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The ∆NO method for static correlation is combined with second-order Møller-Plesset perturbation theory
(MP2) and coupled-cluster singles and doubles (CCSD) to account for dynamic correlation. The MP2 and
CCSD expressions are adapted from finite-temperature CCSD, which includes orbital occupancies and vacan-
cies, and expanded orbital summations. Correlation is partitioned with the aid of damping factors incorpo-
rated into the MP2 and CCSD residual equations. Potential energy curves for a selection of diatomics are in
good agreement with extrapolated full configuration interaction results (exFCI), and on par with conventional
multireference approaches.

I. INTRODUCTION

The correlation problem persists. To state it simply;
how does one adequately account for electron correlation
with a minimal amount of effort? Its persistence is en-
sured by the latter condition. This continual search for
an efficient treatment of electron correlation is driven by
the need to treat larger and more complex systems with
increased accuracy. A common strategy of potential so-
lutions is the partitioning of the problem into different
types of correlation; static and dynamic,1–11 long-range
and short-range,12–16 etc. Partitioning the correlation
problem into static and dynamic correlation, or strong
and weak correlation, or multireference and “the rest”,
is a popular and effective strategy that generally provides
a qualitative, and sometimes quantitative, model for par-
ticularly challenging electronic structure problems. The
price of the success of such models is relatively expensive
calculations, often combined with the non-trivial defini-
tion of active spaces that requires both chemical intu-
ition and trial-and-error. Through the reformulation of
these problems in terms of alternative models of elec-
tronic structure, a deeper and more “physical” under-
standing of correlation partitioning can be achieved while
providing another tool for the study of complex multiref-
erence systems.

A two-tiered wave function based approach to static
and dynamic correlation is a relatively old idea.17–21

The general strategy of manually (or automatically22,23)
defining an active space, optimizing a multirefer-
ence wave function, and then applying some form
of post-Hartree-Fock electron correlation method, is
the basis of a multitude of multireference electronic
structure models.21,24–26 These models have continu-
ally evolved over the decades, and prominently in-
clude CASPT2,19,27,28 NEVPT,29–31 MRCC,17,18,32,33

and NOCI.34–37 These methods are essentially the de-
fault for studying systems with low-lying excited states
(e.g., conical intersections), largely because conventional
density functional methods often fail to properly model
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such systems. An emerging alternative to these ap-
proaches, particularly for describing the multireference
aspect, is cumulant functional methods [e.g., density-
matrix functional theory (DMFT)38–45 and natural or-
bital functional theory (NOFT)46–53)]. Recently, a two-
tiered approach as seen in wave function approaches was
devised for NOFT by Piris, NOF-MP2.53,54 Other than
NOF-MP2, the combination of a cumulant functional for
static correlation and post-Hartree-Fock theories for dy-
namic correlation is unexplored.

Upon its inception, the ∆NO method8 involved em-
ploying a cumulant functional to account for static cor-
relation (or multireference character) in conjunction with
an on-top density functional for dynamic correlation.
The on-top density functional is applied directly to the
statically correlated ∆NO two-electron density matrix
(2-RDM), therefore the method for treating dynamic
correlation can be easily substituted. Recently, White
and Chan introduced a finite-temperature formulation
of the coupled-cluster approximation (FT-CCSD)55 in
which orbitals are thermally populated according to a
Fermi-Dirac distribution, therefore there are non-integer
electron occupancies and vacancies (holes). Similar for-
mulations also exist for second-order Møller-Plesset per-
turbation theory (FT-MP2).56,57 The finite-temperature
formulations of post-Hartree-Fock approaches present an
ideal framework for treating the dynamic correlation of a
multireference (or statically correlated) 2-RDM obtained
from ∆NO, or elsewhere.

The method presented here involves combining ∆NO
for static correlation with MP2 or CCSD for dynamic cor-
relation, by exploiting aspects of the finite-temperature
formulation. The combination is made possible by in-
troducing a ∆-dependent damping factor in the leading
term of the MP2 or CCSD residuals, which modifies the
occupancy-occupancy, vacancy-vacancy, and occupancy-
vacancy pairs according to the amount of static correla-
tion present. The ∆NO method is introduced in Sub-
sec. II A, the modified MP2 and CCSD equations are de-
scribed in Subsecs. II C and II B, and the damping factors
are defined in Appendix A. The implementation of the
method is described in Sec. III and results for the disso-
ciation of some diatomics are presented and discussed in
Sec. IV. Finally, some conclusions regarding the current
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implementation and some future directions are discussed
in Sec. V. Atomic units are used throughout unless stated
otherwise.

