
Accelerating AUTODOCK4 with GPUs and
Gradient-Based Local Search

Diogo Santos-Martins1,a, Leonardo Solis-Vasquez1,b, Andreas Kochb,�, and Stefano Forlia,�

1These authors contributed equally to this work.
aDepartment of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA

bEmbedded Systems and Applications Group, Technische Universität Darmstadt, Germany

AUTODOCK4 is a widely used program for docking small
molecules to macromolecular targets. It describes ligand-
receptor interactions using a physics-inspired scoring function
that has been proven useful in a variety of drug discovery
projects. However, compared to more modern and recent soft-
ware, AUTODOCK4 has longer execution times, limiting its ap-
plicability to large scale dockings. To address this problem, we
describe an OpenCL implementation of AUTODOCK4, called
AUTODOCK-GPU, that leverages the highly parallel architec-
ture of GPU hardware to improve the docking throughput up
to 170-fold. Moreover, we introduce the gradient-based lo-
cal search method ADADELTA, which is more efficient than
the original Solis-Wets method, especially for conformationally
complex ligands. We estimate a 1300x reduction in the number
of scoring function calls for ligands with 20 rotatable bonds, and
even higher reductions likely for more complex ligands. The im-
provements reported here, both in terms of docking throughput
and search efficiency, expand the domain of applicability of the
AUTODOCK4 scoring function considerably.

Molecular Docking | AutoDock | High Performance Computing | GPU

Correspondence: koch@esa.tu-darmstadt.de forli@scripps.edu

INTRODUCTION

The identification of new molecules with a given biological
activity is a non-trivial task, and a key step in the drug discov-
ery process. Structure-based virtual screening in which small
organic molecules are docked to biologically and therapeu-
tically relevant targets is a very popular computational tech-
nique for the identification of new chemical scaffolds with
biological activity.

Over the years, this technique has provided numerous posi-
tive results competitive with experimental screenings (1–5).
The two main factors contributing to its success is the use
of energy estimate methods (or scoring functions) that are
sufficiently accurate to distinguish (to a certain extent) be-
tween binders and non-binders, while being sufficiently fast
to be applicable on a very large scale. Typical virtual screen-
ings now can easily involve virtual libraries of compounds
with hundred thousand to several million molecules against
relatively rigid target structures. Depending on the search al-
gorithms, this translates in 1010 to 1016 calls to the scoring
function. The increasing availability of targets from struc-
tural genomics initiatives (6), as well as the use of target
conformational ensembles (7) to address receptor conforma-
tional variability, can easily add three or more orders of mag-

nitude.

Molecular docking is particularly suitable for parallel com-
puting, given the embarrassingly parallel nature of the tasks
involved. Scoring function and search calls can be eas-
ily distributed across multiple computing units, either be-
ing CPU cores on the same machine (8), or many CPU
nodes across multiple machines in high-performance com-
puting (HPC) environments (9), or distributed computing re-
sources (10, 11). From that perspective, GPU computing rep-
resents a hybrid scenario, in which a large number of com-
puting units (i.e., GPU cores) can be accessed on a single
machine. The availability of GPU cards with thousands cores
represents a cheap but powerful computational resource that
has already been exploited to accelerate a number of molec-
ular modeling computations (12–14).

AUTODOCK is a widely used molecular docking program.
From a computational standpoint, it is characterized by its
single-threaded behavior, which means it only utilizes a sin-
gle CPU core during execution. By exploiting the underlying
algorithms’ embarrassingly parallel nature, its efficient adap-
tion to accelerators can result in significant performance im-
provements. Expressing such parallelism in a suitable man-
ner can be achieved through parallel programming frame-
works (15–17). One of these, the Open Computing Language
– OpenCL – provides an open standard that is portable across
hybrid platforms such as CPUs and GPUs. From an algo-
rithmic standpoint, and based on the potential gains from an
OpenCL implementation, more complex search methods can
be explored without incurring the big performance penalties
that would affect the single-threaded AUTODOCK version.

In this work, we describe our OpenCL implementation of
AUTODOCK for GPUs. This program is based on an im-
proved version of the AUTODOCK search algorithm, which
introduces scoring-function gradients for translation, rota-
tion, and torsion variables. For global search, it still employs
a Lamarckian Genetic Algorithm (LGA) similar to the one
used in AUTODOCK (since version 4.0) (18). For the local
search, we newly incorporate the ADADELTA (19) gradient-
based method, while also including the original random nu-
merical optimizer Solis-Wets (20). Through a number of ex-
periments, we evaluated the computational and algorithmic
enhancements provided by our OpenCL implementation over
the original AUTODOCK.

