
Intermolecular sp3-C–H Amination for the Synthesis of Saturated 
Azacycles 
Kerry N. Betz,‡ Nicholas D. Chiappini,‡ and J. Du Bois* 

Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States 
Supporting Information Placeholder 

 

R H Br

S
NH2

PhO O
O

C–H amination

cyclization

R N
SO2OPh NH

HO

HO

OH

Me

Me
penaresidin B

3–8

general method for the assembly of cyclic amines  
 

ABSTRACT: The preparation of substituted azetidines and larger-ring, nitrogen-containing saturated heterocycles is enabled 
through efficient and selective intermolecular sp3-C–H amination of alkyl bromide derivatives. A range of substrates is demonstrat-
ed to undergo C–H amination and subsequent sulfamate alkylation in good to excellent yield. N-Phenoxysulfonyl-protected prod-
ucts can be unmasked under neutral or mild basic conditions to yield the corresponding cyclic 2° amines. The preparative conven-
ience of this protocol is demonstrated through gram-scale and telescoped multi-step procedures. Application of this technology is 
highlighted in a nine step total synthesis of an unusual azetidine-containing natural product, penaresidin B.  

Saturated azacycles are ubiquitous structural elements in 
natural products.1 Cyclic amines also appear in designed mol-
ecules owing to the unique and disparate physicochemical and 
topological properties of such heterocycles.2,3 Pyrrolidine and 
piperidine derivatives can be accessed through numerous 
means, which rely on both conventional and modern C–N 
bond forming methods including C–H oxidation.4–6 We have 
been interested in developing a general protocol for assem-
bling substituted azacycles of differing ring size, with a specif-
ic focus on azetidine structures. The value of such amines is 
considerable in synthesis, pharmacology, and medicine.7–10 
Herein, we present a method for the preparation of small (n = 
3–5) and medium (n = 6–8) ring-sized azacycles that capitaliz-
es on selective, intermolecular sp3-C–H amination of bromin-
ated hydrocarbon substrates (Scheme 1). The efficient func-
tionalization of substrates in which the desired site of C–H 
oxidation is proximal to an electron-withdrawing halogen 
group underscores recent advances in Rh-catalyzed 
amination.11–18 

Typical methods for de novo azetidine synthesis include SN2 
displacement reactions of mono- and dihalopropanes with 
alkyl amines,6,7,19 aziridine ring expansion,6,7,20,21 thermal and 
photochemical [2+2] cycloadditions,6,7,22,23 and Pd-catalyzed 
C–N cross coupling.6,7,24,25 Our approach for constructing azet-
idine derivatives involves selective, intermolecular C–H ami-
nation of bromoalkanes to introduce the requisite nitrogen 
center followed by ring closure. Accordingly, the scope of this 
method is potentially quite broad and extends beyond 4-
membered ring synthesis. As Rh-catalyzed C–H amination is 

stereospecific, access to optically active cyclic amines is also 
possible.26 
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Scheme 1. Selective intermolecular C–H amination.for the prepara-
tion of cyclic amines, including polyfunctionalized azetidines. 

 
Exploratory studies to develop a process for azetidine syn-

thesis were conducted with 1-bromo-3-phenylpropane 1a (Ta-
ble 1). The proximity of the electronegative Br-group in 1a to 
the benzylic site deactivates this position towards oxidation. 
Consequently, a number of reported C–H amination protocols 
fail to engage this substrate; others furnish small amounts of 
the desired product in combination with unidentifiable species 
(see Supporting Information Table S2 for relevant compari-
sons). Using a recently disclosed amination protocol devel-
oped in our lab,27 intermolecular C–H amination of 1a with 
phenyl sulfamate (PhsNH2) proceeds in 64% yield to furnish 
2a (23% RSM). The intermediate bromoalkyl sulfamate ester 
efficiently cyclizes upon treatment with base to provide the 
corresponding azetidine 3a (see Supporting Information Table 
S1 for optimization). Through the application of this two-step 



 

sequence, 3a is obtained in 62% overall yield (Table 1, entry 
1). The effectiveness of the amination reaction, which affords 
largely product and recovered starting material, allows the 
cyclization reaction to be telescoped in a single-flask proce-
dure. Following this protocol, pure azetidine 3a can be isolat-
ed in 49% (Table S1; see Scheme 2 for more details). 

