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Abstract: In recent years, deep learning for de novo molecular generation has become a 

rapidly growing research area. Recurrent neural networks (RNN) using the SMILES molecular 

representation is one of the most common approaches used.  Recent study shows that the 

differentiable neural computer (DNC) can make considerable improvement over the RNN for 

modeling of sequential data. In the current study, DNC has been implemented as an extension 

to REINVENT, an RNN-based model that has already been used successfully to make de novo 

molecular design. The model was benchmarked on its capacity to learn the SMILES language 

on the GDB-13 and MOSES datasets. The DNC shows improvement on all test cases conducted 

at the cost of significantly increased computational time and memory consumption. 

 

 



Introduction 

Machine learning (ML) and particularly Deep Learning (DL) are on the rise. DL has been 

successfully used to tackle problems were previously regarded as difficult to handle such as 

image classification [1], face recognition [2] or playing Go [3]. But the most interesting recent 

development are DL generative models, which can create content similar to what it has been 

trained with. They have been applied to fields such as image generation [4], language 

translation [5] as well as molecular design [6]. The last one is especially interesting because 

generative models trained with a set of molecules have shown to generate novel and 

meaningful compounds that are not present in the training set but share similar 

physicochemical properties with them. Furthermore, focused compound sets can be obtained 

by using advanced techniques such as transfer [6] or reinforcement learning [7]. A big 

advantage of generative de novo molecule design methods is that are data driven capable of 

learning the underlying probability distribution over a large set of chemical structures. The 

search over the chemical space can be reduced to only molecules seen as reasonable, without 

introducing the rigidity of a rule-based approach. One of the most mature architectures 

available today is using a Recurrent Neural Network (RNN) that generates molecules in the 

SMILES notation and uses Long Short-Term Memory (LSTM) [8] cells to keep track of the cyclic 

structure of molecules. Other architectures have also shown good results, such as Variational 

AutoEncoders (VAEs) [9, 10], Generative Adversarial Networks (GANs) [11, 12], Graph 

Generative Models (GGMs) [13, 14], etc. [15].  

In 2014 the Neural Turing Machine (NTM) was introduced by DeepMind [16]. The model was 

inspired by the architecture of the modern computer. Later, the differentiable neural 

computer architecture (DNC) was introduced [17] and shown to vastly outperform RNNs. By 



combining a flexible-sized memory with a controller neural network, it can process 

information and store the results into the external memory. The model learns what to write 

and erase from the memory as well as what and when to read from it. In molecular generation, 

the first application of DNC, RANC [18], was proposed as an improvement of ORGANIC [11].  

Result showed that SMILES sequences generated by RANC were longer, more diverse and 

more complex than in ORGANIC.  

However, a systematic analysis of the DNC architecture in molecular generation using the 

SMILES notation has not been reported in literature. In this study, we have compared the 

output chemical space generated by a basic LSTM-based RNN model and an enriched model 

with a DNC. To be able to perform this analysis, models were trained with a subset of GDB-13 

[19], a database that enumerates most fragment-like molecules up to 13 heavy atoms in size. 

After training the models were sampled and by assessing how much of the entire database 

was generated the quality of the models could be determined [20]. Additional models were 

also trained using the randomized SMILES variant, which has been shown to perform better 

than the canonical SMILES [21]. Furthermore, to train models that generate drug-like 

molecules, models were also trained and evaluated using the MOSES framework [22]. 

Methods and materials 

Differentiable Neural Computer 

A differentiable neural computer has three essential parts: a controller, a memory, read and 

write heads (Figure 1). The controller has the same role as a processor in a computer. It 

processes input information and stores the results into the memory. Storing is done using the 



write heads and stored information is loaded using read heads. The model learns what to write 

and erase from the memory as well as what and when to read from it. 

