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Abstract

In the present work we have investigated the possibility of using the Quantum

Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation

processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com-

putational time which is basically the same as in newtonian simulations. At this end

we have considered the model fragmentation of CH4 for which an analytical function

is present in the literature. Moreover, based on the same model a microcanonical

algorithm which monitor zero-point energy of products, and eventually modifies tra-

jectories, was recently proposed. We have thus compared classical and quantum rate

constant with these different models. QTB seems to correctly reproduce some quantum

features, in particular the difference between classical and quantum activation energies,

making it a promising method to study unimolecular fragmentation of much complex

systems with molecular simulations. The role of QTB thermostat on rotational degrees

of freedom is also analyzed and discussed.

July 12, 2019

Introduction

Unimolecular dissociation represents one of the elementary chemical process which is involved

in a series of phenomena, like e.g. collisional activation fragmentation or laser induced

reactivity.1 The kinetics of this process is described by a simple exponential decay of the

initial microcanonical ensemble,2 N(0) :

N(t)

N(0)
= e−kt = e−t/τ (1)

where k is the unimolecular rate constant and τ the lifetime. The well-known Rice-

Ramsperger-Kassel-Marcus (RRKM) statistical theory is often employed to describe this

2



process,1,3,4 also called Quasi-Equilibrium theory (QET).5–7 In this framework, the initial

ensemble decays with a single exponential behavior and the rate constant, k, is the RRKM

rate constant. If information on reactants and transition states are available, it is possible

to obtain both k(E) and k(T ) by means of analytical models. Analytical theories are surely

very powerful, but have limited applications: one has to determine partition functions (or

density of states) of reactants and transition states and all the possible pathways should

be known in advance. They often employ harmonic approximations: anharmonicity can be

added but this becomes almost impossible for relatively large molecules. Explicit simulations

have been used and developed to directly obtain unimolecular fragmentation dynamics and

products.8–11 At this aim, chemical dynamics simulations were used with different ways of

energizing the fragmenting molecule:12 (i) giving an excess of internal energy, (ii) by explicit

collision with an inert gas. For example, it was possible to understand products structures

and reaction mechanisms in collision induced dissociation (CID) of several systems, from

small organic molecules,13–15 to biological molecules like peptides16–20 or sugars.21,22

In addition to information on fragmentation products and mechanisms, chemical dynam-

ics can be used to obtain kinetic informations on unimolecular dissociation. In particular,

from time decay of the initial population it is possible to obtain rate constants9,10,16,18 and in

some case threshold energies, via a correspondence between classical microcanonical RRKM

expression (called also RRK theory) and temperature dependence of rate constant which

assumes an Arrhenius-like form. These dynamics are purely newtonian, and thus rate con-

stants are classical and anharmonic – the anharmonicity comes directly since the simulations

are done on-the-fly on the full potential energy surface which is not harmonic. Quantum

nuclear effects are not considered and this can impact the simulations outcome for (at least)

three aspects: (i) the rate constant is classical; (ii) the activation or threshold energies

will not consider zero-point energy (ZPE) difference between reactant and transition state

(and/or products); (iii) tunneling is not considered. Furthermore, there can be in princi-

ple a difference between classical and quantum dynamics in reaction product ratio for the
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fragmentation of a complex molecule, with an effect on product abundances and even on

appearance of some of them.

In endothermic unimolecular dissociation an important quantum nuclear effect is related

to the ZPE of the products. In classical simulations, in fact, it is possible to form products

with vibrational energy smaller than their ZPE, which is not allowed in quantum dynamics.

To recover at least some of these quantum nuclear effects, a number of methodologies were

proposed in last years. Methods based on path integral molecular dynamics, like ring polymer

MD (RPMD)23 or centroid MD (CMD)24 can provide ZPE conservation.25,26 They are based

on path integral theory27,28 and thus well designed for thermodynamic properties.29 They are

also used for dynamical quantities but they must be carefully handled.30 Computationally,

they increase the simulation time by a factor P with respect to a classical trajectory, where

P is the number of beads which represents each particle in the path-integral formalism.