 
Table 1. Cyclic amine synthesis through C–H amination. 
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aReactions performed with 0.3 mmol starting material and 0.3 mL t-BuCN 
for 6 h; values in parentheses represent percent recovered starting materi-
al. bCyclization performed with 0.1 mmol C–H aminated product in 1 mL 
DMF for 2 h. cThe product aziridine is unstable to the reaction conditions; 
complete conversion of starting material is observed by 1H NMR. dReac-
tion conducted for 10 h at ambient temperature. Phs = PhOS(O)2–; DMF = 
N,N–dimethylformamide. 

 
To examine the generality of the amination method for as-

sembling cyclic amines of varying ring size, a systematic 
analysis of reaction performance with phenyl-substituted bro-
moalkanes was conducted. Azacycles from 3–8 in size can be 
fashioned through our two-step sequence. For the most part, 
C–H amination yields improve as the distance between the Br-
substituent and the benzylic center is increased; nonetheless, 
even phenethylbromide 2a can be oxidized in 40% yield to 
generate sulfamate 2b (Table 1, entry 2). The cyclization event 
is consistently high yielding with the one exception involving 
azocane 3f (entry 6). As a final note, reactions performed with 
alkyl mesylate substrates show diminished product yields 
stemming from the inefficiency of the amination reaction (en-
tries 1 and 5). Somewhat surprisingly, this finding holds even 
for 6-phenylhexyl mesylate (entry 5), thus leaving open an 
explanation for the suboptimal performance of the amination 
reaction with mesylate-derived starting materials. 
 
 
 

Table 2. Optimized protocol for cyclic amine assembly. 
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aReactions performed with 0.3 mmol starting material and 0.3 mL t-BuCN 
for 6 h; values in parentheses represent percent recovered starting materi-
al. bCyclization performed with 0.1 mmol C–H aminated product in 1 mL 
DMF for 2 h. cProduct isolated as a 1:1.8 mix of diastereomers; cycliza-
tion was conducted on pure syn-diastereomer. dProduct isolated as a 1:1.1 
mix of diastereomers. eRecovered starting material was not obtained due 
to the high volatility of this compound. fProduct isolated as a 1:1 mix of 
diastereomers. gProduct decomposition occurs on silica gel. hAmination 
gives a >10:1 mix of isomeric products; ring closure was conducted on a 
pure sample of the isomer shown. 

 
To further explore the scope of our azacycle assembly 

method and to demonstrate its utility for fine chemical synthe-
sis, substituted 1° and 2° alkyl bromide derivatives were sub-
jected to the optimized protocol (Table 2). C–H amination 
generally proceeds in yields ranging from 37–71%; subse-
quent ring closure is efficient and affords the desired azacycle 
products. In several cases, Phs-protected cyclic amines are 
obtained in high purity following aqueous work-up without 
recourse to silica gel chromatography (entries 1, 4, 5). 

Substrates bearing benzylic (Table 2, entries 1−4), tertiary 
(Table 2, entries 5−7, 11), and protected  carbinol C–H bonds 
(Table 2, entries 8−10) are successfully converted into the 
corresponding azetidines. The mild conditions for cyclization 



 

are tolerant of base-sensitive functional groups including pina-
colborane (entry 2), N-Boc indole (entry 3), and esters (entries 
4, 7). Subjecting 1,3-dioxane and dioxolane-derived substrates 
(entries 8–10) to the two-step sequence affords unusual N,O-
acetal azetidines, which are amenable to further 
modification.28,29 As highlighted previously (see Table 1), 
cyclic amines of different ring size are accessible using our 
amination/cyclization technology. Entry 10 is notable in this 
regard, as the glycerol-based substrate undergoes site-selective 
oxidation and ring-closure with K2CO3 to furnish an isolable, 
spirocyclic aziridine N,O-acetal.  

It is possible to conduct sequential C–H amina-
tion/cyclization in a single flask with only a small diminution 
in overall reaction performance (Scheme 2). This modified 
protocol is convenient when isolation of the C–H amination 
product is capricious, as is sometimes the case for N,O-acetal 
and other derivatives. 

