
A Machine Learning Approach for Predicting 

Defluorination of Per- and Polyfluoroalkyl 

Substances (PFAS) for Their Efficient Treatment 

and Removal 

Akber Raza,a Lihua Xu,b Sharma S.R.K.C. Yamijala,b,c Chao Lian,b,c,d Hyuna Kwon,b and Bryan M. 

Wonga,b,c,d* 

aDepartment of Electrical & Computer Engineering, bDepartment of Chemical & Environmental 

Engineering, cMaterials Science & Engineering Program, and dDepartment of Physics & Astronomy 

University of California, Riverside, Riverside, CA 92521, United States  

*Corresponding author. E-mail: bryan.wong@ucr.edu; Web: http://www.bmwong-group.com   

 

Abstract 

We present the first application of machine learning on per- and polyfluoroalkyl substances (PFAS) 

for predicting and rationalizing carbon-fluorine (C–F) bond dissociation energies to aid in their efficient 

treatment and removal. Using a variety of machine learning algorithms (including Random Forest, Least 

Absolute Shrinkage and Selection Operator Regression, and Feed-forward Neural Networks), we were able 

to obtain extremely accurate predictions for C–F bond dissociation energies (with deviations less than 0.70 

kcal/mol) that are within chemical accuracy of the PFAS reference data. In addition, we show that our 
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machine learning approach is extremely efficient (requiring less than 10 minutes to train the data and less 

than a second to predict the C–F bond dissociation energy of a new compound) and only needs knowledge 

of the simple chemical connectivity in a PFAS structure to yield reliable results – without recourse to a 

computationally expensive quantum mechanical calculation or a three-dimensional structure. Finally, we 

present an unsupervised machine learning algorithm that can automatically classify and rationalize 

chemical trends in PFAS structures that would otherwise have been difficult to humanly visualize/process 

manually. Collectively, these studies (1) comprise the first application of machine learning techniques for 

PFAS structures to predict/rationalize C–F bond dissociation energies and (2) show immense promise for 

assisting experimentalists in the targeted defluorination of specific bonds in PFAS structures (or other 

unknown environmental contaminants) of increasing complexity. 
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Introduction 

 The efficient treatment and removal of per- and polyfluoroalkyl substances (PFAS) continues to 

garner immense interest due to their deleterious health effects and their widespread presence in surface and 

groundwater sources. In particular, PFAS have been detected in hundreds of locations worldwide and have 

been linked to harmful health effects in the liver, kidneys, blood, and immune system.1, 2 One of the most 

common ways that PFAS contaminants impact the environment is through their presence in high-

performance firefighting foams, which are used to extinguish fuel-based fires.3-5 In addition, these 

compounds are also used in many non-stick and stain-repellent household products and can be 

unintentionally introduced into the environment when manufacturing waste is improperly disposed of.6, 7 

Because PFAS molecules contain a variety of strong carbon-fluorine (C–F) bonds, they become persistent 

in the environment and are extremely difficult to treat/remove once they have contaminated water 

resources.8, 9 

 While long-chain PFAS molecules such as perfluorooctanoic acid (PFOA) and 

perfluorooctanesulfonic acid (PFOS) are no longer manufactured in the US, many smaller-chain PFAS are 

still in widespread use. For example, aqueous film-forming foams used in high-performance fire 

extinguishers contain at least hundreds of PFAS structures,3, 4, 10, 11 many of which are composed of 

fluorocarbon chains of varying lengths and a diversity of organic head groups. Because of this immense 

chemical diversity, prior work by us12 and others13-15 have shown that the efficient cleanup of these 

contaminated sites can only be attained if all the PFAS species (not just PFOA or PFOS alone) are properly 

accounted for and treated. However, the sheer number and variety of PFAS contaminants is immense, and 

an in-depth experimental (or even theoretical) study of this nearly limitless number of chemical compounds 

is extremely difficult. 

