
Air Oxidation of Sulfur Mustard Gas Simulant Using a Pyrene-

Based Metal-Organic Framework Photocatalyst 

Ghada Ayoub,a,b Mihails Arhangelskis,a Xuan Zhang,b Florencia Son, b Timur Islamoglu,b 
Tomislav Friščić,*a and Omar K. Farha*b,c 

 

Abstract We demonstrate a microporous metal-organic framework NU-400 based on a 2,7-

disubstituted pyrene linker as a highly efficient photosensitizer for generating singlet oxygen and 

subsequent oxidative degradation of chemical warfare agents (CWAs). The high activity of NU-

400 permits photocatalytic conversion of the 2-chloroethyl ethyl sulfide (CEES) mustard gas 

simulant into a benign sulfoxide derivative, in air, with less than 15 minutes half-life. This is a 

considerable improvement to NU-1000, based on a 1,3,6,8-tetrasubstituted pyrene unit, 

demonstrating how variation of the substitution pattern of a metal-organic framework linker 

permits modification of its photoactive behavior. 

Sulfur mustard gas also known as mustard gas, HD, or Yperite belongs to a class of 

chemical warfare agents (CWAs) known as vesicants, which have detrimental effects on humans, 

including the blistering of skin upon contact.1 Even at a low dosage,2 this chemical can be fatal. 

Although in 1993 at the Chemical Weapon Convention (CWC) 192 nations signed an agreement 

to outlaw the production, stockpiling, and deployment of chemical weapons, sulfur mustard gas 

has continuously been used against civilians and soldiers over the past several decades,3 including 

as recently as 2018 in Syria.4,5 Therefore, it is imperative to design and develop novel methods for 

the detoxification of sulfur mustard gas in stockpiles as well as in the battle field.  

 There are several routes for the detoxification of sulfur mustard gas, including: 1) 

hydrolysis,6,7 2) oxidation, and 3) dehydrohalogenation8-10 (scheme 1). The hydrolysis route is 

limited to small scales because of the hydrophobicity of sulfur mustard gas. The mechanism of 

degradation by dehydrohalogenation mechanism is still poorly understood and not efficient 

enough for real-world applications. So far, the oxidative degradation11-17 route has been shown to 



be the most promising but relies on the use of oxidants highly selective for the formation 

sulfoxides, as further oxidation to a sulfone leads to a product of toxicity comparable to sulfur 

mustard gas.18 

 

Scheme 1. Detoxification routes of sulfur mustard gas: hydrolysis (green); oxidation to sulfoxide 

(blue) and dehydrohalogenation (red).  

While oxidative detoxification of sulfur mustard gas has traditionally relied on bleaching powders, 

such reagents come with significant drawbacks, including corrosiveness and loss of activity over 

time.19,20 Ideal candidates for the oxidation of mustard gas should be mild oxidants that will 

selectively produce the partially oxidized sulfoxide. In that context, a promising approach is the 

use of singlet oxygen (1O2) generated by photosensitization of ground-state molecular oxygen 

(3O2) via an electronically excited chromophore. The chromophores can be compounds with 

significant quantum yields and whose absorption wavelengths span the ultraviolet-visible 

spectrum. Moreover, singlet oxygen could be generated from homogenous21 or heterogeneous 

catalysts, the latter of which will allow for the ease of separation at the end of the reaction, 

recyclability of the catalyst, wide selection of solvent choices since solubility of the chromophore 

does not need to be considered, and lower probability of photobleaching.22,23 

Metal-organic framework (MOFs), porous crystalline materials comprised of metal nodes and 

organic linkers, have attracted tremendous attention in heterogeneous catalysis due to their 

structural and chemical tunability.24-34 In that context, zirconium-based MOFs have demonstrated 



particularly high stability under a range of conditions, enabling their application for efficient, rapid 

hydrolytic or oxidative degradation of nerve gas agents.35-41   

Here, we prepared NU-400,42 a zirconium-based MOF based on a judiciously chosen pyrene-based 

linker and utilized it as a photosensitizer for the efficient production of 1O2 and hence 

photocatalytic conversion of the sulfur mustard simulant 2-chloroethyl ethyl sulfide (CEES) into 

a benign sulfoxide product, using ambient air as the oxygen source. We selected a Zr6-based MOF 

because of its outstanding stability under a wide range of thermal and chemical conditions. As 

pyrene has been known as an efficient photosensitizer that is capable of producing singlet oxygen 

upon exposure to UV-light,43,44 we anticipated that a MOF with isolated pyrene linkers would be 

good a candidate catalyst for the photocatalytic oxidation of sulfur mustard. 