Semi-classical methods31 can overcome most of the problems related to incorrect treat-

ment of nuclear quantum effects in trajectories, like was shown recently in the case of Herman-

Kluk32 propagator,33 but they need a huge statistics to converge and are rarely applicable to

systems with more than three degrees of freedom. More in general, in last years, a number

of methods were proposed to specifically avoid ZPE leakage, often based on the knowledge of

normal modes and projection of actual positions and momenta on internal coordinates.34–37

Recently, Dammak and co-workers have proposed a method called Quantum Thermal

Bath (QTB)38 which can recover some nuclear quantum effects of vibrational motion. This

method was mainly tested for condensed phase systems.39–44 It is based on a Langevin-

dynamics formalism with a colored noise (which keeps quantum vibrational properties) and

computationally it has almost the same cost as a newtonian dynamics. Furthermore, it can

be applied to molecular dynamics propagation without any need of specific knowledge of

ZPE or instantaneous normal modes. Being promising for its use in a range of problems, its

applicability to model chemical reactions was never investigated.

In the present work, we study the case of a model unimolecular reaction, notably the
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fragmentation of CH4. Recently, the same system was studied by Paul and Hase45 by com-

paring purely classical fragmentation trajectories with trajectories in which the ZPE energy

of the forming products was checked and trajectories modified if they do not have enough

ZPE. Following the spirit of original Miller-Hase-Darling method46 for constraining ZPE in

non-reactive systems, in the present case if a trajectory is leaving the reactant basin without

enough ZPE in the product (here CH3) it is sent back to reactants and ”another chance” to

react with correct ZPE energy is given. We have thus used the same model fragmentation,

to understand how QTB can include nuclear quantum effects in modeling unimolecular reac-

tivity. Furthermore, we have investigated how, from microcanonical simulations at different

energies, the Paul and Hase correction to trajectories impacts the energy evolution of rate

constants and thus of activation energies. Finally, using well-known relationship connecting

k(E) and k(T ) it was possible to compare the different approaches on the same reaction.

Models and Methods

Model for CH4 → CH3 + H dissociation

We have employed the well-studied Duchovic-Hase-Schelegel (DHS) model47 for CH4 frag-

mentation with later modifications.48,49 It is composed by a set of Morse functions for the

C–H bonds plus additional torsional potential to keep the tetrahedral structure. Details of

the model are given in the Appendix. Note that another model for CH4 is present in the

literature,50,51 but here we used the same modified-DHS model employed by Paul and Hase

in order to be comparable with this recent study.45 The aim of the present work is merely

to understand QTB performances in unimolecular dissociation, in order to eventually use it

for other more complex systems.

Within this potential, the ZPE of the reactant, CH4, is 29.17 kcal/mol, and that of the

CH3 product is 18.60 kcal/mol. The classical fragmentation barrier is 109.46 kcal/mol, while,

taking into account ZPE of reactant and products, the barrier is expected to drop down to
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98.89 kcal/mol.

This model was recently used by Paul and Hase to investigate the microcanonical dis-

sociation kinetics using a purely classical dynamics with a new algorithm which keeps the

system back to reactant if the products (CH3) are obtained without enough ZPE.45 In this

work, the C–H distance of 6 Å was fixed as the value to define when a dissociation is done

(irreversibly). This value was chosen as in Ref.45 such that we can directly compare results

for both canonical and microcanonical simulations.

Within this model, and the energies employed here, the unimolecular fragmentation re-

action allowed to occur is:

CH∗4 → CH3 + H (2)

Using the harmonic frequencies of the DHS model for CH4, the average classical, Ecl, and

quantum, Eq, vibrational energies as a function of the temperature, T , can be calculated

from the classical statistical mechanics and Bose-Einstein statistics, respectively:

〈Ecl〉 = NkBT (3)

〈Eq〉 =
N∑
i

~ωi
(

1

2
+

1

eβ~ωi − 1

)
(4)

where N is the number of vibrational frequencies, kB is the Boltzmann constant, ωi are

the vibrational angular frequencies, ~ is the reduced Planck’s constant and β = 1/kBT .

The temperature dependence of classical and quantum average vibrational energies for the

present CH4 model are reported in Figure 1.