We show for the first time that PFAS species and their defluorination mechanisms are natural 

candidates for harnessing machine learning approaches. Over the past few years, our society has witnessed 

an unprecedented growth in the use of machine learning and artificial intelligence in technological 

applications such as automated medical diagnostics software,16 handwriting recognition,17 computer 



vision,18 and autonomous vehicles19 (to name just a select few). While there has been prior work on using 

machine learning approaches for chemical/material applications,20-23 these advanced algorithms have not 

been previously applied to PFAS-based environmental studies with the specific purpose of 

predicting/rationalizing C–F bond dissociation energies to aid in their efficient treatment/removal. In this 

work, we show that the sheer variety of PFAS structures and defluorination mechanisms naturally lends 

itself to a data-driven machine learning approach, which can subsequently yield both efficient and accurate 

results. By training a computer on over 560 distinct C–F bond energies found in representative PFAS 

molecules (cf. Figure 1), we show that a machine learning algorithm can give extremely accurate 

predictions (deviations less than 0.70 kcal/mol) that are within chemical accuracy of the PFAS reference 

data. Furthermore, our machine learning approach is extremely efficient and only requires knowledge of 

the chemical connectivity of a PFAS molecule (i.e., a user can simply sketch an arbitrary PFAS structure 

by hand on paper, which can be entered into our machine-learned model to predict an accurate C–F bond 

dissociation in a few seconds). Finally, we show that advanced machine learning algorithms can be used to 

(1) automatically classify the C–F bonds across a variety of PFAS structures and (2) rationalize chemical 

trends in these structures without any human intervention. Collectively, these studies comprise the first 

application of machine learning techniques for PFAS structures, with the specific purpose of 

predicting/rationalizing C–F bond dissociation energies to aid in their efficient treatment and removal.  



 
 

Figure 1. Chemical families of all the PFAS molecules examined in this work. The red-colored R groups in each structure represent 

various C–F-containing molecular units (564 distinct C–F bonds in total – see Supporting Information for a complete set of 

structures) that encompass a broad range of molecular chains, branched structures, and other chemical functional groups. 

 

Materials and Methods 

 To predict and understand C–F bond dissociation energies in various PFAS structures of 

environmental importance, we utilized a variety of machine learning techniques that include Random 



Forest, Least Absolute Shrinkage and Selection Operator (LASSO) Regression, Feed-forward Neural 

Network (FNN), and t-distributed Stochastic Neighbor Embedding (t-SNE) algorithms.17 The first three 

algorithms are categorized as supervised machine learning techniques since they require training data that 

is pre-labeled by a teacher/expert (i.e., in a “supervised” fashion). Regression methods in each of these 

algorithms are then subsequently used to find patterns in the data via different optimization techniques. In 

the context of the PFAS structures examined in this work, the “labels” are the DFT-computed C–F bond 

dissociation energies, and the desired output from each of these algorithms is an accurate prediction of a 

C–F bond dissociation energy of a PFAS structure not in the original training data set. The last t-SNE 

algorithm mentioned previously is an unsupervised machine learning technique since no training labels are 

given, and the algorithm must find patterns in the data on its own (i.e. in an “unsupervised” fashion) to 

determine how to categorize/cluster the provided data. In the context of the present study, the goal of the t-

SNE machine learning algorithm is to categorize all of the PFAS C–F bond dissociation energies into 

clusters/families (described further in the Results and Discussion section) to understand which chemical 

functional groups are responsible for the observed bond dissociation energies. Further algorithmic details 

for each of the four machine learning approaches used in this work are provided in the Supporting 

Information. 

In any machine learning problem, the data plays a critical role; as such, all of the machine learning 

algorithms in this work utilized C–F bond dissociation energies that were computed at the dispersion-

corrected24-26 B3LYP+D3BJ/6-311+G(2d,2p) level of theory in conjunction with Truhlar’s SMD solvation 

model to implicitly simulate an aqueous environment.27 We have chosen to use this particular level of 

theory since the B3LYP+D3BJ functional (1) exhibits the mathematically exact R-6 asymptotic dependence 

required to accurately describe dispersion effects in intermolecular/dissociation interactions and (2) 

provides accurate predictions in close agreement with experimental results, particularly for PFAS-based 

compounds and their hydrogen-bonded complexes.28-34 Harmonic frequency calculations for all of the 564 

