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Abstract

Identification and refinement of first order saddle point (FOSP) structures on the

potential energy surface (PES) of chemical systems is a computational bottleneck in

the characterization of reaction pathways. Leading FOSP refinement strategies require

calculation of the full Hessian matrix, which is not feasible for larger systems such as

those encountered in heterogeneous catalysis. For these systems, the standard approach

to FOSP refinement involves iterative diagonalization of the Hessian, but this comes at

the cost of longer refinement trajectories due to the lack of accurate curvature infor-

mation. We present a method for incorporating information obtained by an iterative

diagonalization algorithm into the construction of an approximate Hessian matrix that

accelerates FOSP refinement. We measure the performance of our method with two

established FOSP refinement benchmarks and find a 50% reduction on average in the

number of gradient evaluations required to converge to a FOSP for one benchmark, and

a 25% reduction on average for the second benchmark.
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1 Introduction

There is a growing interest in exploring the properties of complex reaction systems from

first principles. New tools that automate the tedious and error-prone task of enumerat-

ing all plausible reaction pathways has enabled the development of increasingly complex

reaction network models.1–18 Additionally, the availability of petascale and upcoming

exascale computational resources makes it possible to perform the many computation-

ally intensive first principles calculations required by these complex models. These

developments have inspired the need for more efficient and reliable software tools, as

too many unconverged or failed calculations render these automated frameworks im-

practical. Unfortunately, many existing software tools are not designed explicitly with

automation in mind, and thus occasionally exhibit inconsistent or unreliable behavior.

In addition, it is common for software packages to bundle together method implemen-

tations for complementary but distinct tasks, such as electronic structure theory and

geometry optimization. As a result, it may not be possible to use a particular combina-

tion of methods that is best suited to the task at hand unless those methods are both

implemented in the same software package. It is therefore beneficial to develop new

software that both is amenable to exascale automation and which improves flexibility

by decoupling method implementations.

In this work, we focus on the task of saddle point refinement, and propose a new

method for this task that can be effectively deployed in an automated computational

framework. Locating first order saddle points (FOSP) on the potential energy surface

(PES) of chemical systems is a computational bottleneck in the characterization of re-

action pathways. A FOSP is a stationary point on the PES where the Hessian matrix

H has precisely one negative eigenvalue. There are several established approaches for

the task of locating and refining FOSP geometries, the applicability of which depends

on what is already known about the PES. When both the reactant and product geome-

try are known, double-ended methods such as nudged elastic band (NEB) or quadratic

synchronous transport (QST) can be used to refine the minimum energy path (MEP)
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connecting the two minimum wells.19–27 The maximum of the MEP is necessarily a

FOSP. If only a single minimum energy geometry is known, certain single-ended meth-

ods such as the growing string method (GSM) or the activation-relaxation technique

(ART) can be used to drive the geometry in the direction of a desired reaction coor-

dinate.28–33 With both single- and double-ended methods, it is usually more efficient

to switch to a local FOSP refinement method once a sufficiently accurate approximate

structure has been found. There are also a growing number of software packages for the

determination of approximate FOSP structures using heuristics or machine learning,

such as KinBot and AutoTST.9,10,34 Regardless of how they are obtained, approximate

FOSP structures can be efficiently refined using techniques adapted from geometry

minimization methods.

Many molecular dynamics and electronic structure theory software packages imple-

ment their own FOSP refinement techniques, but the quality of these implementations

can vary greatly between packages. This coupling poses a problem to scientists who

wish to choose the best software package for solving their particular task, as the software

package with the best performing FOSP refinement method may not implement the de-

sired PES. This has also led to a splintering of FOSP refinement strategies between codes

designed for small gas-phase molecules and codes designed for larger condensed-phase

systems. Many advances that have been developed for molecular FOSP refinement

have not been adapted for use in condensed-phase systems and vice versa. The method

described in this work begins to close the gap between the methods that are used for

these two types of chemical systems.

A common feature of all FOSP refinement strategies is the determination of an

ascent direction. In contrast to (local) minimization, for which displacements should

always descend the PES, FOSP refinement involves ascending the PES in precisely one

direction. The ascent direction is chosen to locally approximate the reaction coordinate

corresponding to the desired FOSP. The reaction coordinate can be identified by the

leftmost eigenvector of H at the FOSP. The leftmost eigenvector of H is then a natural

choice for the ascent direction if no other information about the reaction coordinate is
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available.

If H is known, the leftmost eigenvector can be determined at an insignificant compu-

tational expense compared to the cost of a single PES evaluation. However, calculating

H requires 3N times the cost of a single energy or gradient evaluation for a system of

N atoms. Consequently, evaluating H at every step is prohibitively computationally

expensive for all but the smallest systems. Instead, many FOSP refinement strategies

evaluate H sparingly, commonly only for the initial structure. Subsequent geometry

refinement steps instead use an approximation B that is constructed to remain close to

the true H.

For sufficiently large systems, evaluating H even a single time may require more

computational resources than the total cost of all subsequent PES evaluations. This

problem has led to the development of strategies for identifying the leftmost eigenvector

of H without needing it to be evaluated in full. This can be accomplished through the

use of an iterative diagonalization algorithm, such as Lanczos, which does not require

any direct knowledge of H. Instead, iterative diagonalization algorithms only require

the ability to evaluate Hessian-vector products, which can be approximated by applying

finite difference to the gradient vector. This makes it possible to accurately identify the

leftmost eigenvector of H at a significantly lower computational expense.

The approximate Hessian B is used to determine geometry refinement steps that

converge to a FOSP. The accuracy of B directly affects the number of steps that are

required to reach convergence. The change in the gradient from one iteration to the next

provides approximate curvature information that can be used to improve the accuracy

of B. However, if B is initially a poor quality approximation to H, then the first few

steps may lead away from the desired FOSP. By the time B has become sufficiently

accurate, the geometry may have wandered far from the initially close FOSP.

It is for this reason that B must be sufficiently accurate at the beginning of FOSP

refinement. If it is feasible to evaluate H for the initial structure, then B can be made

initially exact. This is not possible if an iterative diagonalization algorithm is used, as

the full Hessian is never evaluated. However, it is possible to construct B to be exact
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in the subspace searched by the diagonalization algorithm, though to the best of the

authors’ knowledge, no established method does this. As we will show, constructing B

in this way results in a substantial improvement in performance compared to methods

that use an iterative diagonalization algorithm but construct B in a different way.

In section 2, we discuss several established computational methods with relevance

to FOSP refinement. Our new FOSP refinement method is described in section 3. We

analyze the performance of this new method in section 4.

2 Theoretical Background

In this section, we discuss established FOSP refinement methodologies and methodolo-

gies for related problems that we use in our FOSP refinement method, which is described

in section 3. We use the term “FOSP refinement” instead of “FOSP optimization” to

avoid confusion with the saddle point problem that affects gradient descent (ascent)

minimization (maximization) methods. This section also provides context to better

understand where and why we deviate from established FOSP refinement methodolo-

gies. In order to better motivate the method we have developed, we describe these

methods and problem spaces in some detail.

Figure 1 compares two established classes of FOSP refinement procedures. Figure

1a illustrates a method that relies on exact calculation of H for an initial structure

(dark blue oval). The approximate Hessian B is initially exact. After each geometry

step (green oval), a secant update is applied to B (orange oval). In this way, B remains

a reasonably accurate approximation to H over the course of FOSP refinement. We

describe existing approaches for determining geometry steps for FOSP refinement in

section 2.2. Additionally, we describe existing secant update methods in section 2.3.