Phenoxysulfonyl (Phs) is a convenient and chromatograph-
ically stable N-protecting group, which can be readily re-
moved to liberate the amine product (Scheme 3). Heating a 
Phs-amine starting material in aqueous CH3CN or aqueous 
pyridine cleaves the Phs-group; both conditions afford the 
desired amine in high purity following reversed-phase chro-
matography (HPLC) or trituration of the oxalate salt.30  

To demonstrate the synthetic utility of our method for com-
plex chemical synthesis, an unusual, azetidine-derived lipid 
penaresidin B was identified as a natural product target 
(Scheme 4).31 Penaresidin B consists of a densely functional-
ized azetidine core with three contiguous stereocenters and a 
distally hydroxylated alkane side chain. Several total syntheses 
of penaresidin B32–34 and related congeners35–41 have been de-
scribed, all relying on early-stage nitrogen incorporation using 
starting materials such as Garner’s aldehyde42 and/or multi-
step functional group interconversions to construct the azet-
idine core. The shortest of the reported syntheses of penaresid-
in B is 17 linear steps.34 Accordingly, application of our C–H 
amination/cyclization method should streamline access to this 
natural product. 
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Scheme 2. Single-flask procedure for azetidine construction. Values 
in parentheses represent percent recovered starting material. 
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Our route to penaresidin B capitalizes on the performance of 
dioxolane substrates for C–H amination. Beginning from en-
antiopure oxirane 5,43 organocuprate addition to the less-
hindered terminus yielded alcohol 6. Protection of the alcohol 
group as the p-nitrobenzoyl ester was intended to deactivate 
the carbinol C−H bond and the proximal 3° site towards C–H 
amination. Grubbs’ cross-metathesis of 7 with commercially 
available (R)-2,2-dimethyl-4-vinyl-1,3-dioxolane afforded 
olefin 8, which was subsequently epoxidized to give 9 as a 
~7:1 mixture of diastereomeric products. 

Generation of the desired sulfamate ester 10 from 9 necessi-
tated the development of a single-flask protocol for sequential 
amination/reduction owing to problems with isolation of the 
intermediate N,O-acetal. Subjecting 9 to standard amination 
conditions followed by NaBH3CN furnished aminoalcohol 10 
as a ~5:1 mixture favoring the desired stereoisomer. This re-
sult is striking given the large number of disparate C–H bonds 
in 9 and the adjacent functional groups flanking the desired 
site of oxidation. We anticipate that this amination/reduction 
protocol will prove useful for the assembly of structurally 
related amino-polyol motifs.  
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To complete the synthesis of penaresidin B, epoxide 10 was 

converted to bromohydrin 11 under the action of CeBr3. Bro-
mide displacement of 10 occurred regioselectively at C4 (pe-
naresidin B numbering) to give 11 as the only detectable prod-

uct.44,45 Finally, ring closure of the azetidine followed by sul-
famate and nitrobenzoate deprotection yielded the desired 
target. Removal of the Phs-protecting group in 12 proved more 
challenging than with less functionalized azetidines (see 
Scheme 3).46 Successful deprotection, however, was ultimately 
achieved by adapting a procedure for cross-coupling of cyclic 



 

sulfamate esters.47 Under nickel catalysis with MeMgBr, dis-
placement of the phenyl ring afforded the sulfated azetidine; 
subsequent treatment with methanolic HCl furnished the natu-
ral product. All told, the enantioselective synthesis of pena-
residin B proceeds in 9 steps from commercial starting materi-
als, a substantial decrease in the overall step count compared 
to previous syntheses.  

We have described reaction technology for the generation of 
structurally diverse small and medium-sized cyclic 2° amines. 
This process capitalizes on site-selective, intermolecular C–H 
amination to first introduce the obligatory nitrogen center as a 
sulfamate ester. Efficient C–H oxidation is viable across a 
range of functionalized propyl- and longer chain alkylbromide 
starting materials, substrates that have not been previously 
documented for amination reactions. We expect this work to 
advance the utility of C–H amination for the preparation of 
complex chemicals. 
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