C–F bond-dissociation reactions (the complete data set for all 564 structures needed to run our machine 

learning algorithms can be downloaded as an external .zip file in the Supporting Information), and the bond 



dissociation energies were calculated from the total enthalpies (which include thermal corrections from 

translational, rotational, and vibrational degrees of freedom) for each of the chemical species. Further 

computational details of these DFT calculations are given in prior work.12, 35 

To utilize the various machine learning approaches, we require a set of chemical descriptors to 

enable a computer to autonomously and rapidly process this extensive data set. In order to be 

practical/efficient, the chosen descriptors should not be expensive to compute and, therefore, should satisfy 

the following 4 requirements for describing PFAS molecular structures: the desired chemical descriptor 

should (1) use a simple algorithm, (2) not rely on a quantum chemistry calculation to be carried out, (3) not 

require an optimized 3D geometry of the molecule, and (4) not explicitly use bond orders (i.e., single or 

double bonds). These requirements for descriptors were specifically chosen since any descriptor requiring 

a complex calculation (such as an optimized 3D geometry, for example) would defeat the purpose of using 

machine learning at all, because creating the descriptor, in essence, would just be as complicated as doing 

a quantum calculation/optimization itself. To satisfy these requirements, we have chosen to utilize the 

chemically intuitive bond descriptor scheme by Qu et al.,36 which utilizes the Chemistry Development Kit 

(CDK) libraries and is available as an open-source code written in the Java programming language.37 

Although the prior work by Qu et al. originally focused on organic molecules containing H, C, N, O, and S 

atoms, we have modified their Java-based source code (available for download at http://www.bmwong-

group.com/software) to include various C–F bond descriptors for the PFAS structures examined in this 

study. Within this scheme, geometric boundaries or “spheres” are used to encode the distance between the 

target bond of interest and the other atoms in the molecule. To visually conceptualize this more easily, 

Figure 2 gives a graphical representation of the various spheres and bond descriptors for dissociating a 

specific C–F bond in a prototypical PFAS molecule. In this scheme, each atom is labeled according to its 

element name and coordination number. For example, the carbon atom in a methane molecule would be 

labeled as C4 (since it has a coordination of 4 and is bonded to 4 hydrogen atoms), the carbon atom in 

ethylene would be labeled as C3, and the carbon atom in acetylene would be given a C2 label. For all of 

the molecules in this study, we consider only 15 atom types: C2, C3, C4, H1, N1, N2, N3, N4, O1, O2, S1, 

http://www.bmwong-group.com/software
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S2, S3, S4, and F1. As shown in Figure 2, the classification of atoms in different spheres is based on their 

distance to the target bond (this distance is defined in Ref. 36 as the number of covalent bonds [both single 

and double bonds only count as 1 bond] between that atom and an atom in the target bond on the shortest 

possible path). For example, atoms 1 and 6 are involved in the target C–F bond to be dissociated and belong 

to sphere 0; atoms 2, 3, and 5 are one bond away from the target 1–6 bond and, therefore, belong to sphere 

1; atoms 4, 7, 10, 11, 12, and 14 are two bonds away from the target bond and belong to sphere 2, and so 

on.  



 
 
Figure 2. Schematic of the chemical descriptors and data used by our machine learning algorithms to autonomously and rapidly 

process C–F bond dissociation energies in general PFAS structures. Panel (a) depicts a specific target C–F bond to be dissociated, 

and panel (b) shows the atom labeling scheme and spheres used to construct the point descriptor table in panel (c). It is important 

to note that the 3D and 2D structures in panels (a) and (b) are shown only for illustrative purposes and are not used by our machine 

learning algorithms, whereas the simple pair descriptor table in panel (c) encodes the actual data that is used by the machine learning 

algorithms in this work. 

 



 With the atom labels and spheres properly defined for each unique PFAS C–F bond, this 

information can be encoded as a point descriptor table, which is shown in Figure 2c. Simply put, the 

individual entries in this table correspond to the number of atom types in a specific sphere. Next, a pair 

descriptor table (not shown in Figure 2) can be constructed, which contains information on the number of 

pairs of atom types in specific spheres at designated distances between them. It should be mentioned that 

there are other variants/sub-categories of point and pair descriptors (such as element point descriptors, 

connection number point descriptors, bond-breaking difference pair descriptors, and molecular descriptors), 

which are discussed in detail in Ref. 36. Finally, the collected data was further cleaned by removing 

duplicate C–F bonds that contained the same bond dissociation energy and bond descriptors. Together, the 

simple point and pair descriptors (which, again, do not contain any explicit 3D geometrical/quantum-

mechanical data and also satisfy the 4 requirements mentioned previously for efficiently describing PFAS 

molecular structures) can be automatically processed via machine learning algorithms to accurately predict 

a C–F bond dissociation energy of a general PFAS molecule. 