Figure 1b illustrates a method that iteratively diagonalizes H to determine its left-

most eigenvector v(1) (light blue oval). B is initialized independently of the iterative

diagonalization algorithm, typically as a scaled identity matrix. Secant updates are

applied to B in this approach as well, though B generally remains a relatively poor
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Calculate full
Hessian, store in B

Change Structure

Secant B update

(a)

Diagonalize Hessian
iteratively

Change Structure

Secant B update

(b)

Figure 1: An illustration of leading methods for FOSP refinement. (a) A method which
fully calculates H for the initial structure, then relies on secant updates to maintain an
approximation B. (b) A method which periodically iteratively diagonalizes H to find its
leftmost eigenvector v(1) and independently maintains an approximation B for geometry
refinement steps.
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approximation to H. In this approach, H must be periodically iteratively diagonalized

in order to maintain an accurate estimate of v(1). We describe existing approaches for

diagonalizing the Hessian matrix iteratively in section 2.1. While the method devel-

oped in this work takes several inspirations from methods that fully evaluate H, it is

most similar to methods that use an iterative diagonalization routine. We describe our

method and how it improves upon existing methods in section 3.

In the remainder of this section, and in section 3 below, we shall use the following

definitions. The molecular structure at iteration k of FOSP refinement is represented

by the coordinate vector qk. In this context, “iteration” refers to a single step of the

FOSP refinement algorithm, not including gradient evaluations invoked by the iterative

diagonalization algorithm. In this work, we assume a Cartesian representation, though

much of the described work is independent of this choice. The energy, its gradient,

and its true Hessian are respectively ε(q), g(q), and H(q). The quantities εk, gk, and

Hk refer to these same quantities evaluated at point qk. The approximate Hessian at

iteration k of FOSP refinement is represented by Bk.

2.1 Iterative diagonalization of the Hessian

Several existing FOSP refinement methods rely on iterative diagonalization of H(q).35–39

Such methods require only the ability to evaluate Hessian-vector products Hs (the ar-

gument q to H has been omitted for clarity), where s is an arbitrary displacement

vector. These Hessian-vector products can be approximated by finite difference,

Hs ≈ g(q + ηs)− g(q)

η
, (1)

where η is a small real number controlling the magnitude of the finite displacement

step size. In the following discussion, the argument q to H and g will be omitted for

brevity.

Many iterative diagonalization algorithms were originally developed to determine

a few eigenvalues and eigenvectors of very large and sparse matrices. These iterative

7



diagonalization algorithms typically need to balance the number of iterations required

to reach convergence against memory storage requirements and the number of linear

algebra operations per iteration. However, the matrix H is neither prohibitively large

nor generally sparse. In our application, memory storage requirements are minuscule,

and linear algebra operations (excluding those which involve H) are essentially free. We

will focus our discussion on methods that use the Rayleigh-Ritz procedure40 without

restart or deflation. Methods such as LOBPCG41 which employ restarting to reduce

memory requirements are not considered.

The Rayleigh-Ritz procedure provides a general template for the refinement of ap-

proximate eigenvalues and eigenvectors of a matrix. In the Rayleigh-Ritz procedure,

a set of orthonormal displacement vectors form a matrix Sm that is extended with a

new vector at every iteration. The subscript m indicates the diagonalization iteration

number and consequently the number of columns in Sm. The product Ym = HSm is

evaluated column-by-column using eq 1. The matrices Sm and Ym are used to con-

struct the projected Hessian Am = STmYm = YT
mSm = STmHSm. The eigenvalues (Ritz

values) θ(j)m and eigenvectors (primitive Ritz vectors) c
(j)
m of Am are determined with a

dense diagonalization algorithm. The Ritz values θ(j)m and Ritz vectors x
(j)
m = Smc

(j)
m

approximate the true eigenvalues λ(i) and eigenvectors v(i) of H. Each Ritz pair has a

corresponding residual vector r
(j)
m = Ymc

(j)
m − θ(j)m x

(i)
m which contains the components

of Hx
(j)
m that lie outside of the subspace spanned by Sm. These quantities are used

to determine a new vector tm that will be used to extend Sm. This procedure is re-

peated until r
(j)
m is deemed sufficiently small for all desired eigenpairs. Diagonalization

methods based on the Rayleigh-Ritz procedure differ in how the expansion vector tm

is chosen.

The Lanczos method is perhaps the simplest iterative diagonalization algorithm that

is suitable for finding the leftmost eigenvector of H. Lanczos chooses to expand Sm

with a residual vector tm = r
(j)
m . All residual vectors at a given iteration of Lanczos

are identical up to a constant multiplicative factor, so it is not possible to target which

Ritz values are to be improved. Lanczos is known to converge to the largest magnitude
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eigenvalues first.

The leftmost eigenvalue of H is typically smaller in magnitude than the rightmost

eigenvalue in the context of chemical PESs. In this case, Lanczos will converge slowly

to the leftmost eigenvalue. To solve this problem, the shift-and-invert class of diagonal-

ization algorithms can be used instead. These algorithms are designed to improve the

Ritz values closest to a target value.42 A specific example is Rayleigh quotient iteration

(RQI), in which the target value is chosen to be a current Ritz value.42 RQI determines

tm by solving the equation

(
H− θ(j)m I

)
tm = −r(j)m , (2)

where I is the identity matrix. If θ(j)m is sufficiently close to an eigenvalue of H, eq 2

will have no solution for tm. Unfortunately, this tends to be the case near convergence,

and as a result, RQI has difficulty achieving tight convergence. Even if this were not

an issue, solving eq 2 exactly requires the use of an iterative linear solver, as H is

not directly known. To use an iterative linear solver would require several additional

Hessian-vector products for each iteration of the Rayleigh-Ritz procedure, which would

be costly and inefficient.

These additional Hessian-vector products can be avoided if only a single iteration

of a preconditioned solver is used instead. Approximately solving eq 2 in this way is

equivalent to solving the modified equation

(
B− θ(j)m I

)
tm = −r(j)m , (3)

where B ≈ H is the preconditioner. This is known as the generalized Davidson (GD)

method.43,44 Davidson’s original method chooses B to be a diagonal matrix contain-

ing the diagonal elements of H.45 This choice makes sense in the context of electronic

structure theory, as the Hamiltonian matrix is diagonally dominant in an atom-centered

basis. In contrast, the Hessian matrix is typically not diagonally dominant, and regard-

less, it is not in general possible to extract only the diagonal elements of H without
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evaluating it in full. GD places no restrictions on how B is to be constructed. Assum-

ing a reasonably accurate B is available, this approach can be highly effective. GD has

been used previously for the diagonalization of Hessian matrices.46 Unfortunately, if

B is sufficiently close to H, then GD can experience the same difficulties as RQI near

convergence.

Several approaches have been developed to alleviate this particular problem, perhaps

the most successful of which is the Jacobi-Davidson (JD) method.44,47–49 JD determines

tm by solving the equation

(
I− x(j)

m x(j)T
m

)(
H− θ(j)m I

)(
I− x(j)

m x(j)T
m

)
tm = −r(j)m . (4)

Eq 4 is equivalent to eq 2 with the added constraint that tm⊥x
(j)
m . Provided that θ(j)m

approximates a simple (non-degenerate) eigenvalue of H, eq 4 can be solved even very

near convergence.

