and a tempo-
ral split, where a baseline against Glide score [50] is also
added. Excellent performance was seen on a random split
given enough training data, and as expected, although the
temporal split performance is lower, it is still sufficiently
high to be used in a real-life prospective lead optimization
scenario. For instance, for the first PDE2 activity set after
20 ligands sorted by time, the Pearson’s correlation coef-
ficient R and RMSE were 0.77 and 1.35 (in pIC50 units)
respectively. Results for the ROS1 and BACE sets, show a
similar trend and insights (Fig. 2 and Supplementary Fig.
4). Furthermore, we also provide a type of split where
only differences among the most chemically close ligands
are predicted, based on ECFP4 fingerprint similarity, as
available in rdkit. That is, in each training step we predict
from the remaining untested pool of ligands those that are
closest to the ones in our training set, with the intention
of resembling a real-life lead optimization RBFE scenario,
typically applied to close analogues. Split-based results on
fingerprint similarity for the first PDE2 set (Supplemen-
tary Fig. 5), show that after 20 ligands sorted by chemical
similarity the R and RMSE were 0.83 and 1.12 (in pIC50

units). These suggest better performance in this scenario
than the proposed temporal split, and closer to the ran-
dom one.

We then present the results provided by Pfizer using
a temporal split in Table 1, where specific target names

cannot be disclosed. We compare such results with several
baselines such as molecular weight, cLogP, a MM-GBSA
pipeline [51, 52] and deep-learning absolute affinity pre-
dictor KDEEP [20], trained on the v.2016 iteration of the
PDBbind database. The model proposed here performs
considerably better than the rest when given only 10%
of the training data, again highlighting the importance
of incrementally training these on the congeneric series
of interest. An exception, however, is found in the Ki-
nase #3 series, for which no significant improvement is
observed when providing extra training data. We pro-
vide results using a temporal split for the last two con-
generic series provided by Biogen, for which we also com-
pare against several baselines: (a) Glide score, (b) an MM-
GBSA pipeline, and (c) a standard QSAR approach using
MACCS, ECFP4 and rdkit descriptors with a random for-
est model (Fig. 3 and Supplementary Fig. 6). In these
our model reveals similar conclusions, significantly outper-
forming all baselines. Curiously, it can also be seen that
the proposed method does not perform significantly worse
than the aforementioned baselines in the second target
when no training data is used. When some is used, such
as only 5 analogues, our proposed machine-learning model
significantly outperforms all baselines.

One aim of our study was to test whether machine-
learning driven relative affinity predictions could effi-
ciently identify key high potency compounds in a close
to real-life lead optimization scenario, by retrospectively
comparing them to the experimental order of synthesis.
With some of the large industrial datasets it was possible
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Table 2: Simulation-based benchmark results over 10 independent runs for the different datasets. We show the amount
of molecules the model is allowed to pick at each synthesis epoch, the experimental order of the compound with the
highest affinity in the series, the average synthesis epoch our model found said molecule, the total necessary sampled
ligands the proposed model has chosen before the target compound, and the sampling advantages over the experimental
and random orders.

Target Set # ligands Chosen per
synthesis epoch

Experimental
order

Found at
synthesis epoch

Total sampled
ligands

Advantage over
experimental choice

Advantage over
random choice

PDE2 1 900 10 766 12.2 132 634 318
PDE2 2 303 10 61 1 20 41 131.5
PDE2 3 278 10 253 5.9 69 184 70
ROS1 - 165 10 73 3.1 41 32 41.5
BACE - 229 10 190 20.8 218 -28 -103.5
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Figure 4: Average model-picked training set affinity per number of compounds synthesized for the Janssen PDE2,
ROS1 and BACE sets, as well as a baseline based on the actual experimental choice order of compounds