 

Results and Discussion 

In this section, we compare the performance of each of the machine learning algorithms on 

predicting C–F bond dissociation energies for a variety of PFAS molecular structures. Among the three 

supervised machine learning approaches examined in this work (i.e., Random Forest, LASSO Regression, 

and FNN), the FNN algorithm (available as a standalone Python code within a .zip file in the Supporting 

Information), is the most complex and was originally designed to “learn” highly convoluted patterns in the 

underlying data, as discussed below. Figure 3 shows a schematic of the one-hidden layer neural network 

utilized in our study, which consists of one input layer, one fully connected hidden layer, and one output 

neuron. In the context of our current study, the various PFAS bond descriptors were used in the input layer, 

and the output was the predicted PFAS bond dissociation energy. Within the hidden layer, a numerical 

mapping occurs between the input and output layers, which is described/controlled by mathematical 

activation functions. For our study, we utilized the rectified linear unit (ReLU) activation function,38 to 



allow greater flexibility in learning the mapping between the input bond descriptors and the outputted bond 

dissociation energy. 

 

Figure 3. Schematic of the Feed-forward Neural Network used to predict PFAS bond dissociation energies in this work. PFAS 

bond descriptors are used in the input layer, which is subsequently processed by a hidden layer to learn a (non-linear) mathematical 

mapping for generating predicted PFAS bond dissociation energies at the output layer. 

 

As is customary for any supervised machine learning approach, we subdivided the data into two 

sets: a training and test set, described further below. Among the 564 unique C–F bond dissociation energies, 

414 randomly chosen C–F bonds were utilized in the training set to enable each of the three supervised 

machine learning algorithms to autonomously learn patterns in the data. The remaining 150 C–F bond 

dissociation energies were then subsequently utilized to test the predictive performance of each machine 

learning algorithm, as shown in Figure 4. The diagonal line in all of these figures represents an ideal 100% 

agreement between that particular machine learning algorithm and the corresponding reference DFT bond 

dissociation energies. Among the three supervised machine learning algorithms, Figure 4 shows that the 

FNN approach yields predictions that are in excellent agreement with the reference DFT data with an 

impressive R2 value of 0.93. To make an additional comparison across the various supervised machine 

learning algorithms, we calculated the Mean Absolute Deviation (MAD) and Root Mean Squared Error 

(RMSE) from our reference DFT bond dissociation energies for the Random Forest, LASSO Regression, 

and FNN approaches in Table 1 based on the 4-sphere bond descriptor model described previously (it is 



worth mentioning that we also calculated MADs and RSMEs for each of the machine learning models as a 

function of the number of sphere descriptors (i.e., 3, 4, and 7) and found that the 4-sphere bond descriptor 

model gave the best results, which is consistent with the previous study on organic molecules by Qu et 

al.36). The most salient result of Figure 4 and Table 1 is that the FNN machine learning algorithm gives 

strikingly accurate predictions (MAD = 0.70 kcal/mol) that are within chemical accuracy of the PFAS bond 

dissociation reference data. In other words, the error introduced by the FNN algorithm is quite small and 

within the accuracy of the employed theoretical method (namely B3LYP+D3BJ/6-311+G(2d,2p)). It is 

important to note that no high-level wavefunction-based benchmark datasets on PFAS molecules currently 

exist (to the best of our knowledge) to judge the accuracy of the B3LYP+D3BJ functional; however, based 

on various benchmark calculations on other datasets,39-43 the accuracy of this functional is within 0.2-2.5 

kcal/mol. 

 

 

Figure 4. Comparison of the accuracy among the (a) Random Forest, (b) LASSO Regression, and (c) FNN machine learning 

algorithms for predicting C–F bond dissociation energies in the PFAS test set. The diagonal line in each figure represents a perfect 

match between that particular machine learning algorithm and the corresponding reference DFT data. 