II. THEORY

A. ∆NO method

Cumulant functional theory (CFT) is based on the
cumulant expansion of the exact two-electron reduced
density matrix (2-RDM) in terms of the one-electron re-
duced density matrix (1-RDM) and occasionally other
variables.58 The 2-RDM can be defined in terms of the
N -electron wave function,

Γ̃(x1,x2,x
′
1,x
′
2) =

N(N − 1)

2

∫
Ψ∗(x′1,x

′
2,x3, . . . ,xN )

×Ψ(x1,x2,x3, . . . ,xN )dx3 . . . dxN , (1)

where x = (r, ω) represents both the spatial and spin
coordinates of an electron. The 1-RDM follows from the
2-RDM via integration of the coordinates of one of the
electrons,

γ̃(x,x′) =
2

N − 1

∫
Γ̃(x,x2,x

′,x2)dx2. (2)

The cumulant expansion of the 2-RDM can be written as

Γ̃(x1,x2,x
′
1,x
′
2)

= Γ̃(0)(x1,x2,x
′
1,x
′
2) + Γ̃cum(x1,x2,x

′
1,x
′
2), (3)

where the zeroth-order term of the expansion, Γ̃(0), is
expressed solely in terms of the 1-RDM,

Γ̃(0)(x1,x2,x
′
1,x
′
2)

=
1

2
[γ̃(x1,x

′
1)γ̃(x2,x

′
2)− γ̃(x1,x

′
2)γ̃(x2,x

′
1)]. (4)

The general form of the cumulant, Γ̃cum, for an N -
electron system is unknown, and present CFT methods
are distinguished by how they approximate this term.
When Γ̃cum is constructed exclusively from the natural
orbitals (NOs), {φp}, and their occupancies, {np}, (which
are the eigenfunctions and eigenvalues of the 1-RDM, re-
spectively) a natural orbital functional (NOF) is the re-
sult. For notational convenience, we also define natural
vacancies as hp = 1 − np and assume real-valued NOs.
Unlike NOFs, the ∆NO method uses electron transfer
variables, {∆me}, which correspond to the amount of
electron occupancy transferred from an “occupied” active
orbital φm to a “virtual” active orbital φe. Note that “oc-
cupied” and “virtual” designations refer to the ground-
state Hartree-Fock electron configuration8 (see Table I
for orbital labelling).

TABLE I. Orbital index key for ∆NO, MP2 and CCSD.

indices orbitals trait set label
p, q, r, s all
i, j, k, l occupied ni 6= 0 O
a, b, c, d virtual ha 6= 0 V
m,n active occupied nm < 1 Ao

e, f active virtual he < 1 Av

In ∆NO, the occupancies are defined in terms of these
variational {∆me},

nm = 1−
∑
e

∆me, ne =
∑
m

∆me. (5)

Further distinguishing the ∆NO functional from NOFs,
or other cumulant functionals, is that the transfer of elec-
trons occurs between a relatively small set of active occu-
pied, Ao = {φm}, and virtual, Av = {φe}, orbitals. This
is because the ∆NO cumulant functional is designed to
capture only static correlation.

For this work, it is useful to describe the spinless, spin-
resolved, ∆NO 2-RDM. In general, the spinless 2-RDM is
obtained by integrating over the spin of the two electrons,

Γ(r1, r2, r
′
1, r
′
2) =

∫∫
Γ̃(x1,x2,x

′
1,x
′
2)
∣∣∣ω′1=ω1

ω′2=ω2

dω1dω2.

(6)
The result can then be resolved into the components as-
sociated with different spin-pairs,

Γ(r1, r2, r
′
1, r
′
2) = Γ↑↑(r1, r2, r

′
1, r
′
2) + Γ↓↓(r1, r2, r

′
1, r
′
2)

+ Γ↑↓(r1, r2, r
′
1, r
′
2) + Γ↓↑(r1, r2, r

′
1, r
′
2).

(7)

Furthermore, the 2-RDM can also be expanded in the
basis of the NOs,

Γ(r1, r2, r
′
1, r
′
2) =

∑
pqrs

Γpqrsφp(r
′
1)φq(r

′
2)φr(r1)φs(r2).

(8)
For a closed-shell system, the zeroth-order term of the
cumulant expansion becomes(

Γ(0),σσ
)
pqrs

=
npnq

2
δqspr, (9a)(

Γ(0),σσ′
)
pqrs

=
npnq

2
δprδqs, (9b)

where δqspr = δprδqs − δpsδqr, np = n↑p = n↓p and σ, σ′ = ↑
or ↓.

The ∆NO cumulant consists of three terms,

Γ∆NO
cum = Γ∆NO

pair + Γ∆NO
stat + Γ∆NO

HSC , (10)

a pair correction term, Γ∆NO
pair , a static correlation term,

Γ∆NO
stat , and a high-spin correction term, Γ∆NO

HSC , where
each can be decomposed into its spin-pair components.
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For non-integer occupancies, Γ(0) [see Eq. (9)] does not
integrate to the total number of electron pairs, N(N −
1)/2. The pair correction term, Γ∆NO

pair , ensures the total

2-RDM integrates to this number for any {∆me}, and is
given as(

Γ∆NO,σσ
pair

)
pqrs

=
∆pq(nq − np −∆pq)− ηpq

2
δqspr, (11a)(

Γ∆NO,σσ′

pair

)
pqrs

=
nphp

2
δpqδprδqs

+
∆pq(nq − np −∆pq)− ηpq

2
δprδqs,

(11b)

where

ηpq =


∑
r ∆pr∆qr, if p 6= q ∧ (φp, φq) ∈ Ao

or p 6= q ∧ (φp, φq) ∈ Av,
0, otherwise,

(12)

and ∆pq = −∆qp.
In the framework of ∆NO, static correlation is cap-

tured by transferring opposite-spin electron pairs from
the same active occupied NO, φm, to the same active vir-
tual NO, φe. This recovers the same intrapair correlation
as the 2n-tuple excitations of a seniority-zero configura-
tion interaction wave function,59,60 for which excitations
are performed only within a relatively small active space.