Quantum Thermal Bath Simulations

Molecular dynamics simulations were done using the Quantum Thermal Bath (QTB) method

to take into account quantum nuclear effects.38 The Langevin formal structure of equations
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Figure 1: Quantum versus classical average vibrational energy of the CH4 model employed
as a function of temperature.

of motion is used

miq̈i,α = − ∂V

∂qi,α
−miγq̇i,α +Ri,α(t) (5)

where i runs on the atoms, α = x, y, z, mi is the mass, q̇i,α and q̈i,α are the first and

second time derivatives of the positions, V the interaction potential between the nuclei (here

the modified DHS described previously), γ an effective frictional coefficient and Ri,α(t) is the

random force which in QTB method is set in order to have the correct spectral density, IR,

following the Wiener-Khinchin theorem

〈Ri,α(t)Ri,α(t+ τ)〉 =

∫ +∞

−∞
IRi

(|ω|)e−iωτ dω
2π

(6)

where IRi
obeys to the fluctuation-dissipation theorem for quantum systems:52

IRi
(ω) = 2miγ~ω

[
1

2
+

1

exp (β~ω)− 1

]
(7)
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The random force was generated as reported previously53,54 before each simulation and

then equations of motion integrated with modified velocity Verlet algorithm with a time

step of 0.1 fs. Different γ values were employed and results studied as a function of this

parameter.

Six temperatures were considered in fragmentation simulations: 3000, 3500, 4000, 4500,

5000 and 5500 K. For each set of simulations, 500 trajectories were done, with variable length

(between 5 ps and 1 ns) as a function of temperature. These time-lengths were chosen in

order to have almost 100 % of reactive trajectories. Simulations were done under two regimes:

(i) the action of the bath was removed from translational motion; (ii) the action of the bath

was removed from both rotational and translational motion.

All simulations were performed using Venus chemical dynamics software55 which was

modified to introduce integration of Langevin equations of motion reading externally pro-

vided random forces.

Langevin Molecular Dynamics Simulations

Langevin Molecular Dynamics (LMD) simulations were performed analogously to QTB ones.

The structure of equations of motion are the same as Eq 5, where now the random force is

the white noise, corresponding to the classical spectral density:

IRi
= 2miγkBT (8)

and the simulations were done as previously, with the same algorithms where now a

different random force is read. The same temperatures and γ values of QTB simulations were

considered in LMD ones. As previously, 500 trajectories with variable time-lengths (between

5 ps and 4 ns) as function of temperature were performed per each set of simulations. As

for QTB, simulations were done under two regimes: (i) the action of the bath was removed

from translational motion; (ii) the action of the bath was removed from both rotational and

8



translational motion. The LMD dynamics was implemented in Venus as for QTB, reading

an external noise.

Microcanonical Dynamics

Microcanonical simulations were done as in Ref,45 extending the study at different internal

energies: 119.9, 127.8, 131, 133, 136.6, 145.35, 154.16, 162.98 and 171.82 kcal/mol. For

these energies, we run trajectories that are purely newtonian and also using the reversing

momentum algorithm of Paul and Hase.45 Briefly, the reversing momentum algorithm (here

and hereafter called REV) works as follows: a newtonian simulation is performed but when

the products are formed (identified in the present case by the C–H distance of 6 Å) the

vibrational energy, Evib, of products (here CH3) is calculated. If Evib ≥ ZPE (in this case the

ZPE of CH3 product) then the trajectory is considered reactive and stopped. If, otherwise,

the products have not enough ZPE, the momentum of CH3–H relative motion is reversed,

corresponding to sending back the trajectory to the reactant basin. The trajectory follows

its faith and if again at a certain point it reacts the Evib of CH3 is checked again, up to

fragmentation with the correct Evib. More details can be found in the original paper by Paul

and Hase.45 Note that initially only the vibrational degrees of freedom are activated, which

is the microcanonical counterpart of regime (ii) in QTB and LMD simulations (i.e. when

the action of the bath is removed also from rotational degrees of freedom).

Also in this case, we performed 500 trajectories for each energy value and method with

variable time-lengths (between 500 ps and 100 ns) in order to have almost 100 % of reactive

trajectories.
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Results

Canonical lifetimes

From QTB and LMD simulations it is possible to obtain properties in the canonical ensemble

and thus, if we measure the lifetime of the reactants, their canonical lifetime, τ(T ), and

corresponding rate constants, k(T ) (k(T ) = 1/τ(T )). In Figure 2 we show the population

decay obtained at two temperatures for QTB simulations with γ = 0.1 × 1014 s−1. They

can be fitted with an exponential function and obtain τ and k. Similar exponential decay is

obtained for QTB and LMD simulations at different γ and temperature values.
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Figure 2: CH4 population decay as obtained in QTB simulations for γ = 0.1 × 1014 s−1 at
two different temperatures.