However, as with RQI, solving eq 4 would require the use of an iterative linear solver.

In the same vein as GD, eq 4 can be solved approximately with a single iteration of a

preconditioned solver. This is equivalent to solving the modified equation

(
I− x(j)

m x(j)T
m

)(
B− θ(j)m I

)(
I− x(j)

m x(j)T
m

)
tm = −r(j)m . (5)

We refer to this method as JD0, though it is occasionally referred to as Olsen’s method.47,50,51

This is the approach employed by our method.

2.2 Geometry refinement

FOSP refinement methods are largely adaptations of methods developed for geometry

minimization. For example, consider the Newton-Raphson (NR) method, in which a

displacement direction is selected at iteration k as

sk = −H−1k gk. (6)
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Though NR is sometimes considered a minimization (or maximization) method, it is

more accurately described as a root-finding algorithm that can be used to refine sta-

tionary points when applied to the gradient of a function. If Hk is positive definite,

the resulting displacement vector sk will generally step in the direction of a minimum.

In contrast, if Hk has precisely one negative eigenvalue, then sk will likely step in the

direction of a FOSP.

As described in section 2.1, we do not generally have the ability to solve equations

involving H−1k directly. Therefore, a standard approach is to replace Hk in eq 6 with

an approximation Bk,

sk = −B−1k gk. (7)

This is referred to as the quasi-Newton (QN) method.

It is worth considering the motivation behind eqs 6 and 7. In both cases, the

potential energy at point qk is expanded in terms of a displacement vector sk to second

order,

ε(qk + sk) ≈ εk + gTk sk +
1

2
sTkBksk. (8)

Eq 8 has a single stationary point given by eq 7 (or eq 6 if Bk is replaced by Hk). If sk is

large, then the neglect of third- and higher-order terms in eq 8 will result in significant

error. As a result, effort must be taken to ensure that sk remains reasonably small.

We assume that the quadratic approximation is accurate when ‖sk‖2 ≤ δk, where δk

is a trust radius that is either imposed a priori or determined automatically during

geometry refinement. One way to satisfy this constraint is to evaluate eq 7, then reduce

the magnitude of sk to be equal to δk, but this results in a suboptimal step direction.

The standard trust region method (TRM) enforces the trust radius constraint by

minimizing a Lagrangian equation adapted from eq 8,

LTRM = εk + gTk sk +
1

2
sTkBksk +

1

2
ξ
(
sTk sk − δ2k

)
, (9)

where ξ is the Lagrange multiplier. Since eq 9 is quadratic with respect to sk, it too

11



has a single stationary point,

sk = − (Bk + ξI)−1 gk. (10)

TRM is very effective for minimization, but much less effective for FOSP refinement.

For minimization, it is always possible to find a value of ξ for any gk, Bk, and δk such

that sk is a descent direction and ‖sk‖2 ≤ δk. In contrast, it is not always possible to

find a value of ξ that results in sk stepping towards a FOSP while also satisfying the

trust region constraint.

The minimum mode following (MMF) class of methods avoids this flaw by modifying

the gradient vector gk.35–37,39,52 By definition, gk points in the direction of steepest

ascent on the PES. This is why sk obtained from eq 7 is guaranteed to be a descent

direction when Bk is positive definite. If gk is modified to point in a different direction,

this guarantee no longer holds. MMF methods replace gk in eq 7 with a modified

gradient vector

g̃k =
(
I− 2xascx

T
asc

)
gk, (11)

where xasc ≈ v
(1)
k is the ascent direction chosen to approximate the leftmost eigenvector

of Hk. Eq 11 inverts the components of gk in the ascent direction. Provided that Bk

is positive definite and xasc is appropriately chosen, replacing gk with g̃k in eq 7 will

result in sk stepping towards a FOSP.

However, the requirement that Bk be positive definite means that it will necessarily

poorly approximate Hk near the FOSP, where Hk is indefinite by definition. This

requirement also poses some difficulty for the secant updates to Bk. Any update that

would make Bk+1 indefinite must be skipped, thereby leaving Bk unchanged. This

occurs frequently during FOSP refinement, particularly near convergence, and as a

result Bk will tend to deteriorate in quality over the course of refinement.

Moreover, MMF requires at least approximate knowledge of v
(1)
k to determine the

ascent direction. If Bk is a good approximation to Hk, then its leftmost eigenvector ṽ
(1)
k

should be a good approximation to v
(1)
k . If Bk is positive definite, then it cannot be a
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good approximation to Hk near the FOSP, and it is therefore unlikely that ṽ
(1)
k ≈ v

(1)
k .

Our intent in making these observations is not to suggest that MMF methods are

somehow ineffective or theoretically unsound. Indeed, MMF methods have been very

successful for applications in materials science and heterogeneous catalysis.53–56 How-

ever, the requirement that Bk be positive definite is at odds with its intended role as

an approximation to Hk. The relative success of MMF methods comes at the cost of

decoupling the estimation of v
(1)
k from construction of Bk.

In order to enable the usage of an indefinite Bk, we turn to the rational function

optimization (RFO) method.57–59 In RFO, the displacement vector sk is obtained by

minimizing a rational function,

µ(sk) =
gTk sk +

1
2sTkBksk

1 + sTkWksk
, (12)

where Wk is an unspecified positive definite matrix, typically chosen to be a scaled

identity matrix. The denominator in eq 12 has the effect of penalizing large displace-

ment vectors, thereby guaranteeing the existence of a minimum even when Bk is not

positive definite. Minimization of µ(sk) in eq 12 can be recast as an eigenvalue problem,

α2Bk αgk

αgTk 0


sk/α

1

 = 2µ

sk/α

1

 , (13)

where we have made the substitution Wk = α−2I. Eq 13 is a standard eigenvalue

problem, though the magnitude and sign of the eigenvector is strategically chosen to

illustrate how sk is to be evaluated. Eq 13 implies

sk = −
(

Bk −
2µ

α2
I

)−1
gk. (14)

The relationship between RFO and TRM can be seen by comparing eq 14 with eq 10.

For minimization, the displacement vector sk is obtained from the leftmost eigenvector

of eq 13. This choice guarantees that Bk − 2µ
α2 I will be positive definite regardless of
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whether Bk is positive definite.

To reiterate, RFO recasts minimization as an eigenvalue problem. A displacement

vector suitable for minimization is found by choosing the leftmost eigenvector of eq 13. If

a higher eigenvalue is chosen instead, in theory eq 13 can be used to step towards saddle

point structures as well. However, this approach does not reliably converge to saddle

point structures. In order to find saddle point structures more reliably, partitioned

rational function optimization (PRFO) splits eq 13 into two eigenvalue problems, one for

the ascent direction(s) and one for the descent directions.57 The matrix of eigenvectors

Ṽk of Bk can be used as a basis for this partitioning,

α2Ṽ
(max)T
k BkṼ

(max)
k αṼ

(max)T
k gk

αgTk Ṽ
(max)
k 0


s

(max)
k /α

1

 = 2µ(max)

s
(max)
k /α

1

 (15)

α2Ṽ
(min)T
k BkṼ

(min)
k αṼ

(min)T
k gk

αgTk Ṽ
(min)
k 0


s

(min)
k /α

1

 = 2µ(min)

s
(min)
k /α

1

 , (16)

where Ṽ
(max)
k contains the leftmost eigenvector(s) of Bk which span the ascent direc-

tion(s) and Ṽ
(min)
k are the remaining eigenvectors which span the descent directions.