The static correlation term of the cumulant is written
as (

Γ∆NO,σσ
stat

)
pqrs

= 0, (13a)(
Γ∆NO,σσ′

stat

)
pqrs

=
ζpr − τpr

2
δpqδrs, (13b)

where

ζpq =


∑
r

√
∆pr∆qr, if p 6= q ∧ (φp, φq) ∈ Ao

or p 6= q ∧ (φp, φq) ∈ Av,
0, otherwise,

(14)

and

τpq =


√
np∆pq, if φp ∈ Ao ∧ φq ∈ Av,√
nq∆qp, if φp ∈ Av ∧ φq ∈ Ao,

0, otherwise.

(15)

Like a seniority-zero wave function, no parallel-spin
correlation is included in the static correlation term.
However, the high-spin correction (HSC) includes inter-
pair, opposite- and parallel-spin, correlation that is not
present in a seniority-zero wave function. This correla-
tion is necessary for the proper dissociation of multiple
bonds into high-spin fragments, and for the static corre-
lation of multiple electron pairs in general.43 The HSC
term is written as(

Γ∆NO,σσ
HSC

)
pqrs

=
κpq
2
δqspr, (16a)(

Γ∆NO,σσ′

HSC

)
pqrs

= −κpq
2
δprδqs, (16b)

FIG. 1. Diagrammatic representation of the ∆NO high-spin
correction (HSC) for two statically correlated electron pairs.
Without the HSC, at complete static correlation (∆ = 1/2),
the ∆NO 2-RDM would contain a superposition of four differ-
ent spin configurations about a spatial separation [dashed line]
(e.g., dissociated atoms). The HSC removes the “low-spin”
configurations, leaving only the “high-spin” configurations.

where

κpq =


∑

r 6=s
(r 6=q)
(s6=p)

τprτqs, if p 6= q ∧ (φp, φq) ∈ A,

0, otherwise.

(17)

The HSC reduces the pair density between opposite-
spin electrons, while increasing the pair density between
parallel-spin electrons, of separate statically correlated
electron pairs, as their static correlation increases. This
is illustrated in Fig. 1 for two statically correlated elec-
tron pairs. Taking N2 dissociation as an example, the
HSC ensures that the spin-up electrons of each of the
three statically correlated pairs (triple bond) simultane-
ously appear on one atom while the spin-down electrons
appear on the other, resulting in a superposition of the
two high-spin fragment possibilities. Without the cor-
rection, the electrons of each statically correlated pair
would encounter an average of both parallel and opposite-
spin electrons from the other statically correlated pairs
(i.e., spin-averaged).

The total ∆NO energy follows simply from the 2-RDM,

E∆NO = E(0) + E∆NO
cum , (18)

where the zeroth-order 1-RDM energy also includes the
one-electron, kinetic and electron-nucleus attraction, en-
ergy in addition to the two-electron energy associated
with the zeroth-order term of the cumulant expansion,



4

Γ(0). For a closed-shell system, the zeroth-order 1-RDM
energy, in terms of NOs and occupancies, is given as

E(0) = 2
∑
p

npHp +
∑
pq

npnq(2Jpq −Kpq), (19)

where

Hp =

∫
φp(r)

(
−∇

2

2
−
∑
A

ZA

rA

)
φp(r)dr, (20a)

Jpq =

∫∫
φp(r1)φq(r2)φp(r1)φq(r2)

r12
dr1dr2, (20b)

Kpq =

∫∫
φp(r1)φq(r2)φq(r1)φp(r2)

r12
dr1dr2, (20c)

are the usual one-electron (kinetic and nuclear attrac-
tion) and two-electron (Coulomb and exchange) integrals
over NOs. The cumulant energy is given as

E∆NO
cum = E∆NO

pair + E∆NO
stat + E∆NO

HSC + E∆NO
dyn , (21)

with components defined as follows

E∆NO
pair =

∑
p

nphpJpp

+
∑
pq

∆pq(nq − np −∆pq)(2Jpq −Kpq)

−
∑
pq

ηpq(2Jpq −Kpq),

(22a)

E∆NO
stat =

∑
pq

(ζpq − τpq)Lpq, (22b)

E∆NO
HSC = −

∑
pq

κpqKpq, (22c)

where the time-inversion exchange energy integrals are

Lpq =

∫∫
φp(r1)φp(r2)φq(r1)φq(r2)

r12
dr1dr2. (23)

The HSC energy appears simplified in comparison to the
2-RDM term [see Eq. (16)]. This is because the Coulomb
repulsion terms cancel due to the equivalence of the spin-
up and spin-down NOs. The dynamic correlation energy,
E∆NO

dyn , was defined previously in terms of an on-top den-

sity functional.8 In the present study the dynamic corre-
lation energy is provided via MP2 or CCSD, i.e.,

E∆NO
dyn = E∆NO

MP2/CCSD. (24)