 

Table 1: Mean Absolute Deviation (MAD) and Root Mean Squared Error (RMSE) Values for Each of the 

Three Supervised Machine Learning Algorithms on Predicting PFAS Bond Dissociation Energies. The 

Values in Parentheses Correspond to MADs and RSMEs Computed on a log10(K) Scale (i.e., MAD/RSME 

Values Divided by 2.303·R·T). 

 
Random Forest LASSO Regression 

Feed-forward Neural 

Network (FNN) 

MAD (kcal/mol) 2.42 (1.77) 1.96 (1.44) 0.70 (0.51) 

RMSE (kcal/mol) 2.65 (1.94) 1.87 (1.37) 1.22 (0.89) 

 



 As a final example of utilizing machine learning approaches to understand PFAS defluorination 

mechanisms, Figure 5 plots the classifications/trends resulting from the t-SNE algorithm, which is an 

unsupervised machine learning approach for finding patterns in the data without any prior training labels 

from the user. In simple terms, the t-SNE algorithm allows the visualization of high-dimensional data as 

two-dimensional “clusters” where data points grouped within a cluster share similar characteristics with 

each other. In the context of our study on PFAS molecules, Figure 5 shows that C–F bonds with similar 

bond dissociate energies are automatically clustered together by the t-SNE algorithm. Specifically, C–F 

bonds with large dissociation energies (enclosed by the yellow ellipse for clarity) are mostly attached to the 

terminal end groups of molecules. In contrast, C–F bonds with low dissociation energies (enclosed by the 

blue ellipse) arise from branched molecules. Finally, clusters enclosed by the lime green ellipse at the 

bottom of Figure 5 represent C–F bonds that are mostly adjacent to the terminal carbon of the molecule, 

whereas clusters enclosed by the teal green ellipse arise from C–F bonds that exist in the middle of the 

molecular chain. It is important to re-iterate that these clusters/classifications were automatically chosen 

by the unsupervised t-SNE machine learning algorithm (without human intervention). As such, these results 

demonstrate that the t-SNE algorithm can be a useful tool for automatically classifying and rationalizing 

chemical trends in PFAS structures that would otherwise have been difficult to humanly visualize/process 

manually. 



 

Figure 5. Clustering/categorization of C–F bond dissociation energies in various PFAS structures automatically predicted by the 

t-SNE machine learning algorithm. The yellow ellipse encloses C–F bonds attached to the terminal end groups of molecules and 

have large dissociation energies; in contrast, the blue ellipse contains C–F bonds in branched molecules and have low dissociation 

energies. Clusters enclosed by the lime green ellipse are associated with C–F bonds adjacent to the terminal carbon of the molecule, 

whereas clusters enclosed by the teal green ellipse arise from C–F bonds in the middle of the molecular chain. 

 

In conclusion, we have presented the first application of machine learning on PFAS structures with 

the specific purpose of predicting/rationalizing C–F bond dissociation energies to aid in efficient PFAS 

treatment and removal. Using a variety of supervised machine learning algorithms (including Random 

Forest, LASSO Regression, and FNN approaches), we were able to demonstrate that the sheer variety of 

PFAS structures and defluorination mechanisms naturally lends itself to a machine learning approach, 

which can subsequently yield both efficient and accurate results. In terms of efficiency, we have shown that 

our machine-learned model only requires knowledge of the simple chemical connectivity in a PFAS 

structure (i.e., neither a 3D geometry nor even a rough estimate of bond lengths/orientations are required) 



to yield reliable results. In other words, a user can simply sketch an arbitrary PFAS structure by hand on 

paper that can be entered into our machine-learned model to obtain accurate dissociation energies for any 

of its C–F bonds in less than a second (without having to do a computationally expensive quantum 

mechanical optimization or frequency calculation). In terms of accuracy, we have shown that the FNN 

machine learning algorithm gives extremely accurate predictions (deviations less than 0.70 kcal/mol) that 

are within chemical accuracy of the PFAS reference data; therefore, this approach can be used to predict 

bond dissociation energies for other unexplored PFAS molecules of environmental significance. In our final 

application of machine learning, we have shown that the unsupervised t-SNE machine learning algorithm 

can automatically categorize and rationalize chemical trends in PFAS structures that would otherwise have 

been difficult to humanly visualize/process manually. Taking these results together, the combined use of 

the t-SNE algorithm with the highly accurate/efficient FNN machine learning approach shows immense 

promise for assisting experimentalists in the targeted defluorination of specific bonds in PFAS structures 

(or other unknown environmental contaminants) of increasing complexity. 