One crucial aspect of QTB and LMD simulations is the choice of the frictional parameter,

γ. 1/γ represents the characteristic time of energy exchange between the system and the

thermostat and it is usually chosen higher than the life-time of vibrational modes in order

to avoid widening of peaks and bands in frequency spectra. In QTB its role is more subtle.
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In fact, the QTB method is prone to ZPE leakage (ZPEL) problem which results from the

transfer of energy from high-frequency to low-frequency modes. Recently, Brieuc et al.54

have shown that increasing the γ value reduces and even eliminates the ZPEL. A more

detailed study of Mangaud et al. showed that it is possible to adapt γ on-the-fly in order

to fulfill the quantum fluctuation dissipation theorem:56 this approach is surely tempting

but needs equilibrated portion of trajectories (to calculate power spectra) so it cannot be

directly used for relatively fast reactivity. However, high γ values are not possible since

the bath frequency should not be in resonance with the vibrational frequencies. We have

thus chosen the intermediate temperature of 4000 K to understand how τ is affected by

the γ parameter. Furthermore, the coupling with rotational degrees of freedom can further

increase the width, so we have performed tests at 4000 K also removing the bath on rotational

motion. In Figure 3 we report the lifetimes for both QTB and LMD with γ in the range

0.01 – 0.5 × 1014 s−1. We notice that, for γ being in the 0.1–0.5 × 1014 s−1, lifetime values

are relatively constant. We have thus considered this range for further analysis. Removing

the bath also from rotational motion slows down the reaction, both in QTB and LMD

simulations. This is quite expected since the rovibrational coupling increases the reactivity

which here consists in simple dissociation of H atom. The effect of γ is the same as previously,

confirming that the 0.1–0.5 × 1014 s−1 γ range provides constant lifetimes (and thus rate

constants).

QTB and LMD lifetimes at different temperatures and γ values are summarized in Ta-

ble 1. As we can noticed, QTB lifetimes are systematically smaller than the LMD ones at the

same temperature: this is not unexpected since for the same formal temperature the classical

and quantum internal energies are different (see Figure 1). This is not in contradiction with

the previous microcanonical results where using REV algorithm (which considers ZPE in

products) the lifetime increases with respect to classical trajectories: quantum distribution

in QTB is in both reactants and products such that the effective barrier decreases when

quantum nuclear effects are considered. On the other hand, REV algorithm controls only
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Figure 3: Canonical lifetimes for T = 4000 K as a function of γ as obtained in QTB and
LMD simulations. Filled symbols are for simulations where the bath was removed only on
translational degrees of freedom, open ones where it was removed also on rotational motion
(labeled NoRot).
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the ZPE of products.

Activation Energies

Canonical simulations, both LMD and QTB, show temperature dependences of the rate

constant which follow an Arrhenius behavior for all the γ values considered here. An example,

as obtained for γ = 0.2 × 1014s−1, is reported in Figure 4.

Figure 4: Arrhenius plot for γ = 0.2 × 1014s−1 as obtained from LMD and QTB simulation.

We have thus fitted k(T ) with the well-known expression:

k(T ) = Ae−Ea/kBT (9)

where kB is the Boltzmann constant, obtaining the pre-exponential factor, A, and the

activation energy, Ea, for LMD and QTB simulations at different γ values. Activation energy

and pre-exponential factor values are reported in Table 2.
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Table 1: Fragmentation lifetimes (in ps) as obtained in QTB and LMD (also
when the bath was removed from rotation, labeled as NoRot) at different γ
values.

QTB QTB-NoRot LMD LMD-NoRot

T/K γ/1014s−1

3000 0.1 289.11 757.62 937.34 3126.37
0.2 307.73 843.29 855.31 3189.67
0.3 281.76 916.53 941.34 3493.33
0.4 332.86 1146.12 999.15 3670.72
0.5 347.77 1142.34 1171.00 4107.19

3500 0.1 48.40 111.28 93.85 272.35
0.2 43.64 121.33 91.92 286.80
0.3 44..55 163.54 95.63 266.16
0.4 50.63 139.74 89.11 325.99
0.5 54.94 167.77 104.51 389.54

4000 0.1 13.04 30.14 20.25 53.58
0.2 11.74 31.04 18.10 50.13
0.3 10.64 31.31 17.33 47.49
0.4 12.13 31.85 17.08 53.00
0.5 12.82 34.82 17.73 66.26