B. CCSD for ∆NO

Recently, White and Chan introduced a finite-
temperature formulation of the coupled-cluster singles
and doubles method (FT-CCSD).55 The method is for-
mulated in terms of imaginary time, which is integrated
from 0 to β, where β is the inverse temperature. The

authors state that at zero temperature, the FT-CCSD
amplitudes, and consequently the energy, converge to the
usual non-temperature dependent CCSD values. In that
case, the electron occupancies, which are determined by a
Fermi-Dirac distribution, would collapse to their normal
Aufbau (Hartree-Fock ground state) values. For ∆NO,
the occupancies are not those of Aufbau or the Fermi-
Dirac distribution, nevertheless it is assumed here that
aspects of the FT-CCSD formulation are still valid. In
their article, White and Chan outline how to convert
CC equations (i.e., residuals) to FT-CC equations. The
equations presented here are formulated by taking the
CCSD equations of Stanton et al.61 and applying the
instructions from White and Chan to include occupan-
cies and vacancies (holes). The necessary instructions
(paraphrased) being: (i) for each contraction, sum over
all orbitals instead of just occupied or virtual orbitals,
and (ii) include an occupancy or vacancy with each in-
dex not associated with an amplitude. Application of
these instructions to the residual (rai and rabij ) equations
of Stanton et al. gives

rai (CCSD) = nihas
a
i Fia +

∑
c

tciFac −
∑
k

takFki

+
∑
kc

tacikFkc −
∑
kc

tck 〈ka||ic〉niha

− 1

2

∑
kcd

tcdik 〈ka||cd〉ha

− 1

2

∑
klc

tackl 〈lk||ci〉ni,

(25)

and

rabij (CCSD) = ninjhahbd
ab
ij 〈ij||ab〉

+ Pab
∑
c

tacij

(
Fbc −

1

2

∑
k

tbkFkc

)

− Pij
∑
k

tabik

(
Fkj +

1

2

∑
c

tcjFkc

)

+
1

2

∑
kl

τabklWklij +
1

2

∑
cd

τ cdij Wabcd

+ PijPab
∑
kc

(tacikWkbcj − tci tak 〈kb||cj〉hbnj)

+ Pij
∑
c

tci 〈ab||cj〉njhahb

− Pab
∑
k

tak 〈kb||ij〉ninjhb,

(26)

where P is a permutation operator such that Pijgij =
gij − gji. The various matrix elements from Eqs. (25)
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and (26) read

Fac = haFac −
1

2

∑
k

takFkc

+
∑
kd

tdk 〈ka||dc〉ha −
1

2

∑
kld

τ̃adkl 〈kl||cd〉 ,
(27a)

Fki = niFik +
1

2

∑
c

tciFkc

+
∑
cl

tcl 〈kl||ic〉ni +
1

2

∑
lcd

τ̃ cdil 〈kl||cd〉 ,
(27b)

Fkc = Fkc +
∑
ld

tdl 〈kl||cd〉 , (27c)

and

Wklij = ninj 〈kl||ij〉

+ Pij
∑
c

tcj 〈kl||ic〉ni +
1

4

∑
cd

τ cdij 〈kl||cd〉 ,
(28a)

Wabcd = hahb 〈ab||cd〉

− Pab
∑
k

tbk 〈ak||cd〉ha +
1

4

∑
kl

τabkl 〈kl||cd〉 ,

(28b)

Wkbcj = hbnj 〈kb||cj〉

+
∑
d

tdj 〈kb||cd〉hb −
∑
l

tbl 〈kl||cj〉nj

−
∑
ld

(
tdbjl
2

+ tdj t
b
l

)
〈kl||cd〉 ,

(28c)

where we have defined the intermediate quantities

τabij = tabij + tai t
b
j − tbi taj , (29a)

τ̃abij = tabij +
1

2

(
tai t

b
j − tbi taj

)
. (29b)

The element

Fpq =
1

np

∫
δ
(
E(0) + E∆NO

pair

)
δχp(x)

χq(x)dx (30)

denotes a generalized ∆NO Fock matrix element, where
χp(x) is a natural spin-orbital. The antisymmetrized
electron repulsion integrals are given by 〈pq||rs〉 =
〈pq|rs〉 − 〈pq|sr〉 with

〈pq|rs〉 =

∫
χp(x1)χq(x2)χr(x1)χs(x2)

r12
dx1dx2. (31)

Besides introducing occupancies and vacancies, and ex-
panding the range of the sums over spin-orbitals, one
more modification is applied to both the rai and rabij equa-
tions. The leading term of each residual equation is mul-
tiplied by a damping factor (sai for rai and dabij for rabij ),
which are defined in Appendix A. The CCSD energy ex-
pression is unmodified, with the exception of the range
of summation,

E∆NO
CCSD =

∑
ia

tai Fia +
1

2

∑
ijab

(
tabij
2
− tai tbj

)
〈ij||ab〉 . (32)

C. MP2 for ∆NO

An equation for the MP2 amplitudes is derived in a
manner analogous to CCSD, where the two instructions
of White and Chan [see Subsec. II B] are applied to the
usual non-canonical MP2 residual equation,

rabij (MP2) = ninjhahbd
ab
ij 〈ij||ab〉

+
∑
c

(
hbt

ac
ij Fbc + hat

cb
ijFac

)
−
∑
k

(
njt

ab
ikFjk + nit

ab
kjFik

)
,

(33)

where, in addition to the introduction of occupancies and
vacancies, and the expanded range of summation, the
same damping factor (defined in Appendix A) applied
to the CCSD rabij equation [see Eq. (26)] is applied here.
Also like CCSD, the MP2 energy expression remains the
same with the exception of the expanded range of sum-
mation, i.e.,

E∆NO
MP2 =

1

4

∑
ijab

tabij 〈ij||ab〉 . (34)

Note that because the non-canonical formulation of
MP262 is employed, Eqs. (33) and (34) do not involve
single excitations.