The rightmost eigenvector of eq 15 and the leftmost eigenvector of eq 16 are used to

calculate the displacement vector,

sk = Ṽ
(max)
k s

(max)
k + Ṽ

(min)
k s

(min)
k .

When seeking a FOSP, Ṽ
(max)
k will contain only the leftmost eigenvector of Bk. Unlike

MMF, PRFO does not require Bk to be positive definite, or indeed that it have any

particular number of negative eigenvalues. Indeed, PRFO will perform best when Bk

accurately approximates Hk. This means it is possible to step towards a FOSP with

a highly accurate Bk even when the true Hessian is positive definite or has multiple

negative eigenvalues. PRFO is used extensively by FOSP refinement algorithms that

evaluate H for the initial structure in full. PRFO is not as commonly used by FOSP
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refinement algorithms that rely on iterative diagonalization of H.

The magnitude of the displacement vector ‖sk‖2 can be controlled by changing the

value of α. In restricted step PRFO (RS-PRFO), α is chosen such that ‖sk‖2 ≤ δk.59

This typically requires an iterative procedure in which various values of α are tested

until a suitable value is found. This is the method used in this work.

2.3 Approximate Hessian updates

In section 2.2, we described a class of geometry refinement methods that rely on the

availability of a matrix Bk that approximates Hk. Construction of Bk is not a straight-

forward task, and much work has gone into the development of methods for constructing

a Bk that is suitable for geometry refinement. Following a displacement in the direction

sk = qk+1 − qk, the change in the gradient yk = gk+1 − gk provides a finite difference

approximation to the Hessian-vector product Hk+1sk. Given the current approxima-

tion Bk, an approximate Hessian update strategy must find a correction matrix Ek

which is symmetric and which satisfies the secant condition (Bk + Ek)sk = yk. There

are infinitely many ways to construct Ek given these constraints, but one is typically

interested in a correction that is in some sense minimal. Greenstadt60 developed a

general formula for Ek that satisfies the symmetry and secant conditions and which

minimizes the weighted norm ‖Ek‖2M−1
k

, defined as

‖Ek‖2M−1
k

= Tr
(
M−1

k EkM
−1
k ET

k

)
. (17)

The matrix Mk must be symmetric positive definite but is otherwise unspecified. While

the purpose of Ek is to ensure that Bk+1 satisfies the secant condition, it will also

necessarily perturb the components of Bk that are orthogonal to sk. The matrix Mk

determines how this correction should be distributed by weighting the norm of Ek. If

Mk is chosen to be indefinite, then a large error may be introduced into Bk+1.

The solution which minimizes eq 17 subject to the secant and symmetry constraints
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is

Ek = ukj
T
k + jku

T
k − ukj

T
k sku

T
k , (18)

where

jk = yk −Bksk

uk = Mksk
[
sTkMksk

]−1
.

Greenstadt’s eponymous method chooses MGreenstadt
k = Bk, though this has proven to

not be very effective.60

The simplest possible choice for Mk is the identity matrix, which results in the

Powell-symmetric Broyden (PSB) method. PSB tends to perturb all eigenvalues of Bk

essentially equally. This results in larger relative errors for lower magnitude eigenmodes.

These modes correspond to directions with the largest displacement vectors in geometry

refinement steps, so the PSB update can have deleterious effects on geometry refinement

performance.

By far the most commonly used and effective Hessian update method for minimiza-

tion is that of Broyden, Fletcher, Goldfarb and Shanno (BFGS),61–64

MBFGS
k =

√
sTkBkskBk+1 +

√
yTk skBk√

yTk sk +
√

sTkBksk

, (19)

which uses a linear combination of Bk and Bk+1 for Mk. Note that the presence

of Bk+1 in eq 19 is not a concern, as it is only necessary to evaluate Mksk, and

Bk+1sk = yk by construction. Eq 19 has the effect of preferentially perturbing the

larger magnitude eigenmodes of Bk. This preserves the accuracy of lower magnitude

eigenmodes. However, MBFGS
k may be indefinite if Bk or Bk+1 are indefinite. It is

therefore not appropriate to use BFGS when Bk is expected to be indefinite, as Mk

must be positive definite.
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Another somewhat popular secant update method is that of Murtagh-Sargent (MS),65

MMS
k = Bk+1 −Bk . (20)

Eq 20 is the only choice of Mk for which Ek is rank one; consequently, this method is

sometimes referred to as the symmetric rank one (SR1) update. As with BFGS, MMS
k

is not always positive definite. Additionally, if Bksk ≈ yk, this implies MMS
k sk ≈ 0,

and so eq 18 will become numerically unstable. One would normally expect Ek to be

very small in this situation, as the secant condition is already close to satisfied by Bk,

but MS may introduce a very large correction due to the numerical instability of eq 18.

To alleviate this problem somewhat, the Murtagh-Sargent Powell (MSP) method

constructs Ek as a linear combination of the updates obtained by the PSB and MS

methods,66,67

EMSP
k = φEPSB

k + (1− φ)EMS
k ,

where the scaling factor φ is defined as

φ = 1−
(
sTk jk

)2(
sTk sk

) (
jTk jk

) . (21)

Methods that use alternate definitions of φ have also occasionally been referred to as

MSP.68 Similar methods using a linear combination of BFGS and MS updates have also

been developed.69 While these approaches may work in practice, they rely on secant

updates that can become numerically unstable even under ideal circumstances, and

especially when Bk is indefinite.

An alternative approach developed by Anglada and Bofill constructs Mk in a way

that is superficially similar to BFGS, but which is guaranteed to be positive definite.68,70

Their TS-BFGS method uses

MTS−BFGS
k = yky

T
k + |Bk|sksTk |Bk|, (22)
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where

|Bk| =
d∑
i=1

∣∣∣λ̃(i)k ∣∣∣ṽ(i)
k ṽ

(i)T
k , (23)

where λ̃(i)k and ṽ
(i)
k are the eigenvalues and eigenvectors of Bk, respectively. This method

is employed in the current work.

It is also possible to modify Greenstadt’s method to enable updates to Bk using

multiple displacement vectors S and corresponding curvature estimates Y simultane-

ously.71 These multi-secant updates have an expression that is very similar to the

standard secant update,

Ek = UkJ
T
k + JkU

T
k −UkJ

T
k SUT

k (24)

Jk = Y −BkS

Uk = MkS
[
STMkS

]−1
,

In order for Ek defined in eq 24 to be symmetric, the product YTS must also be

symmetric, which cannot be guaranteed in general. Thus, either Y or S must be mod-

ified in some way to ensure Ek is symmetric. Several possible ways of accomplishing

this have been developed by Schnabel.72 In the current work, algorithm 3.1 from ref-

erence 72 is used to modify Y. This algorithm describes a procedure for constructing

a minimal perturbation Γ such that (Y + Γ)T S = ST (Y + Γ). In this procedure, the

leftmost column of Γ is zero. The relevance of this property will be discussed in section

3.1.