 

Supporting Information 

Complete data set for all 564 structures (in CSV format within a compressed .zip file) required as input for 

most machine learning algorithms, standalone Python code for the FNN algorithm in the same external .zip 

file, additional algorithmic details for each of the four machine learning approaches used in this work, 

additional details on the accuracy of the supervised machine learning algorithms, and additional details on 

the choice of the training and test dataset. This information is available free of charge on the ACS 

Publications website. 

 

Acknowledgments 

This material is based upon work supported by the National Science Foundation under Grant No. CHE-

1808242. This work used the Extreme Science and Engineering Discovery Environment (XSEDE) Comet 



computing cluster at the University of California, San Diego through allocation TG-ENG160024. Prof. 

Jinyong Liu and Ms. Sharmistha Bardhan are acknowledged for several helpful discussions.  



References 

1. Butenhoff, J. L.; Rodricks, J. V., Human Health Risk Assessment of Perfluoroalkyl Acids. In 
Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances, DeWitt, J. C., Ed. Springer 
International Publishing: Cham, 2015; pp 363-418. 
2. Tsuda, S., Differential Toxicity between Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic 
Acid (PFOA). J. Toxicol. Sci. 2016, 41, SP27-SP36. 
3. Barzen-Hanson, K. A.; Roberts, S. C.; Choyke, S.; Oetjen, K.; McAlees, A.; Riddell, N.; McCrindle, R.; 
Ferguson, P. L.; Higgins, C. P.; Field, J. A., Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in 
Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environ. Sci. Technol. 
2017, 51, 2047-2057. 
4. D’Agostino, L. A.; Mabury, S. A., Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated 
with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters. Environ. Sci. Technol. 2017, 
51, 13603-13613. 
5. Barzen-Hanson, K. A.; Field, J. A., Discovery and Implications of C2 and C3 Perfluoroalkyl Sulfonates 
in Aqueous Film-Forming Foams and Groundwater. Environ. Sci. Technol Lett. 2015, 2, 95-99. 
6. Houde, M.; De Silva, A. O.; Muir, D. C. G.; Letcher, R. J., Monitoring of Perfluorinated Compounds 
in Aquatic Biota: An Updated Review. Environ. Sci. Technol. 2011, 45, 7962-7973. 
7. Lang, J. R.; Allred, B. M.; Peaslee, G. F.; Field, J. A.; Barlaz, M. A., Release of Per- and Polyfluoroalkyl 
Substances (PFASs) from Carpet and Clothing in Model Anaerobic Landfill Reactors. Environ. Sci. Technol. 
2016, 50, 5024-5032. 
8. Sahu, S. P.; Qanbarzadeh, M.; Ateia, M.; Torkzadeh, H.; Maroli, A. S.; Cates, E. L., Rapid 
Degradation and Mineralization of Perfluorooctanoic Acid by a New Petitjeanite Bi3O(OH)(PO4)2 
Microparticle Ultraviolet Photocatalyst. Environ. Sci. Technol. Lett. 2018, 5, 533-538. 
9. Merino, N.; Qu, Y.; Deeb, R. A..; Hawley, E. L.; Hoffmann, M. R.; Shaily, M., Degradation and 
Removal Methods for Perfluoroalkyl and Polyfluoroalkyl Substances in Water. Environ. Eng. Sci. 2016, 33, 
615-649. 
10. D’Agostino, L. A.; Mabury, S. A., Identification of Novel Fluorinated Surfactants in Aqueous Film 
Forming Foams and Commercial Surfactant Concentrates. Environ. Sci. Technol. 2014, 48, 121-129. 
11. Xiao, X.; Ulrich, B. A.; Chen, B.; Higgins, C. P., Sorption of Poly- and Perfluoroalkyl Substances 
(PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated 
Carbon. Environ. Sci. Technol. 2017, 51, 6342-6351. 
12. Bentel, M. J.; Yu, Y.; Xu, L.; Li, Z.; Wong, B. M.; Men, Y.; Liu, J., Defluorination of Per- and 
Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to 
PFAS Remediation and Management. Environ. Sci. Technol. 2019, 53, 3718-3728. 
13. Hu, X. C.; Andrews, D. Q.; Lindstrom, A. B.; Bruton, T. A.; Schaider, L. A.; Grandjean, P.; Lohmann, 
R.; Carignan, C. C.; Blum, A.; Balan, S. A.; Higgins, C. P.; Sunderland, E. M., Detection of Poly- and 
Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training 
Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett. 2016, 3, 344-350. 
14. Choi, Y. J.; Lazcano, R. K.; Yousefi, P.; Trim, H.; Lee, L. S., Perfluoroalkyl Acid Characterization in 
U.S. Municipal Organic Solid Waste Composts. Environ. Sci. Technol. Lett. 2019, 6, 372-377. 
15. Singh, R. K.; Fernando, S.; Baygi, S. F.; Multari, N.; Thagard, S. M.; Holsen, T. M., Breakdown 
Products from Perfluorinated Alkyl Substances (PFAS) Degradation in a Plasma-Based Water Treatment 
Process. Environ. Sci. Technol. 2019, 53, 2731-2738. 
16. Kononenko, I., Machine Learning for Medical Diagnosis: History, State of the Art and Perspective. 
Artif. Intell. in Med. 2001, 23, 89-109. 
17. LeCun, Y.; Bengio, Y.; Hinton, G., Deep Learning. Nature 2015, 521, 436-444. 