4500 0.1 4.45 9.81 5.97 14.44
0.2 3.78 8.74 5.40 13.61
0.3 3.56 9.74 4.96 13.62
0.4 4.09 9.78 4.64 14.89
0.5 3.61 11.61 5.19 15.04

5000 0.1 2.23 4.62 2.71 5.51
0.2 1.77 3.80 2.08 5.01
0.3 1.61 3.51 1.99 4.78
0.4 1.57 3.99 1.87 4.92
0.5 1.63 4.71 1.92 4.98

5500 0.1 1.20 2.38 1.40 2.88
0.2 0.95 2.00 1.08 2.30
0.3 0.86 1.89 0.99 2.18
0.4 0.83 2.00 0.97 2.29
0.5 0.84 2.00 1.19 2.34
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Table 2: Activation energies (in kcal/mol) and pre-exponential factors (in ps−1)
as obtained from QTB and LMD simulations by fitting Eq. 9. In parenthesis we
report results when removing the bath also on rotational degrees of freedom.

γ EQTB
a ELMD

a lnAQTB lnALMD

0.1 72 ± 1 85 ± 2 6.5 ± 0.1 7.6 ± 0.3
(75 ± 1) (92 ± 1) (6.1 ± 0.1) (7.5 ± 0.3)

0.2 76 ± 1 88 ± 1 7.1 ± 0.1 8.1 ± 0.2
(78 ± 2) (95 ± 2 ) (6.5 ± 0.2) (7.9 ± 0.3)

0.3 77 ± 1 90 ± 2 7.2 ± 0.1 8.4 ± 0.3
(83 ± 2) (96 ± 2) (7.0 ± 0.2) (8.1 ± 0.2)

0.4 79 ± 1 91 ± 2 7.6 ± 0.1 8.6 ± 0.3
(83 ± 1) (97 ± 2) (7.0 ± 0.1) (8.2 ± 0.2)

0.5 80 ± 1 93 ± 2 7.6 ± 0.1 8.7 ± 0.3
(83 ± 1) (99 ± 2) (6.8 ± 0.1) (8.3 ± 0.2)

We should note, first, that QTB activation energies are systematically lower than cor-

responding LMD ones. Furthermore, Ea increases with γ for both QTB and LMD. It is

well known that activation energies obtained from Arrhenius plot of a canonical simulation

are often lower than actual potential energy barriers, due to the energy fluctuations in a

canonical ensemble.57,58 Interestingly, here, the QTB values are lower than those of LMD

as should be from differences in ZPE between reactants and products. In particular, from

the CH4 model employed, we will expect a difference between classical and quantum energy

barrier of 10.57 kcal/mol: the differences between LMD and QTB activation energies are

plot in Figure 5 at different γ values and they are very similar (and less dependent on γ) to

the reference value.

We should notice that ∆Ea values obtained when removing the thermostat effect on

both rotational and translational motions are systematically higher than those for which the

thermostat was removed only on translational motion. In particular this reflects the larger

difference between the two regimes in LMD simulations, as shown in Table 2.

15



Figure 5: Differences between LMD and QTB activation energies as a function of γ. Circles
correspond to simulations where the thermostat was removed only on translational motion,
crosses where also rotational motion was removed. As horizontal line we report the classical-
quantum difference of reaction barrier as from the potential energy surface.

Microcanonical lifetimes and barriers

Microcanonical simulations were done at fixed internal energies, and, as previously, life-

times were obtained as function of this energy. Note that values for two energies (131 and

133 kcal/mol) correspond to results of Ref.45 As expected, REV lifetimes are bigger than

those from newtonian trajectories, because the REV algorithm has the final effect of extend-

ing the time spent by a trajectory in the reactant basin.

We can extract information on reaction barriers from evolution of rate constant as a func-

tion of internal energy. Here, the classical RRKM expression can be used since underlying

trajectories follow classical equations of motions (in REV algorithm there is only a condition

on when considering a trajectory done, if not fullfilled the trajectory is simply sent back to

reactants). In particular, data can be fitted using the well-known RRK formula:

k(E) = ν

(
E − E0

E

)s−1

(10)
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where E0 is the barrier and s the number of vibrational modes of reactants. In old RRK

theory, ν is an adjustable parameter with the dimension of a frequency. Here we fit the

expression of Eq. 10 to get E0 and ν, which is an effective frequency.