3 Methods

Established FOSP refinement procedures outlined in the introduction and in section 2

present an all-or-nothing choice when it comes to the quality of B. If H is calculated

explicitly for the initial structure, then B is initially exact, and geometry refinement

will converge in relatively few steps. However, this can be prohibitively expensive

for systems of many atoms, which instead diagonalize H iteratively to determine its
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leftmost eigenvector. When H is diagonalized iteratively, it is not possible to construct

B to be initially exact. In general, these methods initialize B as a scaled identity matrix.

As we describe in section 2.3, it is possible to simultaneously update B with a matrix

of displacement vectors. Conveniently, this information can be extracted from the

iterative diagonalization method described in section 2.1. This key observation allows

us to construct significantly higher quality B matrices, which results in a substantial

improvement in performance for FOSP refinement.

Multisecant B update

Diagonalize Hessian
iteratively

Change Structure

Secant B update

Figure 2: An illustration of the method presented in this work.

The FOSP refinement method we have developed is outlined in figure 2. We itera-

tively diagonalize Hk to construct an approximation Bk using a multi-secant TS-BFGS

Hessian update as described in section 2.3. Bk is then used with the RS-PRFO method

described in section 2.2 to determine step direction and magnitude. The leftmost eigen-

vector of Bk, ṽ
(1)
k , is chosen as the ascent direction. After each geometry refinement

step, a standard TS-BFGS Hessian update is applied to Bk. All invocations of the iter-

ative diagonalization algorithm (after the first) use Bk as a preconditioner as described

in section 2.1.
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3.1 Multi-secant Hessian updates

In section 2.3, we describe several different secant update methods and the more gen-

eral multi-secant update. Our key observation is that the multi-secant update can be

used to incorporate the trial vectors S and the corresponding Hessian-vector products

Y obtained by the diagonalization algorithm into Bk. For FOSP refinement, Hk is ex-

pected to be indefinite, and the performance of RS-PRFO is predicated on Bk having

a similar structure to Hk. Thus we cannot use any secant update method that expects

or requires a positive definite Bk, such as BFGS. MSP and related methods cannot be

easily generalized to multi-secant updates, as the definition of φ from eq 21 becomes

ambiguous. We therefore use the TS-BFGS method, which can be readily generalized

to multi-secant updates by using eq 22 with eq 24.

Construction of the initial approximate Hessian B1 requires special consideration.

The iterative diagonalization algorithm does not provide enough information to fully

specify B1, unless it is run to completion, at which point the full Hessian has been

evaluated. We must therefore estimate the curvature in the directions not searched

by the diagonalization algorithm. We solve this problem by initializing B0 as a scaled

identity matrix,

B0 =

 1

m

m∑
j=1

∣∣∣θ(j)m ∣∣∣
 I,

where the scaling coefficient is chosen to be the average absolute Ritz value. The multi-

secant update is then applied to B0 to obtain B1. The choice of how to initialize B0 has

a large impact on overall performance. If the prefactor used to initialize B0 is chosen

to be too small or large in magnitude, then the components of geometry refinement

steps orthogonal to S will be too large or small, respectively. This not only hinders

convergence to the FOSP, but may also make it more difficult to update Bk with

accurate curvature estimates. Given the information available, the average absolute

Ritz value is a reasonable approximate curvature for directions orthogonal to S.

As we described in section 2.3, the multi-secant update requires that the product

YTS be symmetric. This requirement is generally not satisfied in the current ap-
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plication because of finite difference artifacts and noise in the gradient vectors. The

procedure described by Schnabel72 solves this problem by adding a small corrective

term Γ to Y. As previously mentioned, the first column of Γ is zero. We exploit this

property to preserve the accuracy of the leftmost Ritz value determined by the itera-

tive diagonalization procedure by right-multiplying both S and Y by C, the matrix of

primitive Ritz vectors. This results in S becoming the matrix of Ritz vectors, with Y

being composed of the corresponding Hessian-vector products. Applying the procedure

described by Schnabel will thus not modify the leftmost Ritz vector while still ensuring

that Bk+1 remains symmetric.

3.2 Iterative diagonalization algorithm

We use the JD0 approach described in section 2.1. Our testing shows very little dif-

ference between JD0 and GD, though JD0 is expected to be more stable when Bk is a

very good approximation to Hk. For the initial call to JD0, no Bk is available to act as

a preconditioner, hence our implementation uses the identity matrix I as the precon-

ditioner instead. In this case, JD0 and GD both become mathematically equivalent to

Lanczos.

In our implementation of the Rayleigh-Ritz procedure, the jth Ritz pair is considered

converged if ‖r(j)m ‖2 < γ|θ(1)m |, where γ is a tunable convergence parameter. Smaller

values of γ result in more diagonalization algorithm iterations, which improves the

accuracy of Bk at the cost of added computational expense. Our implementation seeks

to converge all negative eigenvalues of Hk, not only the leftmost eigenvalue. This

increases the likelihood of converging rapidly to the FOSP when multiple negative

eigenvalues are present.

If care is not taken, the columns of Sm may become partially linearly dependent.

This can be avoided if an orthogonalization procedure such as modified Gram-Schmidt

is repeatedly applied to the extension vector tm until the vector no longer changes.

This is the approach used in the current method. For large, sparse matrix applications,

this would be prohibitively expensive, but the dimension of problems in the current
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application are expected to be relatively small. Additionally, if the length of tm is

found to be less than 1% of its original value after a single iteration of Gram-Schmidt,

then we consider it to be linearly dependent on Sm, and instead use Lanczos to expand

Sm for the current diagonalization iteration. This helps prevent stagnation which can

occur when the component of tm that is orthogonal to Sm is small and dominated by

noise.

The procedure developed by Schnabel72 described in sections 2.3 and 3.1 to sym-

metrize the product STmYm is also applied during the Rayleigh-Ritz procedure. This

symmetrization is used in the construction of Am and for the residual vectors r
(j)
m

(see section 2.1). The correction matrix Γ is re-evaluated during every Rayleigh-Ritz

iteration and then discarded. This is done to avoid accumulation of error in Ym.

3.3 Geometry refinement

We use RS-PRFO to determine the step direction and magnitude. At each iteration, a

trial displacement vector is found by solving the RS-PRFO eigenvalue equations (eqs

15 and 16) with α = 1. If the trial vector is smaller in magnitude than δk, then it is

accepted, and the energy and gradient are evaluated at the new point. Otherwise, we

invoke an iterative procedure to determine the value of α which produces a displacement

vector such that ‖sk‖2 = δk. We accomplish this by applying NR to the residual

‖sk‖2 − δk with the analytical gradient d‖sk‖2
dα , falling back to the bisection method

when NR fails to provide a reasonable value for α.

We use an automated strategy for determining δk. After every step, we evaluate the

ratio of the predicted change in energy to the true change in energy,

ρ =
gTk sk +

1
2sTkBksk

εk+1 − εk
.

A value of ρ ≈ 1 indicates that the quadratic approximation to the energy is accurate,

and the trust radius may be safely increased. When ρ is very large, close to zero, or

negative, the trust radius should be decreased.
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Figure 3: An illustration of how we choose to update the trust radius based on the ratio of
the predicted change in energy to the true change in energy, ρ. When ρ−1inc < ρ < ρinc (central
blue region), the trust radius is increased. When ρ < ρ−1dec or ρ > ρdec (peripheral orange
regions), the trust radius is reduced. In all other cases, the trust radius is left unchanged.