August 21, 2019

METHODOLOGY

Brief introduction to AUTODOCK docking. In
AUTODOCK, molecular interactions are modeled by a scor-
ing function f that quantifies the free energy of a given bind-
ing pose (21):

f =Wvdw
∑
i,j

(Aij
r12
ij

−
Bij
r6
ij

) +Whb
∑
i,j

E(t)(Cij
r12
ij

−
Dij
r10
ij

)+

Wel
∑
i,j

(qiqj
ε(rij)rij

) +Wds
∑
i,j

(SiVj +SjVi)e
−r2
ij

2σ2 +

WrotNrot

(1)

The AUTODOCK scoring function (Equation 1) is a semi-
empirical free-energy force field (kcal/mol) composed of
four pairwise energetic terms (dispersion/repulsion, hydro-
gen bonding, electrostatics, and desolvation), and an ad-
ditional term that predicts the (unfavorable) loss of ligand
entropy upon binding. The dimensionless weighting con-
stants Wvdw, Whb, Wel, Wds, and Wrot were empirically de-
termined using linear regression on a set of ligand-receptor
complexes with known binding constants. The following
constants depend on the atom types: Aij (kcal/mol Å12) and
Bij (kcal/mol Å6) correspond to the Lennard-Jones (12-6)
potential between atoms i and j; Cij (kcal/mol Å12) and Dij
(kcal/mol Å10) correspond to the hydrogen bonding (12-10)
potential between hydrogen-bond acceptor and donor atoms
i and j; S and V are respectively the solvation parameter and
the atom volume that shelters it from the solvent, while σ =
3.5 Å is an independent constant. The E(t) function repre-
sents the dimensionless directional weight of the angle t that
provides directionality from ideal hydrogen bonding geome-
try. Additionally, qi and qj are atomic charges, while ε(rij) is
a dielectric function of rij , the interatomic distance between
atoms i and j. The last term, proportional to the number of
torsionsNrot, measures the unfavorable loss of ligand entropy
due to the restriction of conformational degrees of freedom in
the bound state.

The overall molecular interaction can be expressed as the
sum of two independent interactions based on ligand and
receptor group of atoms. Intermolecular interactions (i.e.,
ligand-receptor) are precalculated and cached using the grid-
based method of the AUTOGRID program, which calculates
interaction energy maps for all ligand atoms, with a de-
fault resolution of 0.375 Å. These maps are used to lookup
interaction energies using trilinear interpolation, speeding
up intermolecular interaction estimates compared to pair-
wise methods. Similarly, in the AUTODOCK4 implementa-
tion, intramolecular interactions (i.e., ligand-ligand) are pre-
calculated for all atom pairs and stored in one-dimensional
look-up tables.

A Lamarckian Genetic Algorithm (LGA) is used to generate
ligand poses exploring the energy landscape described by the

scoring function (22). The LGA combines a global search –
based on a genetic algorithm (GA) – with local search (LS)
iterations to refine poses identified by the GA. Poses that are
improved by the LS method are re-introduced into the GA
population (hence the Lamarckian denomination). All cal-
culated poses form a population, where each member, i.e.,
an individual, is represented by a vector of genes (i.e., geno-
type). Each gene represents a specific ligand motion, con-
trolling the conformation and orientation of the ligand. New
individuals are generated by the GA from ancestors chosen
with a proportional selection scheme. A population subset
(default: 6%) is subjected to the LS optimization, which in
AUTODOCK4 is based on the Solis-Wets method (20). The
LGA execution stops when a pre-defined number of score
evaluations or GA generations is reached, whichever comes
first.

Furthermore, a docking job consists of several independent
LGA runs (default: 50). Each LGA run optimizes the sum of
intermolecular (ligand-receptor) and intramolecular (ligand-
ligand) interactions described by the scoring function f , and
returns the best pose (lowest score) it could find. After all
LGA runs are complete, the returned poses are clustered us-
ing the root mean square deviation (RMSD) as distance met-
ric. The size of the cluster containing the pose with the
best score can be used as a proxy to identify convergence
of the LGA runs towards a particular solution (pose) within
the search space. As a general rule, the search effort is con-
sidered sufficient if the first cluster contains about 20% (or
more) of poses returned by LGA runs.

OpenCL implementation of AUTODOCK. As both
GA and LS optimizations require many scoring function calls
for a single docking job (default: in the order of million eval-
uations), these optimizations become the bottleneck account-
ing together for more than 90% of the entire application run-
time (23). Therefore, offloading these optimization methods
onto an accelerator, like a GPU, can profit significantly from
the speedups enabled by more specialized hardware.