18. Rosten, E.; Drummond, T., Machine Learning for High-Speed Corner Detection. In Computer Vision 
- ECCV 2006; Leonardis, A., Bischof, H., Pinz, A., Eds. Springer: Berlin, Heidelberg, 2006; pp 430-443. 
19. Pomerleau, D.; Jochem, T., Rapidly Adapting Machine Vision for Automated Vehicle Steering. IEEE 
Expert 1996, 11, 19-27. 
20. Cherkasov, A.; Jonsson, M., A New Method for Estimation of Homolytic C−H Bond Dissociation 
Enthalpies. J. Chem. Inf. Comput. Sci. 2000, 40, 1222-1226. 
21. Xue, C. X.; Zhang, R. S.; Liu, H. X.; Yao, X. J.; Liu, M. C.; Hu, Z. D.; Fan, B. T., An Accurate QSPR Study 
of O−H Bond Dissociation Energy in Substituted Phenols Based on Support Vector Machines. J. Chem. Inf. 
Comput. Sci. 2004, 44, 669-677. 
22. Stanger, A., A Simple and Intuitive Description of C–H Bond Energies. Eur. J. Org. Chem. 2007, 
2007, 5717-5725. 
23. Feng, Y.; Liu, L.; Wang, J.-T.; Zhao, S.-W.; Guo, Q.-X., Homolytic C−H and N−H Bond Dissociation 
Energies of Strained Organic Compounds. J. Org. Chem. 2004, 69, 3129-3138. 
24. Becke, A. D.; Johnson, E. R., A Density-Functional Model of the Dispersion Interaction. J. Chem. 
Phys. 2005, 123, 154101. 
25. Johnson, E. R.; Becke, A. D., A Post-Hartree–Fock Model of Intermolecular Interactions. J. Chem. 
Phys. 2005, 123, 024101. 
26. Johnson, E. R.; Becke, A. D., A Post-Hartree-Fock Model of Intermolecular Interactions: Inclusion 
of Higher-Order Corrections. J. Chem. Phys. 2006, 124, 174104. 
27. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron 
Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic 
Surface Tensions. J. Phys. Chem. B 2009, 113, 6378-6396. 
28. Thomas, J.; Carrillo, M. J.; Serrato, A.; Lin, W.; Jäger, W.; Xu, Y., Rotational Spectroscopic and 
Theoretical Study of the Perfluorobutyric Acid⋯Formic Acid Complex. J. Mol. Spectrosc. 2017, 335, 88-92. 
29. Thomas, J.; Seifert, N. A.; Jäger, W.; Xu, Y., A Direct Link from the Gas to the Condensed Phase: A 
Rotational Spectroscopic Study of 2,2,2-Trifluoroethanol Trimers. Angew. Chem. Int. Ed. Engl. 2017, 56, 
6289-6293. 
30. Nissen, J. H.; Stüker, T.; Drews, T.; Steinhauer, S.; Beckers, H.; Riedel, S., No Fear of Perfluorinated 
Peroxides: Syntheses and Solid-State Structures of Surprisingly Inert Perfluoroalkyl Peroxides. Angew. 
Chem. Int. Ed. Engl. 2019, 58, 3584-3588. 
31. Baggioli, A.; Sansotera, M.; Navarrini, W., Thermodynamics of Aqueous Perfluorooctanoic Acid 
(PFOA) and 4,8-dioxa-3H-perfluorononanoic acid (DONA) from DFT Calculations: Insights Into Degradation 
Initiation. Chemosphere 2018, 193, 1063-1070. 
32. Thomas, J.; Carrillo, M. J.; Serrato, A.; Xie, F.; Jäger, W.; Xu, Y.; Lin, W., Microwave Spectrum of 
the Complex of 3,3,3-trifluoro-2-(trifluoromethyl)propanoic Acid and Formic Acid. Mol. Phys. 2019, 117, 
1193-1199. 
33. DeWeerd, N. J.; Bukovsky, E. V.; Castro, K. P.; Kuvychko, I. V.; Popov, A. A.; Strauss, S. H.; Boltalina, 
O. V., Steric and Electronic Effects of CF3 Conformations in Acene(CF3)n Derivatives. J. Fluorine Chem. 2019, 
221, 1-7. 
34. Liu, J.; Van Hoomissen, D. J.; Liu, T.; Maizel, A.; Huo, X.; Fernández, S. R.; Ren, C.; Xiao, X.; Fang, Y.; 
Schaefer, C. E.; Higgins, C. P.; Vyas, S.; Strathmann, T. J., Reductive Defluorination of Branched Per- and 
Polyfluoroalkyl Substances with Cobalt Complex Catalysts. Environ. Sci. Technol. Lett. 2018, 5, 289-294. 
35. Pari, S.; Wang, I. A.; Liu, H.; Wong, B. M., Sulfate Radical Oxidation of Aromatic Contaminants: A 
Detailed Assessment of Density Functional Theory and High-Level Quantum Chemical Methods. Environ. 
Sci.: Processes Impacts 2017, 19, 395-404. 
36. Qu, X.; Latino, D. A. R. S.; Aires-de-Sousa, J., A Big Data Approach to the Ultra-Fast Prediction of 
DFT-Calculated Bond Energies. J. Cheminf. 2013, 5, 34. 



37. Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E. L., Recent Developments of 
the Chemistry Development Kit (CDK) - An Open-Source Java Library for Chemo- and Bioinformatics. Curr. 
Pharm. Des. 2006, 12, 2111-2120. 
38. Dahl, G. E.; Sainath, T. N.; Hinton, G. E. In Improving Deep Neural Networks for LVCSR Using 
Rectified Linear Units and Dropout, 2013 IEEE International Conference on Acoustics, Speech and Signal 
Processing, 26-31, May 2013; pp 8609-8613. 
39. Jones, L.; Whitaker, B. J., Modeling a Halogen Dance Reaction Mechanism: A Density Functional 
Theory Study. J. Comput. Chem. 2016, 37, 1697-1703. 
40. Brauer, B.; Kesharwani, M. K.; Kozuch, S.; Martin, J. M. L., The S66x8 Benchmark for Noncovalent 
Interactions Revisited: Explicitly Correlated Ab Initio Methods and Density Functional Theory. Phys. Chem. 
Chem. Phys. 2016, 18, 20905-20925. 
41. Kesharwani, M. K.; Karton, A.; Martin, J. M. L., Benchmark Ab Initio Conformational Energies for 
the Proteinogenic Amino Acids through Explicitly Correlated Methods. Assessment of Density Functional 
Methods. J. Chem. Theory Comput. 2016, 12, 444-454. 
42. Hopmann, K. H., How Accurate is DFT for Iridium-Mediated Chemistry? Organometallics 2016, 35, 
3795-3807. 
43. Zarić, M. M.; Bugarski, B.; Kijevčanin, M. L., Best Methods for Calculating Interaction Energies in 
2-butene and Butane Systems. Comput. Theor. Chem. 2017, 1117, 150-161. 

 