The method we use to update δk is illustrated in figure 3. The initial trust radius δ0

is a parameter to be specified at the beginning of FOSP refinement. Two parameters,

ρdec and ρinc, are used to determine whether the trust radius should be increased,

decreased, or left unchanged. Two additional parameters, σdec and σinc, are used to

determine the value of the new trust radius. When ρ−1inc < ρ < ρinc (the blue region

in figure 3), the trust radius is set to δk+1 = max (σinc‖sk‖2, δk). When ρ < ρ−1dec or

ρ > ρdec (the orange regions), the trust radius is set to δk+1 = max (σdec‖sk‖2, δmin).

In all other situations, δk+1 = δk. The value δmin is a lower bound to the values the

trust radius is allowed to take. This is necessary because the true change in energy

εk+1 − εk will become dominated by noise as ‖sk‖2 approaches zero. In this scenario,

ρ will be far from one, resulting in a reduction of δk, which will further exacerbate the

problem. We choose δmin = η, the finite displacement step size used by the iterative

diagonalization routine. The scaling factors σdec and σinc should be slightly below and

slightly above one, respectively. Oscillation in geometry refinement steps may occur if

σdec = σ−1inc, so this should be avoided.
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3.4 Additional considerations

The energy of a system of atoms is invariant to net translation in the absence of an

external potential. The energy is further invariant to net rotation in the absence of pe-

riodic boundary conditions. These zero-curvature modes can complicate determination

of the lowest curvature internal modes that we are interested in finding. Additionally, if

Bk becomes singular, it may be impossible to solve the RS-PRFO eigenvalue problems.

To alleviate these problems, we construct an orthonormal basis that is orthogonal to

translational and rotational modes using singular value decomposition. The Hessian is

iteratively diagonalized and geometry refinement steps are determined in this reduced

basis.

We note that rotational modes are generally only eigenvectors of Hk at stationary

points in a Cartesian representation. Even in the absence of an external potential and

for systems without periodic boundary conditions, Hk will generally only have three

eigenvalues that are precisely zero, except at stationary points. This means that the

eigenvalues and eigenvectors of Hk will be modified when employing the procedure we

have just described. In practice, we find that projecting out rotational modes improves

performance.

4 Results

The method described in this work has been implemented in Sella,73 an open-source

software package written in Python. Sella interfaces with a variety of electronic struc-

ture theory packages such as NWChem,74 Quantum Espresso,75,76 CP2K,77 and GPAW78

through the ASE library.79 Sella runs on all major operating systems and CPU archi-

tectures.

Our algorithm, as implemented in Sella, has six hyperparameters: the Rayleigh-

Ritz convergence parameter γ, the initial trust radius δ0, the trust radius increase and

decrease thresholds ρinc and ρdec, and the trust radius increase and decrease factors

σinc and σdec. For all tests below, we choose γ = 0.4, δ0 = 1.3× 10−3Å per degree of
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freedom, ρinc = 1.035, ρdec = 5.0, σinc = 1.15, and σdec = 0.65. Note that the value

of the initial trust radius δ0 scales with the number of degrees of freedom. This is to

enable the treatment of systems of very different sizes.

All calculations were performed with Sella. Scripts to reproduce these calculations

are available in the SI.

4.1 FOSP refinement benchmarks

We measure Sella’s overall FOSP refinement performance using two FOSP refine-

ment benchmarks from optbench.org.80 The LJ38 benchmark consists of 200 38-atom

Lennard Jones clusters, while the Pt-heptamer island benchmark consists of 49 Pt(1

1 1) surfaces with adsorbed 7-atom clusters simulated with a Morse potential. These

benchmarks are designed to resemble systems encountered in materials science, such

as bulk solids or metal atom clusters. For both of these benchmarks, the goal is to

refine each initial structure to a FOSP in the fewest number of gradient evaluations

ngrad with a convergence criterion of ‖gk‖2 ≤ 10−3. The tests do not stipulate to

which FOSP the initial structures must converge. Energy and gradient evaluations

for the LJ38 benchmark systems were performed with the ASE implementation of the

Lennard-Jones potential.79 LAMMPS was used to evaluate the energies and gradients

of the Pt-heptamer island benchmark systems.81 We compare Sella’s performance on

this benchmark to that of the two best-performing codes from the original benchmark

publication,80 Optim82 and Pele.83

Table 1: LJ38 optbench.org FOSP refinement benchmark.80

Code mean(ngrad) min(ngrad) max(ngrad)
Sella 70 24 159
Optim 145 57 565
Pele 192 59 1488

Sella’s performance on the LJ38 optbench.org FOSP refinement benchmark is out-

lined in table 1. Sella requires less than half as many gradient evaluations on average

for this benchmark compared to next best performing code, Optim. In fact, the aver-
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age number of gradient evaluations required by Optim is only slightly less than Sella’s

worst-performing configuration. Pele requires significantly more gradient evaluations

on average than Sella’s worst performing configuration.

Table 2: Pt-heptamer island optbench.org FOSP refinement benchmark.80

Code mean(ngrad) min(ngrad) max(ngrad)
Sella 53 31 108
Optim 71 43 143
Pele 88 52 198

Sella’s performance on the Pt-heptamer island optbench.org FOSP refinement bench-

mark is outlined in table 2. As with the LJ38 benchmark, Sella outperforms to two

current best-performing codes, Optim and Pele. The improvement in performance for

this test is less substantial than for the LJ38 test, though Sella still requires 25% fewer

gradient evaluations than the next best performing code, Optim.

These performance improvements can be explained by the two major ways in which

our method differs from traditional MMF methods. First, we use the JD0 iterative

diagonalization method instead of Lanczos, which accelerates convergence when an ap-

proximate Hessian is known. Second, we use a multi-secant Hessian update to construct

our approximate Hessian from the information provided by the diagonalization algo-

rithm. The relative performance of our iterative diagonalization algorithm is discussed

in section 4.2. The role of the multi-secant Hessian updates is investigated in section

4.3.

4.2 Iterative diagonalization benchmark

We separately measure the performance of the iterative diagonalization algorithms im-

plemented in Sella using the iterative diagonalization benchmark from optbench.org.80

This benchmark consists of 200 38-atom Lennard-Jones clusters. The goal of this bench-

mark is to find the leftmost eigenvector of the Hessian for each structure to within a

target accuracy of
∣∣∣x(1)T
m v(1)

∣∣∣ ≥ 0.99 in the fewest number of gradient evaluations ngrad.

The convergence criteria corresponds to an angle of less than arccos (0.99) ≈ 8◦ between

26



the leftmost Ritz vector and the true leftmost eigenvector.

Table 3: Optbench.org lowest-eigenvector benchmark

Code mean(ngrad) min(ngrad) max(ngrad)
Sella 18 4 37
Optim 25 13 58
Pele 25 12 61

We compare the performance of Sella’s iterative diagonalization routines on this

benchmark to that of Optim and Pele in table 3. For this test, Sella requires almost

30% fewer gradient evaluations on average compared to both Optim and Pele. The

source of this improvement in performance is not immediately evident, as both Optim

and Pele also employ an iterative diagonalization algorithm based on the Rayleigh-Ritz

procedure. No approximate Hessian is available for these test structures, so the JD0

procedure used by Sella is mathematically equivalent to Lanczos.