The improvements of the AUTODOCK search algorithm in-
troduced in this paper were built on top of our previous
work (23), released as the open-source software project
OpenCL Accelerated Molecular Docking, hereafter simply
referred to as AUTODOCK-GPU (24). In this section, we
describe various software-related aspects of our implementa-
tion, starting with OpenCL basics, going through our paral-
lelization approach, as well as providing insights of the main
design considerations made in this work.

OpenCL background. Programming frameworks are es-
sential to leverage the performance capabilities of highly-
parallel computing platforms (15–17). In that regard,
OpenCL provides an open, and royalty-free standard for
writing parallel programs that execute across heteroge-
neous platforms consisting of CPUs, GPUs, and other
hardware accelerators, providing software developers with
a portable abstraction for accelerating computationally-
intensive tasks (25).

2 AUTODOCK-GPU

A brief introduction to the OpenCL programing model is pre-
sented as follows. An OpenCL platform is a vendor-specific
implementation of the standard, and defines the logical rep-
resentation of the hardware capable of executing an OpenCL
application. Basically, an OpenCL platform is composed
of two main elements, i.e., a host processor, and a num-
ber of computing devices, both being elements connected
through a bus. The host is responsible for the general plat-
form management, while the device is in charge of executing
clearly-defined functions in parallel, which are called ker-
nels. These kernels are described using OpenCL C, which is
a C-like language with extensions for parallel programming
such as multithreading and synchronization mechanisms. A
kernel can be described as a function of indices (Figure 1).
Each index-based kernel element is called a work-item (wi),
which can be thought of as a processing thread. Moreover,
the total number of indices is partitioned into work-groups
(WG). Communication between individual work-items within
a work-group is possible and can be achieved through global
or locally-shared memory, while their synchronization can be
enforced through barrier operations.

wi0 wi1 wi2

...

wiL−1

Work-Group: WG 0

Local Memory

wi0 wi1

barrier()

wi2

...

wiL−1

Work-Group: WGM−1

Local Memory

Global/Constant memory

...

Kernel

Device

Host

C
o
m
m
a
n
d
s

Fig. 1. An OpenCL platform is composed of a host and one or more devices. The
host controls the device(s) via commands. A device is in charge of executing ker-
nels, each of which can be subdivided intoM work-groups (WGs). Each work-group
can be further subdivided into L work-items (wis). Within a work-group, communi-
cation and synchronization between work-items is possible using local memory and
barrier operations, respectively.

Parallelization opportunities and OpenCL strategy.
As reported in a previous study (26), data parallelism of
AUTODOCK is exploited at three different processing lev-
els: high, medium, and low. First, based on the fact that a
docking job consists of several independent LGA runs (de-
fault: 50), the high-level parallelization consists of trivially
performing these runs in parallel. Second, individuals from
a single genetic generation within an LGA run are processed
independently, achieving medium-level parallelization. Fi-
nally, the low-level strategy consists of the parallel execution
of fine-grained tasks that pertain to a single individual, such
as rotating the ligand or evaluating the scoring function.

Our implementation (Figure 2) combines the high- and
medium-level strategies first. A docking job is composed of
R LGA runs (RunID: 0, 1, 2, ..., R - 1), each run processing a
population of P individuals (IndID: 0, 1, 2, ..., P - 1). The ex-
ecution of such runs, and the processing of their individuals,
are controlled by nested loops in the serial implementation,
but can be merged into a single loop for optimal parallelism.

By doing so, individuals from different docking runs can be
processed simultaneously, each as an OpenCL work-group
identified with a WGID obtained as follows:

WGID = RunID ∗P + IndID (2)

The entire set of P ∗Rwork-groups is distributed by the GPU
runtime scheduler over the available Q compute units (CU).
Each CU executes a WG associated with a single individual,
achieving high- and medium-level parallelization simultane-
ously. Finally, processing an individual involves fine-grain
tasks (genotype generation, ligand rotation, intermolecular
and pairwise interactions) that can be assigned to OpenCL
work-items, thus achieving low-level parallelization.

Code architecture. The overall workflow of AUTODOCK-
GPU is depicted in Figure 3. This consists of a sequence
of functions executed either on the host (H) or on the device
(D). After the application inputs are parsed in H1, the popula-
tions of all docking runs are initialized with random values in
H2. Then, the OpenCL setup takes place in H3, which com-
prises the identification and selection of platform and device,
as well as the definition of other OpenCL objects such as con-
text and command queues. This process includes the creation
of a program object containing all machine-specific instruc-
tions to be executed on the device. Since the host is respon-
sible for launching and keeping track of kernel executions, it
needs to know how to interact with the kernels. Therefore, in
H4, OpenCL kernels (INIT, EVAL, GA, LS) are specified in
terms of arguments (variables holding e.g., initial population
values, number of genes and ligand atoms, etc.), global size
(total number of work-items to be processed by the device),
as well as local size (number of work-items to be processed
in each work-group).