to test this and we used the most active compound as a
surrogate interesting lead molecule. The model is trained
on the first experimentally tested compounds, and then
is incrementally trained by choosing from the remaining
ones based on a upper confidence bound (UCB)-like cri-
terion [53], described in the methods section. We stop
the procedure once the model retrieves the analogue with
the highest associated affinity, and compare this with its
original synthesis experimental order in its corresponding
series. We present results for this simulation-based bench-
mark in Table 2. In 4 out of 5 sets our proposed model is
able to reach the compound with the highest affinity faster
than its experimental order or by random selection. Sur-
prisingly, in all ten independent runs of the second set for
the PDE2 target, the compound with the highest affinity
was found after only a single synthesis epoch. Further-
more, one would expect the average affinity in the train-
ing set to increase at each synthesis epoch (as the model is
tasked to pick compounds with increasingly higher UCB).
This is the case for 4 out of 5 sets again (Fig. 4), with
the exception of the ROS1 target, which shows a non-
monotonic trend, albeit its model reaches the compound
with highest affinity before its experimental order. In all
tested cases, the average training pool affinity for the lig-
ands selected by the model is higher than experimental
choice. Overall results are very promising and suggest
that the proposed method could be applied in a prospec-
tive scenario successfully. Particularly, in the first PDE2
set, we were able to reach potent compounds synthesizing
up to six times less molecules than the baseline method
used by the medicinal chemistry team.

In this work we have designed and tested a deep-
learning based model for the task of predicting relative
binding affinity predictions in congeneric series. This
work provides evidence that the method is able to
efficiently rank compounds as shown by an evaluation
on both publicly available and industrial data and can
be of use by computational and medicinal chemists in
early drug-discovery projects by providing informed
choices of future compounds to synthesize, as suggested
by our simulation-based benchmark. The accuracy of the
method heavily depends on the amount of available data
but can be trained and applied in minutes on a single
GPU, offering a substantial improvement in performance
compared with physics-based RBFE calculations which
can take days for a small number of analogues. While the
results presented here are encouraging, it is important to
note that they remain retrospective: a proper prospective
validation of the model, which would entail chemists
synthesizing compounds according to the decisions taken
by the trained model, remains a topic of future study.
In the long term, however, we expect that improving
molecular simulations accuracy [54,55] by the integration
of physics and machine learning approaches would pro-
duce a more convenient approach for engineering drug
discovery. In the meantime, methods such as the one
proposed here provide accurate performance at a fraction
of the computational cost of other approaches.
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Methods
Data filtering and cleaning. Out of the total 645 available
congeneric series available in BindingDB, 495 with IC50 affinity
values were extracted and processed for further evaluation, as
it was the unit with most data available, containing a diverse
set of targets. The majority of these sets encompass a single
protein-ligand crystal structure, the rest of the ligands modelled
against the reference using the Surflex docking software [56]. We
then assign each protein structure in the database to a family
cluster using a 90% sequence similarity threshold, as per PDB
conventions [57]. For each series in the same protein cluster we use
a maximum common substructure (MCS) protocol as available in
rdkit [58] to remove identical ligands. This procedure ensures that
the same ligand is not repeated against similar targets, avoiding
potential overfitting problems and overoptimistic evaluations [59].
Affinity values were log-converted to avoid target scaling issues
(pIC50 = − log10 IC50). Ligands that could not be read by rdkit
were removed. Histograms of the number of ligands and their
affinity range per series are provided in Supplementary Fig. 7,
with the average available number of ligands per series being 8.84.
In the Schrödinger and BRD4 sets, since only ∆G (per kcal/mol)
information was available, we converted affinity values to the pIC50
range assuming non-competitive binding. Descriptive information
on these series is provided in Supplementary Table 1. Compounds
provided by Janssen were docked using a common scaffold structure
via the Glide software. These congeneric series range from 48
up to a 900 different compounds with varying affinity ranges
(Supplementary Table 2).