One possible difference is in the choice of initial guess vector for the iterative diag-

onalization procedure. This benchmark provides a single initial guess vector xoptbench
0

for the leftmost eigenvector to be used with all 200 test structures. In contrast, Sella

by default will use the gradient vector g as its initial guess vector. Another possible

difference is that Sella projects zero-curvature translational and rotational modes out

of the space searched by the iterative diagonalization method (see section 3.4). Other

codes may instead shift these zero-curvature modes to better separate them from the

low-curvature internal modes of interest. To see how these factors affect iterative diago-

nalization performance, we measure Sella’s performance for each combination of initial

test vector and zero-curvature mode treatment.

Table 4: Comparison of initial guess vector and zero-curvature mode treatment on opt-
bench.org lowest-eigenvector benchmark

x0 Zero-curvature modes mean(ngrad) min(ngrad) max(ngrad)

xoptbench
0

Projection 21 10 44
Shifting 22 11 44

g
Projection 18 4 37
Shifting 18 4 37
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The performance of these different combinations is shown in table 4. These results

indicate that g is always a better choice of initial guess of the leftmost eigenvector than

xoptbench
0 . Shifting and projection both afford the same performance when g is used as

the initial guess vector. In fact, because g is necessarily orthogonal to translation and

rotation, any reasonable treatment of these zero-curvature modes will result in the same

performance. Our tests show that this is true even if diagonalization is performed in

the full dimensional representation without shifting, i.e. when H is allowed to remain

singular.

In contrast, choosing xoptbench
0 as the initial guess has poorer performance that is

slightly affected by the treatment of zero-curvature modes. This is because xoptbench
0

is not strictly orthogonal to translational and rotational modes for all systems. In

principle, xoptbench
0 can be orthogonalized against these modes; in fact, this must be

done when the translational and rotational modes are projected out. When xoptbench
0

is not orthogonalized in this way, as in the shifted case, more iterations are required to

reach convergence.

These factors alone are not sufficient to explain Sella’s improved performance on this

test relative to Optim and Pele. Even if xoptbench
0 is used as the initial guess vector and if

the zero-curvature modes are shifted rather than projected, Sella still outperforms both

Optim and Pele. We suspect that this may be a result of the very rigorous numerical

routines implemented in Sella, specifically the orthogonalization and symmetrization

routines described in section 3.2.

Table 5: Comparing performance of iterative diagonalization procedures on final structures
from LJ38 optbench.org FOSP refinement benchmark

Method Zero-curvature modes mean(ngrad) min(ngrad) max(ngrad)

Lanczos Projection 21.3 7 36
Shifting 22.3 8 39

JD0 Projection 12.0 5 18
Shifting 12.0 5 18

The diagonalization benchmarks established by optbench.org do not provide an

opportunity to compare the performance of the preconditioned JD0 diagonalization
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routine with that of Lanczos. In order to draw this comparison, we also measure

the performance of the diagonalization algorithm for the final converged structures

corresponding to the LJ38 FOSP refinement benchmark from table 1. These results are

outlined in table 5. As this is not a part of the original optbench.org benchmark suite,

we cannot compare Sella’s performance against that of Optim and Pele. For these tests,

the leftmost eigenvector of the approximate Hessian Bk following FOSP refinement is

used as the initial guess for the leftmost eigenvector of Hk. Additionally, Bk was

used as a preconditioner for the JD0 method. In order to see a measurable difference

in performance, the convergence criterion for this test was tightened considerably to∣∣∣x(1)T
m v(1)

∣∣∣ ≥ 0.999 999, or an angle of less than arccos (0.999 999) ≈ 0.08◦. We see

that JD0 consistently requires fewer gradient evaluations to converge to the leftmost

eigenvector of Bk. Lanczos is also more strongly affected by the treatment of zero

curvature modes, as eigenvalue shifting requires on average one additional gradient

evaluation to reach convergence. This effect is absent in JD0, which requires the same

number of gradient evaluations to converge for both projection and eigenvalue shifting.

4.3 Hessian update analysis

The key advance of our method is that we incorporate all information of Hk obtained

by the diagonalization algorithm into the approximate Hessian Bk using a multi-secant

update. This generally results in Bk becoming indefinite, which is not allowed for MMF

methods but is permitted if RS-PRFO is used. RS-PRFO is capable of constructing

displacement vectors appropriate for FOSP refinement regardless of the number of

negative eigenvalues in Bk, unlike leading MMF methods.

In figure 4, we show how the accuracy of the approximate Hessian B improves as

the number of diagonalization iterations increases for an example structure taken from

the LJ38 FOSP refinement benchmark (see table 1). Figure 4a depicts the eigenvalue

spectrum of B initialized by the method described in section 3.1 after the given number

of diagonalization iterations. For this system, which consists of 38 atoms and thus

has 108 degrees of freedom excluding translation and rotation, full diagonalization is
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(a) (b)

Figure 4: Comparing the accuracy of the approximate Hessian Bm as a function of number
of diagonalization algorithm iterations m. (a) The eigenvalue spectrum of the approximate
Hessian as a function iteration number m. (b) The relative error in the approximate Hessian
after m diagonalization iterations, ‖Bm −H‖F‖H‖−1F , where ‖·‖F represents the Frobenius
norm.

achieved after 109 gradient evaluations. As expected, the largest magnitude eigenvalues

converge more rapidly than eigenvalues closer to zero. However, the leftmost eigenvalues

also converge relatively quickly, even though they are quite low in magnitude. Figure 4b

shows how the relative error in B decreases with increasing diagonalization algorithm

iterations. Note that even when the extremal eigenvalues are well converged, the error

in B can be quite large.

It is clear that increasing the number of diagonalization algorithm iterations will

result in a better approximate Hessian. It is less clear how this increase in the quality of

B translates to performance of the FOSP refinement algorithm. Figure 5 illustrates how

the number of geometry refinement steps and the total number of gradient evaluations

required are affected by the diagonalization algorithm convergence criterion γ. We

selected two structures from the LJ38 FOSP refinement benchmark (see table 1), and

for each structure performed a series of full FOSP refinements with values of γ between

10−16 and 102. When γ = 10−16, the iterative diagonalization method effectively

diagonalizes the full Hessian matrix. When γ = 102, the iterative diagonalization

method is considered converged after a single iteration. Within this range, smaller
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(a) (b)

Figure 5: The number of geometry refinement steps (orange) and gradient evaluations (blue)
required to reach convergence as a function of the eigensolver convergence criterion γ. (a)
A good initial structure for which the diagonalization algorithm is only called once at the
beginning of refinement. (b) A poor quality initial structure for which the diagonalization
algorithm is called multiple times over the course of refinement. The vertical dashed black
line indicates the choice of γ used in the current work.

values of γ result in more steps of the iterative diagonalization algorithm, thereby

producing a more accurate B. While one might expect this to reduce the number of

geometry steps needed to converge to the FOSP, this is not always the case.