The NU-400 material (Fig. 1) was synthesized from the 2,7-pyrenedicarboxylic acid (Py-DCA) 

linker, ZrCl4 metal salt, and acetic acid as a modulator, in DMF at 120 ℃ (see S.3 for synthetic 

details).  Different from the reported synthesis of 2,7-pyrene dicarboxylic acid linker,45 which 

required an organolithium reagent, a more benign Pd-catalyzed carbonylation reaction was utilized 

with 2,7-dibromopyrene as the starting material.46 Powder X-ray diffraction (PXRD) analysis of 

the as-synthesized materials revealed that NU-400 is isostructural to the related UiO-67 framework 

based on 4,4'-biphenyldicarboxylate linkers. Subsequently, the structure of NU-400 (see S.2.1, 

Table S1 for crystal structure details) was established from PXRD data, by Rietveld refinement 

(Fig. S1) of a model generated from UiO-67 (CCDC code WIZMAV03). The morphology of the 

materials was confirmed by scanning electron microscopy (SEM) images, which revealed that bulk 

NU-400 material consists of octahedral crystals with sizes ranging from 1 to 5 microns (Fig. S3). 

The microporous nature of NU-400 was established by N2 sorption measurements at 77 K, which 

revealed a Brunauer-Emmet-Teller (BET) surface area of 1325 m2/g (Fig. S4).45   The pore size 

analysis using DFT model revealed pores of approximately 11 Å, which is suitable for diffusion 

of CEES molecules into the pores of NU-400. 

 



 

 

Figure 1. NU-400 constituents: a) the pyrene-based linker, 2,7-pyrene dicarboxylic acid and b) 

Zr6 metal node. c) Fragment of the crystal structure of NU-400, established from PXRD data. 

Hydrogens atoms and disorder of pyrene groups are not shown for clarity Zr: green, O: red, and 

C: grey. 

Solid-state UV-Vis spectrum of NU-400 reveals that the strongest absorption bands lie below 400 

nm (see Fig. S5), leading us to use two commercially available ultraviolet light emitting diodes 

(UV-LEDs) with max=390–400 nm as a means to excite the MOF for 1O2 production.  

As our first entry into investigating the efficiency of NU-400 as a photosensitizer for singlet 

oxygen generation, we used 1 mol% (2 mol, 4.75 mg) of the MOF under oxygen saturation 

conditions and UV-irradiation (see S.4 for detailed procedure). Aliquots were taken at various time 

points, filtered using syringe filters and, after dilution with dichloromethane, analyzed by GC-FID 

to monitor the reaction kinetics. Oxidation products were analyzed by NMR spectroscopy using 

deuterated methanol as a solvent. Under these conditions, reaction monitoring revealed that 

complete and selective conversion of CEES into CEESO was achieved over a period of 50 minutes, 

with a half-life of 10.2 minutes (Fig. 2). During control experiments designed to evaluate the 

significance of each parameter in the process of 1O2 production, we unexpectedly found that 



conducting the photocatalytic oxidation under the same conditions of irradiation, and the same 

MOF content, but in the absence of O2 saturation step, also led to complete conversion of CEES 

into the sulfoxide. Specifically, under such conditions the complete conversion of CEES was 

observed after 2 hours, with a half-life of 13.5 minutes (Fig. 2). Achieving complete oxidation of 

CEES without the O2 saturation represents a milestone for the potential deployment of MOFs as 

an active detoxification catalyst and, consequently, we focused on detailed exploration of the 

activity of NU-400 in air, without oxygen purging.  