III. METHOD

A. FCI reference

Benchmark potential energy curves were obtained
using a determinant-driven selected configuration in-
teraction (sCI) method known as CIPSI (Configura-
tion Interaction using a Perturbative Selection made
Iteratively)63–65 in which the energies are extrapolated
to the full configuration interaction (FCI) result using
multireference perturbation theory.66–68 The all-electron
extrapolated-FCI (exFCI) calculations were performed
using Quantum Package 2.0.68 All benchmark and ∆NO
calculations were performed using the cc-pVTZ/f basis
set.69–72

B. ∆NO

All ∆NO and subsequent MP2 and CCSD calculations
were performed using the MUNgauss quantum chemistry
program.73 Optimization of the {φm} and the {∆me}
was performed according to the previously established
algorithm.8,74 Restricted Hartree-Fock orbitals serve as
the initial guess NOs, which are then optimized via itera-
tive diagonalization of a pseudo-Fock matrix. The {∆me}
are optimized using a Newton-Raphson algorithm. For
the current study, the number of active occupied orbitals
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was chosen manually to be the number of bonds in the
diatomic. An equivalent number of virtual orbitals were
chosen to be active.

C. MP2 and CCSD

Both the MP2 and CCSD algorithms are implemented
in the spin-orbital basis. The residual equations are
solved using an iterative Newton-Raphson (MP2), or ap-
proximate Newton-Raphson (CCSD), approach. Ampli-
tude updates are calculated via

tai ← tai +
rai

niFii − haFaa
, (35a)

tabij ← tabij +
rabij

niFii + njFjj − haFaa − hbFbb
, (35b)

where the initial tabij amplitudes are set to the MP2 values
and tai = 0. To avoid numerical instabilities, residuals,
rai and rabij , are considered to be zero if the leading term
[see Eqs. (25) and (26) for CCSD, and Eq. (33) for MP2]
is below a specific threshold τ ,

rai = 0, if nihad
a
i Fia < τ, (36a)

rabij = 0, if ninjhahbd
ab
ij 〈ij||ab〉 < τ. (36b)

Here τ is set to machine precision. The iterative op-
timization of the amplitudes is accelerated using a di-
rect inversion of iterative subspace (DIIS) algorithm75

to extrapolate from amplitudes of previous steps.76 A
maximum number of ten sets of amplitudes from pre-
vious steps were kept for extrapolation. In the case of
the CCSD iterations, the tai and tabij were combined and
extrapolated together. Convergence was assumed when
the absolute value of the largest residual element was less
than 10−7.

IV. RESULTS

The error in the ∆NO-MP2 and ∆NO-CCSD potential
energy curves, U(R), for H2 compared to exFCI is pre-
sented in Fig. 2. The potential energy curve is calculated
as

U(R) = E(R) + Vnn(R), (37)

where the nuclear repulsion energy, Vnn(R), is added to
the electronic energy obtained from ∆NO-MP2, ∆NO-
CCSD, or exFCI. For H2, the exFCI result is equivalent
to regular FCI, and hence, the exact result for the given
basis set. Also, for two electrons, CCSD is equivalent to
FCI and therefore any error in U∆NO-CCSD(R) is due to
the manner in which the ∆NO static correlation energy
is blended with the CCSD dynamic correlation energy.
This leads to a maximum error of 1.7 kJ.mol−1 at the
beginning of the examined range, R = 1. There is also

1 2 3 4 5 6 7 8
-5

0

5

10

FIG. 2. Error (in kJ.mol−1) in H2 potential energy curves
compared to exFCI. The error in UMP2(R) is 17 kJ.mol−1 at
R = 1 and continues to grow with increasing R. For H2,
UCCSD(R) = UexFCI(R) and therefore the CCSD error is zero
for all R.

a slight overestimation of the total correlation energy at
stretched bond lengths, with a maximum deviation of
−0.2 kJ.mol−1 at R = 3.89. In the case of ∆NO-MP2,
the error at small R is much larger. This can be at-
tributed to the fact that, as R → 0, the correlation en-
ergy approaches that of He, for which the MP2 corre-
lation energy differs from the FCI correlation energy by
15.5 kJ.mol−1. As R increases the error in U∆NO-MP2(R)
decreases, also with a slight overestimation of correlation
energy (−0.5 kJ.mol−1 at R = 4.17) at stretched bond
lengths. For both methods, the damping factors ensure
that, as R → ∞, the dynamic correlation energy van-
ishes, along with the error in U(R).