For initial structures close to a FOSP (figure 5a), the more accurate B afforded by a

smaller value of γ results in a decrease in the number of geometry steps required to reach

convergence. However, this is counteracted by an increase in the number of gradient

evaluations invoked by the eigensolver. For this system, the optimal choice of γ is close

to one, as this results in the fewest number of gradient evaluations despite the larger

number of geometry refinement steps required to converge to the FOSP. In contrast,

refinement of poor quality initial structures (figure 5b) behaves much less consistently

when γ is changed. If, during refinement, the leftmost eigenvalue of Hk becomes pos-

itive or close to zero, then standard Hessian updates from geometry refinement steps

may result in Bk becoming positive definite. When this occurs, it becomes necessary

to invoke the iterative diagonalization algorithm in order to verify that the leftmost

eigenvector of Bk is accurate. Whether Bk becomes positive definite depends on the
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accuracy of Bk−1 and the previous trust radius δk−1. This explains why the number

of gradient evaluations in figure 5b varies non-monotonically with γ across almost the

entire range of values. Despite this, the optimal choice of γ is near one for this system

as well.

Figure 6 shows how the choice of the Hessian update formula affects the quality of

Bk. For two systems taken from the LJ38 FOSP refinement benchmark (see table 1),

we perform a full FOSP refinement. For these refinements, Bk was updated using the

TS-BFGS update rule. Three additional approximate Hessians were maintained ac-

cording to the PSB, SR1 (or MS), and BFGS updates (see section 2.3). These alternate

approximate Hessians were not used as a preconditioner to the iterative diagonalization

routines or during geometry refinement steps. Figures 6a and 6b plot the relative error

in Bk for each of the four studied Hessian update methods as a function of number of

gradient evaluations. Figures 6c and 6d plot the angle between the leftmost eigenvector

of Bk and the leftmost eigenvector of Hk as a function of number of gradient evalua-

tions. Figures 6a and 6c correspond to a good-quality initial structure, while figures 6b

and 6d correspond to a poor-quality initial structure. All four figures begin after the

initial call to the iterative eigensolver, which required 20 gradient evaluations for the

good-quality initial structure and 50 gradient evaluations for the poor-quality initial

structure. Grey regions correspond to gradient evaluations invoked by the iterative

eigensolver.

Of the four Hessian update methods tested, only PSB and TS-BFGS choose Mk to

be always positive definite. Figure 6 shows that SR1 and BFGS tend to accumulate

very large errors in Bk, both in terms of the matrix as a whole (figures 6a and 6b) and in

terms of its leftmost eigenvector (figures 6c and 6d). While SR1 is capable of achieving

a lower error in Bk (figure 6a), it behaves unreliably when Bk is allowed to become

indefinite. PSB maintains a relatively low error in Bk, but is less consistently able to

accurately track the leftmost eigenvector of Hk. Of the four methods tested, TS-BFGS

is able to produce Bk with the most consistently low error and which most accurately

approximates the leftmost eigenvector of Hk. This is not to say that TS-BFGS is
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(a) (b)

(c) (d)

Figure 6: A comparison of various Hessian update schemes for a good initial structure
((a) and (c)) and a poor quality initial structure ((b) and (d)) using four different Hessian
update schemes. Grey regions correspond to gradient evaluations invoked by the iterative
diagonalization algorithm. (a), (b) A comparison of the error in B over the course of FOSP
refinement. (c), (d) Angle between the leftmost eigenvector of B and H over the course
of FOSP refinement. All other calculations in this work use the TS-BFGS update. Each
plot begins after the first call to the iterative eigensolver returns, which requires 20 gradient
evaluations for the good initial structure ((a) and (c)) and 50 gradient evaluations for the
poor quality initial structure ((b) and (d)).
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guaranteed to always track the leftmost eigenvector of Hk accurately (see figure 6d).

Indeed, this is why it is occasionally necessary to invoke the iterative diagonalization

algorithm partway through refinement.

We note that the errors in figures 6a and 6b do not approach zero even at the

FOSP. This is to be expected, as Bk plays the role of a preconditioner for both the

diagonalization algorithm and the geometry refinement steps. With the exception of its

leftmost eigenvector, which must be somewhat close to the leftmost eigenvector of Hk,

Bk does not need to be highly accurate to guarantee eventual convergence to a FOSP.

As is typical with preconditioners, convergence is achieved more rapidly when Bk more

accurately approximates Hk, but this must be balanced against the cost required to

construct a more accurate Bk.

While our approach is more reliable than some existing FOSP refinement methods,

some pathological initial structures remain difficult to converge. Even if Bk is initially

exact, it is possible to lose track of the leftmost eigenvalue of Hk using only standard

secant updates. When this occurs, it is necessary to call the diagonalization algorithm

again to correct Bk. However, it is not simple to detect when Bk needs to be corrected.

If it were possible to detect that the leftmost eigenvector of Bk is in poor agreement

with the leftmost eigenvector of Hk, it would be possible to determine when the diago-

nalization algorithm should be called. Currently, the diagonalization algorithm is only

called during refinement if Bk becomes positive definite, but this may fail to correct

Bk when, for example, Hk has multiple negative eigenvalues.

5 Conclusion

We present a novel approach for refining first order saddle point structures. In this

approach, the Hessian H is partially diagonalized using an iterative diagonalization

algorithm based on the Jacobi-Davidson method. In addition to providing an accurate

approximation to the leftmost eigenvector of H, the curvature information obtained by

the diagonalization algorithm is used to construct an approximate Hessian B. B is used
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both to determine geometry refinement steps using RS-PRFO and as a preconditioner

for any subsequent calls to the iterative diagonalization algorithm.

Our approach is suitable for refining first order saddle point geometries of large

systems with many atoms for which it is unfeasible to calculate H even a single time.

The number of steps performed by the diagonalization algorithm and the accuracy of

B can be controlled by a single tunable convergence parameter. In the limit of very

tight convergence, our method becomes equivalent to full diagonalization of H using

finite difference. This means our method is also applicable to smaller systems which

may benefit from full knowledge of H.

Our method requires on average 50% fewer gradient evaluations to converge to

first order saddle point structures on one saddle point refinement benchmark from opt-

bench.org relative to the current best performing codes, Optim and Pele.80 On another

saddle point refinement benchmark, Sella requires on average 25% fewer gradient evalu-

ations to converge relative to Optim and Pele. In addition, our preconditioned iterative

diagonalization routine converges to the leftmost eigenvector of H with a high degree

of accuracy in just over half the number of gradient evaluations required by Lanczos.

Even in the absence of a preconditioner, the iterative diagonalization routine used in

our method requires on average almost 30% fewer gradient evaluations to converge

relative to Optim and Pele.

We provide evidence that the observed increase in performance for first order sad-

dle point refinement is a result of an improvement in the accuracy of the approximate

Hessian B. Our key insight is that the information provided by the iterative diagonal-

ization routine can be used to construct a highly accurate B, or to update an existing

B to be more accurate. Practically, this innovation results in a B that is potentially

indefinite, precluding the use of standard minimum mode following approaches that

require a positive definite B. However, this does not pose a problem if RS-PRFO is

used to determine geometry refinement steps, an approach which is used extensively

for the refinement of first order saddle points on molecular potential energy surfaces.

There is still significant room for improvement on the method we describe. Partic-
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ularly, our method is likely to underperform for molecules relative to methods imple-

mented in leading electronic structure theory packages. This is because our method

represents the molecular geometry in Cartesian coordinates, rather than using inter-

nal coordinates. We intend to extend our method to other representations including

internal coordinates in the near future.
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