Other than using the pure RRK relation where the number of degrees of freedom (s) was

fixed (such that s − 1 = 8) we also let this as a free parameter. As shown in Figure 6,

this improves the rate constant fit. Resulting parameters are reported in Table 3.
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Figure 6: Rate constant as a function of internal energy as obtained in microcanonical
simulations. (A) Newtonian simulations; (B) REV algorithm simulations.

The best fits are obtained when s value was added as a parameter, resulting in s values

which are systematically lower than the number of degrees of freedom of the system. This is a

well-known issue of RRK fits and it is related to the problem of using a classical harmonic rate

constant to fit a (classical) anharmonic fragmentation kinetic, as deeply discussed by Song
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Table 3: Energy barriers obtained and other RRK fit parameters obtained from
micro-canonical simulations, both using Newton and REV dynamics. Results
using Eq 10 are reported in the higher part of the table and those using Eq 11,
for which s is fixed to the actual vibrational degrees of freedom, in the lower
part. ∆ is the difference (in kcal/mol) between Newton and REV barriers (E0).

Simulation E0(kcal/mol) ν (ps−1) (s-1) ∆
Newton 102 3904 8 –
Newton 112 338 4.9 –
REV 88 11929 8 - 14
REV 99 25 2.34 - 13

D0(kcal/mol) a (ps−1) b([kcal/mol]−1) c ∆
Newton 107 2.19 · 106 3.44 · 10−2 0.02 –
REV 86 4.76 · 106 5.31 · 10−2 0.06 21

and Hase some years ago.59 Furthermore, one should consider the energy dependent behavior

of the threshold in the case of unimolecular decomposition. The same authors proposed a

modified expression for the RRK rate constant, where now frequency and threshold energy

are energy dependent:

k(E) = ν(E)

[
E − E0(E)

E

]s−1

(11)

The energy dependence of the threshold can be expressed as:

E0(E) = D0 − cE∞ (12)

where D0 is the dissociation energy and E∞ = E −D0.

The ν(E) takes into account (i) the energy dependence in the anharmonic correction

ratio between sum and density of states and (ii) the tightens in variational transition state

vibrational frequencies with increasing E. A simple expression was proposed by Song and

Hase:59

ν(E) = afanh(E) (13)
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For fanh(E) different forms are possible, Song and Hase have found that for CH4 disso-

ciation the best way is using

fanh(E) =
exp [b†(E − E0)]

exp (bE)
[
1 + bE

s

] (14)

where b is for reactants and b† for transition state.

The modified RRK expression of Eq. 11 depends now only on four fitted parameters, a, b,

b† and c if one knows D0. The fitted values for newtonian dynamics are reported in Table 3.

As in the original work,59 b† = 0 permits a good fit.

When fixing D0 to the known classical threshold, a, b and c values are similar to the one

reported for the same reaction with a slightly different model.59 When letting D0 varying as

a free parameter, it slightly changes but more importantly other parameters change largely,

in particular a and c.

In the case of REV simulations, it was not possible to provide a fit with a physical meaning

when fixing D0 to the known value. Considering D0 as an additional fitted quantity (and the

ZPE of reactants), we have two slightly similar values (about 86 kcal/mol) for both b† = 0 and

b† 6= 0. The threshold is now 20 kcal/mol lower than the classical one and 10 kcal/mol too

low than when adding ZPE in reactant and products. One reason can reside in the arbitrary

modification in dynamics when doing REV simulations, resulting in irregular behavior of

unimolecular fragmentation kinetics. Another possible reason is that the modified RRK

approach is not appropriate to model unimolecular dissociation with REV method. Finally,

other anharmonicity functions exist, in particular based on works of Troe,60,61 and it would

be interesting to explore them deeper in details in works focusing on microcanonical theories,

which is, however, beyond the aim of the present paper.

Concluding, microcanonical simulations, in particular with using standard RRK expres-

sion, can recover the quantum vs classical energy difference. Barrier values are similar to

what expected from the analytical potential in particular if also the number of degrees of

freedom is considered as a fit variable.
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Classical vs Quantum rate constants

Direct comparison between rate constants obtained from LMD and QTB and Newtonian

and REV simulations cannot be done because the former lifetimes (and rate constant) are

canonical while the latter microcanonical. From Arrhenius and RRK fits it was possible to

extrapolate activation and threshold energies which can be compared. In particular, as we

have discussed, simulations report that barriers from QTB and REV are lower than those

from LMD and Newtonian simulations as expected and the differences are similar to what

expected from the energy profile of the reaction.