 

Figure 1: Schematic representation of the differentiable neural computer. Obtained from the GitHub repository 

of Google DeepMind DNC. [23] 

Controller 

The controller is responsible for taking an input in, reading from and writing to the memory, 

and producing an output. Any RNN can be defined as a controller for DNC. At every time step, 

the controller emits an output that goes through an interface layer, which decides the extent 

of each memory operation. For writing, it can choose to store information at a new, unused 

location or at a location that already contains information. This allows the controller to update 

what is stored at the location. If all the locations in the memory are used up, the controller 

can decide to free the locations, much like how a computer can reallocate memory that is no 

longer needed.  

Memory 

A memory of a DNC is represented by an 𝑁 × 𝑀 matrix where a value may be stored for later 

retrieval. The memory can be searched based on the content of each location. Writing into 

the memory creates associative temporal links that can be retraced backwards to build the 



computational graph and consequentially perform backpropagation and train the memory.  

The read-out information can be used to produce answers to questions or actions to take in 

an environment. Together, these operations give DNCs the ability to make choices about how 

they allocate memory, store information in the memory, and easily find it. 

Read and write operations in memory 

The role of the write and read heads is to store the information in the memory and obtain it 

when it is later needed. To do that, the heads use 3 different forms of differentiable attention. 

The first one is content lookup; whose goal is to provide a flexible mechanism of navigating 

through the memory by comparing a key vector emitted from the controller to the content of 

each memory location using a similarity score. The second attention mechanism records 

transition between consequently written memory location in a 𝑁 × 𝑁 temporal link matrix 

where 𝑁 is the size of the memory. This allows DNC to recover sequences in the order that it 

wrote them. The third form is designed to allocate the memory for writing. The usage of each 

memory cell is represented as a number in [0,1]  and a weighting that picks up unused 

locations is delivered to the write head. After each write the usage vector increases its value 

as well as decreasing over time. This allows the controller to reallocate and delete the 

information that is no longer required. 

RNN model 

The baseline RNN closely follows that of the best model found in [21]. It is an LSTM with 3 

hidden layers of size 512, with an embedding layer of 128. The batch size for all models used 

was 512. For the DNC, the controller used the same settings as that of the baseline. 



Datasets 

The GDB-13 database is a publicly available collection of all chemically stable molecules with 

up to 13 heavy atoms of types C, N, O, S and Cl (hydrogen atoms are implicit). The number of 

SMILES strings that can be parsed in RDKit version  2018.09.1.0  [24] in the database consists 

of 975,820,187 compounds [25]. The training set is a randomly sampled subset of size 1 million, 

with a separate validation set of size 10,000. dataset contains 24 different tokens excluding 

the start and end tokens.  

The dataset used for the MOSES [22] benchmark was downloaded from their GitHub 

repository, and is based on a custom curation of the ZINC [26] Clean Leads collection. After 

filtering, the training dataset contains around 1.6 million compounds, with two separate test 

sets of around 176,000 each: a test set and a scaffold test set, which includes scaffolds not 

present in the training set. 

Training process 

When training on the GDB-13 dataset, the learning rate strategy differed between the 

canonical and the randomized smiles. For the canonical SMILES, a starting learning rate of 5 ⋅

10−4 was used, which was halved every 15 epochs for 165 epochs. For the randomized SMILES, 

the same starting learning rate was used, but instead it was lowered by 20% of its current 

value every 35 epochs for 300 epochs. The more aggressive reduction of learning rate on 

canonical SMILES was done to counteract the overfitting that occurred, whilst the randomized 

SMILES do not encounter the same problem, as we don’t feed the same SMILES to the model 

every epoch. Following [21], the RNN baseline used a dropout of 0.25 for the random smiles 

which also turned out to be the best setting for the DNC model in this case too. For the 



canonical smiles, a dropout of 0.5 gave the best results. The DNC parameters used were 32 

memory cells of length 20 and 8 read heads for both SMILES types. 