Equilibrium bond lengths and dissociation energies
predicted by ∆NO-MP2 and ∆NO-CCSD for a selection
of diatomics, are compared to ∆NO (no dynamic corre-
lation), NOF-MP254, MP2, CCSD and exFCI values in
Table II. As expected from Fig. 2, the H2 Re and De val-
ues predicted by ∆NO-MP2 and ∆NO-CCSD are very
close to the exFCI values. The underestimation of De by
∆NO-MP2 is attributable to the lack of dynamic corre-
lation at small to intermediate R. Removal of all of the
dynamic correlation, by using ∆NO, results in a much
larger underestimation of De (by 55 kJ.mol−1). No MP2
De value is reported due to the well-known divergence of
the potential energy curve to −∞ as R increases. The di-
vergence is due to the degeneracy of the σ-bonding and
σ∗-antibonding orbitals of H2 as R → ∞, and is com-
pletely removed in the ∆NO-MP2 treatment.

The ∆NO-MP2, ∆NO-CCSD, MP2, CCSD and exFCI
curves for LiH are presented in Fig. 3. Both ∆NO-MP2
and ∆NO-CCSD provide an accurate model of LiH dis-
sociation. Most of the error in U∆NO-MP2(R) occurs near
equilibrium, deviating from UexFCI(R) by 20 kJ.mol−1 at
R = 3.028. Whereas, U∆NO-CCSD(R) only deviates by 3
kJ.mol−1 at equilibrium, and 0.2 kJ.mol−1 near dissoci-



7

TABLE II. Calculated equilibrium bond lengths Re and dissociation energies De for a selection of diatomics.

Re (bohr) De (kJ.mol−1)

Molecule exFCI MP2 CCSD ∆NOb ∆NO-MP2 ∆NO-CCSD NOF-MP2c exFCI MP2a CCSDa ∆NOb ∆NO-MP2 ∆NO-CCSD NOF-MP2c

H2 1.405 1.392 1.405 1.428 1.408 1.405 454 454 399 443 452
LiH 3.028 3.019 3.027 3.019 3.044 3.030 236 343 238 185 223 233
HF 1.729 1.731 1.725 1.735 1.741 1.741 1.731 576 667 641 470 603 606 590
LiF 2.981 2.986 2.976 2.946 2.991 2.979 2.984 549 612 610 424 593 582 590
F2 2.692 2.655 2.649 2.779 2.623 2.634 2.612 143 268 67 138 148 192
N2 2.083 2.102 2.069 2.071 2.084 2.077 2.075 880 712 856 891 965

a De for potential energy curves with singularities are not reported.
b From potential energy curve where E∆NO

dyn = 0
c Orbital-invariant formulation of NOF-MP2 (NOF-OIMP2/cc-pVTZ) from Piris.54
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FIG. 3. Calculated LiH potential energy curves.
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FIG. 4. Calculated F2 potential energy curves. The ZAPT2
energy of two separate F atoms is included for comparison.

ation, R = 11. This means both the static correlation of
the LiH bond and dynamic correlation of the electrons
on Li are effectively captured by ∆NO-CCSD. Inclusion
of only static correlation, via ∆NO, leads to a reasonable
prediction of Re (3.019) but De is underestimated by 51
kJ.mol−1.

The potential energy curves for F2 are shown in Fig. 4.
Similar to other post-Hartree-Fock correlation methods,
∆NO-MP2 and ∆NO-CCSD struggle to capture the dy-

namic correlation in F2 near equilibrium and in the sep-
arated F atoms.65 This is evident in the large separa-
tion between the exFCI curve and all the others. In the
case of ∆NO-MP2 and ∆NO-CCSD, the lack of dynamic
correlation is relatively consistent and therefore the pre-
dicted De values are reasonable for both, with ∆NO-MP2
differing from exFCI by −5 kJ.mol−1 and ∆NO-CCSD
differing by +5 kJ.mol−1. The lack of dynamic corre-
lation has a more significant effect on the predicted Re
values, which differ by −0.07 for ∆NO-MP2 and −0.06
for ∆NO-CCSD. The predicted Re values from MP2 and
CCSD also deviate negatively from the exFCI Re, but the
deviation is smaller, approximately −0.04. If dynamic
correlation is completely neglected (∆NO), Re is signif-
icantly overestimated (+0.09), and the estimated De is
exceptionally small, 67 kJ.mol−1.

For a given molecule, the ∆NO energy without dy-
namic correlation energy (simply referred to as ∆NO in
Table II), E∆NO

no-dyn = E(0) + E∆NO
pair + E∆NO

stat + E∆NO
HSC , is

equivalent to the sum of restricted open-shell Hartree-
Fock (ROHF) energies at the bond dissociation limit,

lim
R→∞

E∆NO
no-dyn[A

R···B] = EROHF[A] + EROHF[B]. (38)

Therefore, the quality of the ∆NO-MP2 treatment near
the bond dissociation limit can be assessed through com-
parison of the ∆NO-MP2 energy to the ROHF energy
plus the z-averaged second-order perturbation energy
(ZAPT2)77 of the two separated fragments. The ZAPT2
energy of two F atoms is plotted in Fig. 4, where it is
seen that the ∆NO-MP2 energy is 1.0 kJ.mol−1 higher.
This confirms that ∆NO-MP2 is correctly capturing and
partitioning the static and dynamic correlation energy
of F2. This is in sharp contrast to CCSD which dras-
tically overestimates De, or MP2 which diverges due to
orbital degeneracy. It is clear that, contrary to conven-
tional single-reference methods like MP2 and CCSD, the
hybrid ∆NO-MP2 and ∆NO-CCSD methods proposed
here are able to accurately model strongly correlated sys-
tems.