A more detailed comparison can be done by calculating the canonical rate constant, k(T ),

from the micro-canonical one, k(E), using the well known relationship:

k(T ) =
1

Q(T )

∫
k(E)ρ(E)e−βEdE (15)

where Q(T ) is the partition function (here only vibrational motion was considered to be

coherent with microcanonical initial conditions), ρ(E) the density of states and β = 1/kBT .

In Figure 7A we compare Newtonian microcanonical simulations with LMD ones for dif-

ferent γ values and where the thermostat was removed from both translational and rotational

motions (labeled NoRot) and only from translational one. Rate constant using integrated

Newtonian microcanonical values are very close to LMD-NoRot values. In panel B of the

same Figure 7 we report REV integrated rate constant compared with QTB values. In this

case REV rate constant is systematically lower than QTB values and in any case closer to

QTB-NoRot values. As we discussed previously, the REV dynamics is biased and it is not

clear how (and if) kinetics theory is applicable.

Overall the comparison shows that QTB and REV simulations provide similar results and

that QTB is a promising way of using direct dynamics simulations to estimate unimolecular

rate constants.
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Figure 7: Rate constant as a function of temperature as obtained by canonical simulations at
different γ values and from integrated microcanonical rate constants using Eq. 15. Panel A:
newtonian and LMD simulation results; panel B: REV and QTB simulation results. Different
γ values are shown in both LMD and QTB simulations. NoRot means that the thermostat
(LMD or QTB) is removed also from rotational degrees of freedom.
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Conclusions

In the present work we have investigated the possibility of using the Quantum Thermal

Bath method to include quantum nuclear effects in unimolecular dissociation trajectory

simulations. In particular, we were interested in the problem of rate constant modification

due to difference in products and reactants vibrational zero-point energies. At this aim we

have considered the fragmentation of a model CH4 for which microcanonical algorithms were

developed in order to take into account this specific problem. QTB was shown to being able to

catch the key feature of the difference between classical and quantum kinetics, i.e. a difference

in activation energy of about 10 kcal/mol, with values similar to modified microcanonical

algorithm. In this last microcanonical method, it is necessary to know in advance the ZPE

of both reactants and products to obtain the correct behavior. The advantage of QTB

is that results are directly obtained from simulations without any pre-knowledge of ZPE,

because the algorithm is tailed in order to fulfill at best the quantum fluctuation dissipation

relationship.

Note that QTB has the computational advantage of being comparable in simulation time

with a standard newtonian dynamics, thus making this approach promising for studying

direct reaction dynamics of more complex molecular systems. One critical parameter of

QTB is the friction value which was subject to careful analysis in the present work. Surely

more studies are needed to find the best parameters for simulations of isolated molecules

and ions with organic and biological interest. Our research is going in that direction.
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Appendix: CH4 PES

Here we summarize the functional form and actual parameters used in the CH4 potential en-

ergy surface used, which originate from DHS potential47 with subsequent modifications.48,49

The total potential has the expression:

Vtotal =
4∑
i=1

Di

[
1− eBi(ri−r0i )

]2

+
1

2

3∑
i=1

4∑
j>i

fij(θij − θ0
ij)

2 +
3∑
i=1

4∑
j>i

gij(θij − θ0
ij)

3

+
3∑
i=1

4∑
j>i

hij(θij − θ0
ij)

4 +
4∑
i=1

f∆i

4∑
j=1
j 6=i

∆2
ij +

4∑
i=1

h∆i

4∑
j=1
j 6=i

∆4
ij + gn4C4 (16)

The first term is a sum of Morse potential for the C–H bonds, with the following parame-

ters: Di = 109.460 kcal/mol, Bi = 1.933 Å−1 and r0
i = 1.090 Å. The angular terms (second,

third and fourth) have a complex form which can be divided in three parts: (i) quadratic,

cubic and quartic angular potentials; (ii) out-of-plane quadratic and quartic potentials and

(iii) non-diagonal cubic potential. Before expressing these terms, the equilibrium angle value,

θ0
ij, should take into account of the differences between equilibrium and asymptotic values.