MOSES models were trained with a starting learning rate of 5 ⋅ 10−4, which was halved every 

30 epochs and trained for a total of 100 epochs. The concept of UC-JSD does not exist in the 

same fashion for this data set, as we do not have a validation set. It would be possible to use 

one of the MOSES test sets to get the best possible results, but this was omitted as this would 

compromise the integrity of the benchmark and artificially increase the probability of higher 

benchmark score. Both models used a dropout of 0.5, in accordance with our experience of 

canonical SMILES from GDB-13. For the MOSES models, the canonical models used 8 memory 

cells of length 20 and 8 read heads. The ADAM optimizer [27] was used in all models with 

default parameters 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 =  10−8.  

Obtaining the best epoch 

During the training process, the Uniformity-Completeness Jensen-Shannon Divergence (UC-

JSD) metric [21] of each model was monitored to obtain the best epoch, since it was shown to 

have high negative correlation with the learning capabilities on the GDB-13. This metric is 

calculated as the Jensen Shannon Divergence (JSD) between the raw Negative Log-Likelihoods 

of the training set, validation set and a sampled set at a given time of the training process (e.g., 

after finishing an epoch). 

 Once the models were trained and the best epoch assessed, 2 ⋅ 109 compounds were 

sampled from models to examine the coverage of the whole GDB-13 database [25] from each 

model.  



Measuring significance of model performance 

It was shown in [21] the statistically significant level for the difference of coverage between 

different models using confidence intervals, where the significant difference between the 

GDB-13 coverages 𝐶1, 𝐶2, can be expressed as 

𝐶1 − 𝐶2 ≥ 4𝑍ασ∗, 

(Equation 1) 

Where, using the sample size 𝑘 = 2 ⋅ 109,  we get the value σ∗ = 8.952 ⋅ 10−6.   𝑍α  is 

computed using Student’s t-distribution with one degree of freedom. 

Technical notes 

The DNC implementation used in this research was based on already existing code [28]. The 

software was coded in Python 3.6.8. Models were run using PyTorch 1.0 [29] on Nvidia Tesla 

K80 (Kepler) using CUDA 9.1 driver 390.87 in the GDB-13 canonical SMILES models, and on 

Nvidia Tesla V100 (Volta) using CUDA 9.1 driver 390.30 on the randomized SMILES and MOSES 

models. 

Results and discussion 

Performance comparison on models for GDB-13 database 

DNC and regular RNN were trained on the GDB-13 training set for both canonical and 

randomized SMILES. During the training, the UC-JSD was constantly monitored as the model 

quality metric for comparison. Results show (Figure 2A-B) that the DNC model has lower UC-

JSD than the RNN model until around epoch 50 on the canonical SMILES, after which the 



curves jump above that of the RNN LSTM models. This implies that some over-fitting existed 

in the DNC model that started around epoch 35. Regarding the percent of valid molecules 

(Figure 2C-D), all models achieve high percentage of valid SMILES after training around 25 

epochs.  The DNC models have slightly higher validity than that of the RNN models for both 

types of SMILES, but the differences are unremarkable. Like [21], 2 ⋅ 109  compounds were 

sampled from the trained models and the coverage of GDB-13 for the respective model is 

presented in Table 1. 

 

Figure 2: (a) and (b) Plots of the UC-JSD metric during training for the DNC and RNN models. Models are trained 

with canonical SMILES (a) and randomized SMILES (b). (c) and (d) Plots of the % valid SMILES strings generated 

from a 10,000 sample during training for the DNC and RNN models. Models are trained with canonical SMILES (a) 

and randomized SMILES (b). 

Notice that both RNN and DNC models trained with randomized SMILES have higher validity 

than those of the models trained with canonical SMILES, as well as higher coverage of the 



GDB-13 chemical space. This is consistent to our previous report [21] and demonstrates that 

training with randomized smiles is an efficient data augmentation strategy for achieving better 

generalization.  