Given that NU-400 is an active photocatalyst, where the pyrene-based linkers are expected to play 

the role of photosensitizers responsible for singlet oxygen production under UV-irradiation, 

several control studies were performed to firmly establish the role of the linker. We explored the 

ability of pure linker precursor to act as the photosensitizer by performing the oxidation in the 

presence of 1 mol% Py-DCA (3.4 mg, 11.5 mol) under air and in the presence of UV-light, 

leading to a 75% conversion of CEES to CEESO after 2 hours (Fig. 2). This observation implies 

that incorporation into the MOF structure enhanced the catalytic activity of Py-DCA, most likely 

due to the heterogeneous nature of the MOF, which assembles the pyrene linkers periodically 

within a robust three-dimensional framework, preventing their deactivation through aggregation. 

In all cases the 1O2 acted as a highly selective oxidant for the formation of the target sulfoxide 

species, as no overoxidation to form a more toxic sulfone analogue was observed (Fig. S6). Finally, 

we explored the possibility of reaction occurring in the absence of UV-light. Under these 

conditions, in the presence of 1 mol% (12 mol, 3.4 mg) of the MOF, no conversion of CEES 

conversion was detected (Fig. 2), confirming the role of NU-400 as a photocatalyst. 



 

Figure 2. Reaction of CEES conversion to CEESO under different conditions: (a) reaction scheme; 

(b) in the presence of NU-400 with O2 saturation and under air; c) in the presence of Py-DCA with 

O2 saturation and under air, and d) in the presence or absence of UV-light, under air. One mol% 

(based on Py-DCA) catalyst loading was used for all reactions. 

The photocatalytic activity of NU-400 in air, with-out oxygen presaturation, is significantly higher 

compared to the previously explored mesoporous NU-1000 MOF, which is based on a different, 



tetratopic pyrene-based linker 4,4’,4’’,4’’’-(pyrene-1,3,6,8-tetrayl)tetrabenzoate (H4TBApy). 

Using 1 mol% (5.2 mg) NU-1000 as a photocatalyst enabled the full conversion of CEES into 

CEESO with a half-life of only 6.2 minutes und2er conditions of O2 saturation. However, the 

process was significantly slower, with a half-life of 24.5 minutes (Fig. 3), when the reaction vessel 

was not saturated with oxygen. The superior performance of NU-400 (half-life of 13.5 minutes) 

under air can be attributed to the higher density of pyrene linkers in NU-400 (0.101 g/cm3) 

compared to NU-1000 (0.0506 g/cm3) which is responsible for 1O2 generation.  

 

Figure 3. Selective oxidation of CEES to CEESO using 1 mol% catalyst of NU-400 (black) versus 

NU-1000 (purple). 

Finally, we investigated to recyclability of NU-400 by adding multiple injections of CEES (0.2 

mol) into the microwave vial after one cycle of full conversion of CEES to CEESO. As the 

reaction was carried out using the oxygen available in atmosphere, without any additional O2 

purging, opening the microwave vial upon the addition of CEES ensured the presence of fresh air 

needed for the reaction. This recyclability test was repeated three times, and the reaction progress 

was monitored using GC-FID in order to calculate the conversion of the reaction after each 

injection (Fig. 4). 



 

Figure 4. The reusability of the catalyst NU-400 MOF over four successive injections of CEES 

(0.2 mmol) into the same reaction vial.  

The photocatalytic oxidation reaction takes place without noticeable degradation of NU-400, as 

evidenced by PXRD analysis following four cycles of CEES to CEESO oxidation, which reveals 

a high degree of crystallinity (see Fig. S7). At the same time, no overoxidation of CEES to 2-

chloroethyl ethyl sulfone (CEESO2) was observed, as demonstrated by 1H NMR spectroscopy 

(Fig. S6). 

 In summary, we demonstrated NU-400, a microporous MOF based on a 2,7-dicarboxylate 

pyrene linker as a highly effective platform for singlet oxygen production and photocatalytic 

degradation of mustard gas simulant. In contrast to previously reported NU-1000, based on a 

1,3,6,8-tetrasubstituted pyrene unit, which required saturation with oxygen to achieve effective 

high singlet oxygen production, the herein reported NU-400 is effective without oxygen saturation. 

The photocatalytic activity of NU-400 enabled singlet oxygen-induced conversion of CEES to 

CEESO with a half-life of 13.5 minutes under air, a milestone in the development of MOFs as 

new, highly efficient catalysts for mustard gas degradation. 
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