Similar to F2, the dynamic correlation of the F atom
in HF and LiF is not sufficiently captured by ∆NO-MP2
or ∆NO-CCSD. This leads to overestimation of De com-
pared to exFCI (see Table II). However, the lack of static
correlation in MP2 and CCSD leads to even larger over-
estimation of De.
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FIG. 5. Calculated N2 potential energy curves. The ZAPT2
energy of two separate N atoms is included for comparison.

In Fig. 5, the ∆NO-MP2 and ∆NO-CCSD potential
energy curves for N2 are compared to that of MP2,
CCSD and exFCI. Like F2, ∆NO-MP2 overestimates
De while ∆NO-CCSD underestimates it. Albeit, the
amount by which the ∆NO methods are in error is some-
what greater, −24 kJ.mol−1 for ∆NO-MP2 and +11
kJ.mol−1 for ∆NO-CCSD. Significantly more dynamic
correlation is captured by ∆NO-CCSD near equilibrium
compared to ∆NO-MP2. At the exFCI equilibrium bond
length, Re = 2.083, U∆NO-CCSD(R) is 38 kJ.mol−1 above
UexFCI(R), whereas U∆NO-MP2(R) is 85 kJ.mol−1 above.
Both predicted equilibrium bond lengths are in good
agreement with the exFCI values, particularly the ∆NO-
CCSD value of Re = 2.084. At dissociation, both meth-
ods underestimate the dynamic correlation by similar
amounts, 60 kJ.mol−1 for ∆NO-MP2 and 53 kJ.mol−1

for ∆NO-CCSD. Interestingly, the ∆NO-MP2 energy at
dissociation is 58 kJ.mol−1 lower than the ZAPT2 result
for two separate N atoms. Analysis of the components of
the ZAPT2 and ∆NO-MP2 correlation energies reveals it
is the correlation between the statically correlated elec-
trons (i.e., unpaired electrons) which is responsible for
this difference. Further analysis is required to fully un-
derstand and reconcile this discrepancy.

For the small collection of molecules studied, the qual-
ity of ∆NO-MP2 and ∆NO-CCSD improves, compared
to the single-reference MP2 and CCSD, as the complex-
ity of the system increases. Expectedly, as the amount
of static correlation increases (i.e., small R to large R,
or single bond to triple bond) the ∆NO methods become
significantly superior.

V. CONCLUSIONS

Combining multireference methods for static correla-
tion with post-Hartree-Fock methods for dynamic corre-
lation is a common approach to modeling complex elec-
tronic systems. Despite the noted success of CFT meth-

ods in modeling systems with multireference character,
there is only one example of using such a method in
combination with post-Hartree-Fock correlation, which is
NOF-MP2. In this work, a CFT method, ∆NO, is com-
bined with both MP2 and CCSD in a fashion completely
analogous to each other. This is achieved by incorporat-
ing occupancies and vacancies, and expanded domains
for occupied and virtual orbitals, according to guidelines
used to derive FT-CCSD. Additionally, the MP2 and
CCSD correlation energies are combined with ∆NO by
inserting ∆-dependent damping factors into the residual
equations. The damping factors are defined by consider-
ing the description of statically correlated electron pairs
by the ∆NO 2-RDM, particularly the spin-orbitals they
simultaneously occupy (and vacate) as static correlation
becomes appreciable.

For the six diatomics studied, both ∆NO-MP2 and
∆NO-CCSD predict reasonable bond lengths and disso-
ciation energies compared to the benchmark exFCI val-
ues. The error in the descriptions of HF, LiF and F2

is largely due to the inability of MP2, or CCSD, to ac-
count for all of the dynamic correlation amongst the elec-
trons of F. The larger error in De values predicted for
N2 is likely due to the fact that three bonds are being
broken compared to one in the other diatomics. How-
ever, the discrepancy between the ∆NO-MP2 energy for
dissociated N2 and the ZAPT2 energy for two N atoms
deserves attention. That, in combination with the dis-
crepancy between the CCSD and ∆NO-CCSD curves for
H2, suggests that further analysis, of the modified MP2
and CCSD equations in particular, could lead to a more
seamless fusion of ∆NO and post-Hartree-Fock methods.

In addition to providing an alternative treatment of
multireference systems, the ∆NO-MP2 and ∆NO-CCSD
methods offer insight into static and dynamic correlation
and the balance between the two. Although most defini-
tions of static correlation make use of the concept of de-
generacy or near-degeneracy, the methods presented here
are free from any such arguments. The damping factors
are based on the simultaneous occupancy (or vacancy)
of active spin-orbitals. The damping factors modify the
MP2 and CCSD residual equations according to how the
∆NO static correlation influences the 2-RDM. Such con-
cepts are relatively easy to grasp in the limit of complete
static correlation, and provide a useful “physical” picture
of a multireference system.
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Appendix A: Amplitude damping

The MP2 and CCSD equations adopted from the finite-
temperature versions [see Subsecs. II B and II C], are
modified for use with the ∆NO method by incorporat-
ing a single excitation, sai , and a double excitation, dabij ,
damping factor. The single excitation damping factor
included in the CCSD rai equation takes a rather simple
form,

sai =

{
0, if φi ∈ A,
1, otherwise.