 

Model % Valid  IN GDB-13 % uniq. GDB-13 Max. % uniq. GDB-13 UCC 

RNN Can. 99.44 1.71 B 73.43 82.65 0.64 

DNC Can. 99.46 1.71 B 74.57 82.67 0.66 

RNN Rand. 99.82 1.83 B 82.80 84.61 0.85 

DNC Rand. 99.85 1.83 B 82.89 84.67 0.85 

Table 1: Comparison sampling results of models trained on the GDB-13 dataset. Legend: Model name (Model); 

Percent of valid SMILES (% valid); Total number of molecules in GDB-13 including repeats (IN GDB-13); Percent 

of unique molecules in GDB-13 compared to the total of the database (% uniq. GDB-13); Maximum percent of 

molecules in GDB-13 that would be sample if the model were ideal (see [20]) (Max. % uniq. GDB-13); Ratio of the 

uniformness, completeness and closedness of the model [21], the closer to 1 the better (UCC). 

 

The difference in coverage between the models at the respective SMILES variants can be 

considered significant using the conservative confidence interval described in Equation 1. In 

general, our results demonstrate that the DNC models have better performance than the 

regular RNN models in terms of learning the underlining SMILES character distribution and 

model coverage for the GDB-13 database. 

 

Performance on the MOSES benchmark 

Results indicate that, as with the GDB-13 models, the DNC model performs at the same level 

or slightly better than the RNN model (Table 2). Both models perform ostensibly better than 

the baseline in most metrics but without any significant difference between them. For 



instance, the Fréchet ChemNet Distance [30], a measure that compares how bioactive 

molecules from the training and generated sets are, is at least half that of the previously best 

model (VAE). There are two exceptions: validity and scaffold similarity score to the TestSF set. 

In the first case this is because of the architecture of the Junction Tree VAE [31], which is never 

able to generate an invalid molecule. On the other hand, the scaffold similarity score can be 

lower because the models trained here are slightly biased to the training set. The distribution 

of the auxiliary metrics compared against the test set is provided as supplementary 

information and shows the same trend. Both models are better than the baseline on almost 

all metrics, but there is no clear difference between them.  Lastly, models trained with 

randomized SMILES show a much better performance than those trained with canonical 

SMILES [21] and even have in some cases better values than the baseline. For instance, the 

FCD is half that of the canonical SMILES models and the internal diversity is even better than 

the baseline. This may indicate some limitations on the scope of the benchmarking suite. 

Difference in training time 

The tests conducted show varying degrees of improvement, from quite substantial (on 

canonical GDB-13) to minor (randomized SMILES GDB-13 and MOSES). This improvement 

comes at the cost of increased computational time and memory consumption (Table 2). 

Models trained with a DNC take up to three times more to compute compared to the regular 

RNN. 

 

DB SMILES Model Total time Sampled epoch Time @ sampled epoch 

GDB-13 Canonical RNN 11:58 75 5:26 

DNC 32:09 33 6:26 

Randomized RNN 23:37 280 22:05 



DNC 61:35 294 60:25 

MOSES Canonical RNN 15:54 100 15:54 

DNC 52:25 100 52:25 

Randomized RNN 73:02 403 64:13 

DNC 169:05 282 159:05 

Table 2: Time required to train the different models. Legend: Database used (DB), SMILES variant (SMILES), 

Model Architecture (Architecture), Time at which it finished training in full (Total time), epoch where the lowest 

UC-JSD (Best epoch), Time taken to train up to the best epoch (Best time). Time is in hh:mm.  The models trained 

on the MOSES canonical training set was sampled at the final epoch, rather than using any heuristic for best 

epoch. 