Descriptor calculation. The contribution of each atom to each
voxel is assigned according to a pair correlation function defined by:

n(r) = 1− exp

(
−
( rvdw

r

)12)
(1)

We define several channels for both protein and ligand, in
the sense that the atomic contribution to each voxel depends on
their type. For the protein we define eight pharmacophoric-like
descriptors, as detailed in Supplementary Table 3. For the ligands
we use a simpler representation based on atom types contained
in the set {C,N,O,F,P, S,Cl,Br, I,H}, for a total of 18 stacked
channels. We note that there is no particular reasoning behind this
choice of descriptors other than they showed promising practical
performance in previous studies. The proposed network architecture
could easily be adapted to work with other representations.

Network architecture and training. Neural networks are uni-
versal function approximators [60,61], the output of each neuron be-
ing a dot product of some inputs x with some weights w plus a bias
b, followed by a non-linearity f :

φ = f

(∑
i

wixi + b

)
. (2)

Regular feed-forward neural networks, however, do not scale
well when the input is high dimensional (as in images, or in this
case atomic interactions). CNNs on the other hand are specifically
designed for handling lattices, where local spatial information needs
to be preserved. While a feed-forward network would ignore such
interactions, a convolutional one arranges its neurons spatially,
and only connects locally to the output of the previous layer. In
practice, building a neural network from scratch entails many
architectural choices, and for this work, since on average the depth
of the network should be roughly proportional to data size, we chose
to keep our network as shallow as possible.

A schema of our architectural choice is provided in Fig. 5 is pro-
vided in the Supplementary Information. It features two convolution
operations with a kernel size of 3 in each leg, followed by a max-
pooling operation, and finally another convolution operation with
the same kernel size for both before flattening and performing the
latent difference between analogues. The ReLU activation function
was used for all layers in the network except for the last, which does
not feature one. We include a dropout layer in the end to control for
overfitting. Xavier initialization was used for the weights. Training is
performed using the Adam stochastic gradient descent optimizer [62]
with standard hyperparameters (β1 = .9, β2 = .999, ε = 10−4) using
a batch size of 32 samples for 50 epochs. Furthermore, given a set
of relative binding predictions, its absolute counterparts can always

ΔΔ

Figure 5: Architecture of the proposed model. A two-
legged neural network with tied weights was constructed,
and a pair of protein-ligand voxelization is feed-forwarded
through it to later perform a latent space difference.

be retrieved given a single experimentally determined absolute ref-
erence, such as the one provided by a lead. If more than one is avail-
able, absolute affinities can be computed towards each, in practice
providing a predictive absolute affinity distribution, whose average
can then be interpreted as a maximum a posteriori (MAP) estimate
of the absolute affinity and its standard deviation as a measure of
its uncertainty, given the current model state.

All the models here were developed using the PyTorch package
for tensor computation and neural network training [63].

Upper-confidence bound criteria. The UCB-like criterion is
defined as:

UCB = µ(x) + βσ(x), (3)

where µ and σ are the average and standard deviation predicted
absolute affinities provided by the model for ligand x and β is a
user-chosen factor controlling the balance between exploitation and
exploration, that we fix in our study to β = 1.64.

Data availability. BindingDB, Wang et al. and Mobley et al.
set results are available upon reasonable request.

Code availability. Python code for generating the proposed fea-
turization is available within the open-source HTMD software [64].
The code of the network architecture in a PyTorch implementation
is provided in the Supplementary Information. An implementation
of this application is available through the PlayMolecule.org repos-
itory of applications, where users can freely submit their protein in
PDB format and two sets of the same congeneric series, for training
and validation respectively in SDF format. Depending on the size of
these last two, training and prediction time may vary, as the order
of data for training increases by n(n−1)

2
, and for testing nm factors,

where n and m are the number of training and testing instances re-
spectively. At the moment, predictions are limited to a default total
of a 1000 molecules per congeneric series, with runtimes averaging
and hour on a modern GeForce 1080Ti GPU. Larger experiments
can be arranged for users willing to run more computationally de-
manding experiments.
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