(A1)

In other words, all single excitations from the active
∆NO orbitals are turned off. This arises from the as-
sumption that single excitations are responsible for or-
bital relaxation,78,79 and that the most significant part
of the active orbital relaxation (due to static correlation)
is obtained via the ∆NO orbital optimization.

For the double excitations, the damping is decomposed
into factors for each orbital-pair,

dabij = dijd
abdai d

b
jd
b
id
a
j . (A2)

There are six factors to account for the six possible pair-
ings of the four orbitals, which maintains the symmetry
of the amplitudes, tabij = −tabji = −tbaij = tbaji . Rather
than defining each factor in terms of a piecewise condi-
tional function depending on the identity of the orbitals,
the factors are defined here for the cases when they dif-
fer from unity [see Eqs. (A3)–(A6)]. This is when both
indices correspond to active orbitals.

As in the MP2 and CCSD equations, the indices of
the damping factors refer to spin-orbitals. In the ∆NO
method, a spin-restricted formalism is employed and
hence there are two active spin-orbitals for each active
NO. The active occupied spin-orbitals are denoted by m,
m̄, n, and n̄, where the overbar indicates spin down and
the absence of an overbar indicates spin up. The active
virtual orbitals are denoted by e, ē, f , and f̄ .

The occupied-occupied and virtual-virtual damping
factors, dij and dab, are defined in a similar fashion. The
form depends on whether the spin-orbitals belong to the
same active NO or different active NOs. For spin-orbitals
belonging to the same active NO, the damping factors are

dmm̄ =
1− 2

∑
t τmt

nm
, dmm̄ =

1− 2
∑
t τmt

hm
, (A3a)

deē =
1− 2

∑
t τet

ne
, deē =

1− 2
∑
t τet

he
. (A3b)

As the amount of static correlation increases between
electrons of the same active NO, the simultaneous oc-
cupation of both spin-orbital m and m̄ decreases until
they are ultimately unpaired at ∆me = 1/2 (see Fig. 1).
Similarly, the corresponding virtual spin-orbitals go from
empty, when there is no static correlation, to a superpo-
sition of e or ē filled at ∆me = 1/2. The damping factors

reflect this vanishing of simultaneous opposite-spin occu-
pancy and vacancy. When there is no static correlation
(∆me = 0) the damping factor is one, and when there
is complete static correlation (∆me = 1/2) the damping
factor is zero.

For spin-orbitals belonging to different active NOs the
damping factors are as follows,

dmn = dmn = αmn(1 + 4κmn), (A4a)

dmn̄ = dmn̄ = αmn(1− 4κmn), (A4b)

def = def = αef (1 + 4κef ), (A4c)

def̄ = def̄ = αef (1− 4κef ), (A4d)

dme = dme = αme(1 + 4κme), (A4e)

dmē = dmē = αme(1− 4κme), (A4f)

where

αmn =
nmnn − ηmn

nmnn
, (A5a)

αef =
nenf − ηef

nenf
, (A5b)

αme =
(nm + ∆me)(ne −∆me)

nmne
. (A5c)

Due to the HSC of the ∆NO 2-RDM, as static corre-
lation is increased between separate electron pairs the
probability the electrons of parallel-spin encounter each
other increases, whereas for opposite-spin electrons it de-
creases (see Fig. 1). Both dmn and def increase as the
amount of static correlation in both NO pairs increases
(∆me → 1/2 and ∆nf → 1/2). While the opposite-spin
damping factors, dmn̄ and d

ef̄
, decrease. An analogous

scenario holds true for the parallel-spin and opposite-spin
vacancies (or holes), and the corresponding damping fac-
tors are therefore defined in the same manner. Each fac-
tor is also scaled by the appropriate occupancy product;
occupied-occupied αmn, virtual-virtual αef , or occupied-
virtual αme, which are taken from the pair correction to
the ∆NO 2-RDM [see Eq. (11a)].

The occupied-virtual damping factors are dependent
upon the simultaneous occupancy and vacancy of the ac-
tive spin-orbitals. The damping factors are given by

dem = dme = 1− 2τme − 4κme, (A6a)

dēm = dm̄e = 1 + 2τme + 4κme, (A6b)

dnm = dmn = 1− 4κmn, (A6c)

dn̄m = dm̄n = 1 + 4κmn, (A6d)

dfe = def = 1− 4κef , (A6e)

df̄e = dēf = 1 + 4κef , (A6f)

dmm = dee = 0, (A6g)

dm̄m = dēe = 0. (A6h)

Similar to the occupied-occupied and virtual-virtual
damping factors, the occupied-virtual damping factor de-
creases or increases (with static correlation) depending
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on the spin pairing. Unlike the previous damping fac-
tors, the occupied-virtual damping factor decreases for
orbitals of parallel spin and increases for opposite spin.
This is due to the inverse nature of vacancy compared
to occupancy (i.e., when the spin-up orbital is occupied
the spin-down orbital is vacant, and vice versa). Fur-
thermore, the damping factor associated with excitations
from an active orbital (occupied or virtual) to the same
active orbital is set to zero.

Finally, if all indices correspond to active spin-orbitals,
then the damping factor is zero, i.e.,

defmn = 0, if φm ∧ φn ∧ φe ∧ φf ∈ A. (A7)

It is assumed that such interactions are already included
in the ∆NO 2-RDM.
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