Table 3: Results of the MOSES benchmark [22] on the DNC and RNN models alongside the baseline model results. Arrows indicate when a given metric has to be minimized 

(↓) or maximized (↑). Legend: Model trained (Model), Fréchet ChemNet Distance (FCD), average similarity of generated molecules to the nearest molecule from the test set 

(SNN), cosine distance average between vectors of fragment frequencies (Frag), cosine distance  average between vectors of scaffold frequencies (Scaf), ratio of valid 

molecules (Valid), average of the Tanimoto similarity between all pairs of molecules in the sampled dataset (IntDiv), the same as before but with the squared Tanimoto 

similarity (IntDiv2), ratio of sampled molecules that passed a set of filters (PAINS, etc.) (Filters). Test and TestSF are two reference datasets, one containing molecules and the 

other scaffolds not present in the training set. 

 

Model FCD (↓) SNN (↑) Frag (↑) Scaf (↑) Valid (↑) IntDiv (↑) IntDiv2 (↑) Filters 

Test TestSF Test TestSF Test TestSF Test TestSF 

Train 0.0080 0.4755 0.6419 0.5859 1 0.9986 0.9907 0.0 1 0.8567 0.8508 1 

CharRNN 0.0914 0.5429 0.579 0.5486 0.9998 0.9984 0.9184 0.1289 0.9598 0.8566 0.8506 0.9897 

AAE 0.3945 1.0003 0.6197 0.5747 0.9952 0.9939 0.8655 0.1001 0.9965 0.8565 0.8503 0.9974 

VAE 0.0844 0.5412 0.6226 0.5766 0.9996 0.9982 0.9331 0.0616 0.9691 0.8565 0.8505 0.9963 

JTN-VAE 0.4224 0.9962 0.5561 0.5273 0.9962 0.9948 0.8925 0.1005 1 0.8512 0.8453 0.9778 

RNN  0.0420 0.4988 0.6300 0.5817 0.9998 0.9987 0.9579 0.0621 0.9940 0.8567 0.8508 0.9977 

DNC  0.0430 0.4945 0.6327 0.5838 0.9999 0.9985 0.9564 0.0590 0.9946 0.8567 0.8508 0.9978 

RNN Rand. 0.0212 0.4715 0.6233 0.5788 1.000 0.9986 0.9750 0.0948 0.9955 0.8562 0.8503 0.9977 

DNC Rand. 0.0212 0.4970 0.6224 0.5778 0.9999 0.9985 0.9755 0.0887 0.9949 0.8568 0.8509 0.9977 



Why does the DNC architecture bring no substantial improvements? 

The main difference between the DNC and the RNN is the size of the memory and the self-

attention mechanism implemented within. In our research we have used as the DNC controller 

the same RNN architecture, implying that the DNC is an upgrade of the RNN model that has 

many more parameters to train (thus the increased training times). In our opinion, the reason 

why the DNC does not perform substantially better is because of the nature of the data. Given 

that SMILES strings are not excessively long, and the vocabulary size is generally quite small 

(less than 50 tokens), we think that the hidden states of LSTM cells are enough to store 

information through the entire generation process. For the same reason, self-attention does 

not play a crucial role in generating SMILES because sequences are generally short. 

Conclusions 

This study shows that adding a DNC on top of a regular RNN model improves its learning 

capabilities. This is especially noted on datasets that hold extremely complex and convoluted 

structures, such as GDB-13, but less in drug-like molecule datasets such as that used in MOSES. 

This could be due to the simplicity of the molecules in the MOSES dataset or to MOSES not 

being able to capture the differences between the two models. In any case, the improvement 

of adding DNC into LSTM model is not particularly large, probably because that the regular 

LSTM model alone can already learn the SMILES grammar very well. We think that the DNC 

architecture is more powerful than the RNN but has many more hyperparameters to optimize 

and with the limitations of current hardware an exhaustive exploration could not be 

performed. Moreover, SMILES strings are short (i.e., rarely have more than 100 tokens), thus 

effectively not benefiting from the main strength of the DNC. For these reasons, we would not 



currently recommend using the DNC architecture as a substitute of the RNN. Finally, results 

indicate that benchmarks for molecular generation might need to include computational time 

and general resource usage as a metric for model performance. 
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