At this end the following expression is used:

θ0
ij = θtij + (θtij − θ

(1)
ij )
[
S

(1)
θ (ri)S

(1)
θ (rj)− 1

]
+ (θtij − θ

(2)
ij )
[
S

(2)
θ (rk)S

(2)
θ (rl)− 1

]
(17)

with θtij = 109.4712◦, θ
(1)
ij = 90◦ and θ

(2)
ij = 120◦. S

(1)
θ and S

(2)
θ are two switching functions

to smoothly move from equilibrium CH4 geometry to dissociating CH3 + H system with

correct CH3 geometries at infinite distance between CH3 and H. They have the following

forms:
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S
(1)
θ = 1.0− tanh

[
αP (ri −R0)(eβP (ri−γP )3 + 1)

]
(18)

S
(2)
θ = 1.0− tanh

[
αT (ri −R0)(eβT (ri−γT )3 + 1)

]
(19)

withR0 = 1.086 Å, αP = 0.224147141 Å−1, βP = -0.990736407·10−5 Å−3 , γP = 0.238179398·102 Å,

αT = 0.330879271 Å−1, βT = -0.12408758·10−2 Å−3 and γT = 0.880601978·101 Å.

The force constants are also modified by the switching functions:

fij = f 0
ij

[
S

(1)
f (ri)S

(1)
f (rj)− 1

]
+ (f 0

ij − f
(2)
ij )

[
S

(2)
f (rk)S

(2)
f (rl)− 1

]
S

(1)
f (ri)S

(1)
f (rj) (20)

gij = g0
ij

[
S(1)
g (ri)S

(1)
g (rj)− 1

]
+ (g0

ij − g
(2)
ij )
[
S(2)
g (rk)S

(2)
g (rl)− 1

]
S(1)
g (ri)S

(1)
g (rj) (21)

hij = h0
ij

[
S

(1)
h (ri)S

(1)
h (rj)− 1

]
+ (h0

ij − h
(2)
ij )
[
S

(2)
h (rk)S

(2)
h (rl)− 1

]
S

(1)
h (ri)S

(1)
h (rj) (22)

where: f 0
ij = 0.5938, f

(2)
ij = 0.4543, g0

ij = -0.0996, g
(2)
ij = -0.1232, h0

ij = 0.0996 and

h
(2)
ij = -0.0101. And the switching functions are:

S
(1)
f = 1.0− tanh [α1(r −R0)(r − β1)γ1 ] (23)

S
(2)
f = 1.0− tanh [α2(r −R0)(r − β2)γ2 ] (24)

S(1)
g = 1.0− tanh [α4(r −R0)(r − β4)γ4 ] (25)

S(2)
g = S

(2)
f (26)

S
(1)
h = S(1)

g (27)

S
(2)
h = S(2)

g (28)

Then the out-of-plane potential (fifth and sixth terms in Eq. 16) has the force constants

modified by the switching functions:
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f∆i = (1− S∆(ri))S∆(rj)S∆(rk)S∆(rl)f
(1)
∆i (29)

h∆i = (1− S∆(ri))S∆(rj)S∆(rk)S∆(rl)h
(1)
∆i (30)

S∆ = 1.0− tanh [α3(r −R0)(r − β3)γ3 ] (31)

with f
(1)
∆i = 0.0436, h

(1)
∆i = 0.0854, α3 = 1.4191474·10−1, β3 = -3.0684503·10−1 and γ3 = 2.0.

The out-of-plane angle is defined as:

∆ij = cos−1
[
~N · ~rj/|~ri|

]
− θ0

ij (32)

where

~N =
(~rk − ~rj) ∧ (~ri − ~rj)
|(~rk − ~rj) ∧ (~ri − ~rj)|

(33)

where i = 1, 2, 3, 4 (5 is the C atom).

Finally, the non-diagonal cubic potential (last term in Eq. 16) is composed by force

constants gni which are all zero except gn4:

gn4 =

[
4∏
j=1

Sng (rj)

]
gCH4
n4 (34)

with gCH4
n4 = 0.2242 and Sng = S∆ and

C4 = (θ12 − θ0
12)(θ13 − θ0

13)(θ23 − θ0
23) + (θ14 − θ0

14)(θ12 − θ0
12)(θ24 − θ0

24)

+ (θ14 − θ0
14)(θ13 − θ0

13)(θ34 − θ0
34) + (θ24 − θ0

24)(θ23 − θ0
23)(θ34 − θ0

34) (35)
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