The first kernel executed is INIT, which calculates the ini-
tial score of individuals from all docking runs. The second
kernel, EVAL, counts the number of scoring function calls
(whose resulting scores reside in device memory) performed
by previously-executed kernels. After EVAL executed, con-
trol is handed back to the host, which checks whether the
LGA termination criteria are met, i.e., if the number of ei-
ther score evaluations or generations reached their maximum
values (default: 2.5 ∗ 106 and 27 ∗ 103, respectively). The
core of the application is the iterative execution of kernels,
with each cycle starting with GA, then going through LS, and
finishing with EVAL. In particular, the LS kernel executes ei-
ther the Solis-Wets method, as in the original AUTODOCK, or
the ADADELTA gradient-based method newly added in this
work. While the inter-kernel synchronization is controlled
entirely on the host via in-order command queues, the trans-
fer of solution data and their scores between kernels occurs
by device-side global-memory accesses. Finally, when the
LGA termination criteria are met, the final solutions found
by the device (and residing in its global memory) are copied
back to the host, where results are written to output .dlg files
compatible with AUTODOCKTOOLS (18).

AUTODOCK-GPU 3

Run 0
LGA

Run 1
LGA

Run <ID>
... LGA ...

Run R-1
LGA

0
Ind

1
Ind

2
Ind ...

P-1
Ind

0
Ind

1
Ind

2
Ind ...

P-1
Ind

<ID>
Ind

0
Ind

1
Ind

2
Ind ...

P-1
Ind

0
WG

1
WG

2
WG ...

P-1
WG

P
WG

P+1
WG

P+2
WG ...

2P-1
WG ...

<ID>
WG ...

P(R-1)

WG
P(R-1)+1

WG
P(R-1)+2

WG ...
PR-1

WG

Scheduler

0
CU

1
CU ...

Q-1
CU

Genotype generation

Ligand rotation

Intermolecular interaction

Pairwise interaction

wi0 wi1 wiL−1...Parallelization level

HIGH

MEDIUM

LOW

Fig. 2. A population processed by a LGA run (RunID) can be decomposed into their individuals, and each individual (IndID) can be mapped onto a work-group (WGID). The
entire set of work-groups is distributed by the GPU runtime scheduler over the availableQ compute units (CUs). A CU is a multi-threaded hardware unit capable of processing
one work-group (composed of L work-items) at a time. The runs, individuals, and fine-grain tasks are colored according to their associated level of parallelism: high (blue),
medium (red), and low (green).

Start

H1: parse inputs

H2: generate initial populations

H3: perform OpenCL setup

H4: define OpenCL kernels

D5: execute INIT kernel

D6: execute EVAL kernel

Terminate
LGA?

D7: execute GA kernel

D8: execute LS kernel

H9: write outputs

End

yes

no

Fig. 3. The overall AUTODOCK-GPU workflow consists of a sequence of host (H)
and device (D) functions. Program execution always starts and finishes in host
functions (depicted at the left side). Time-consuming functions, i.e., kernels, are
executed iteratively on the device (depicted at the right side), while their termination
is controlled by the host.

Memory requirements. In order to guarantee that the lim-
ited memory capacity (compared to most multi-core CPU
servers) of a GPU card does not negatively impact the prac-
tical usage of AUTODOCK-GPU, an analysis of the memory
size required to hold the processing data is performed. As
shown in Table 5, we defined upper limits on AUTODOCK-
GPU’s docking parameters, i.e., the maximum number of el-
ements for the following data: ligand atomic types, ligand
atoms, rotatable bonds, pairwise contributors, rotations, pop-
ulation size, docking runs, and grid points. Although by do-
ing this we might constrain the capabilities of AUTODOCK-
GPU, these limits prevent data allocation beyond the typical
memory capacity (few GBs) of most consumer GPU cards.

The first concern is the memory occupied by constant data,
which is composed of relatively large look-up tables used in
different docking calculations. Table 6 lists all constant ar-
rays utilized when AUTODOCK-GPU is configured to run
Solis-Wets. These are conveniently grouped into structs (A,
B, C, D, E), and passed into GPU memory as OpenCL buffer
objects. Depending on the assigned OpenCL memory-space
qualifier, a struct can be placed either in the GPU on-board
memory (__global const), or in the GPU on-chip mem-
ory (__constant). Ideally, one would place everything on-
chip for faster access. However, due to the on-chip capacity
limits (in the range of few MB), this is not always possible
and consequently, on-board memory must be used as well.
The ADADELTA gradient-based search method requires ad-
ditional space in memory, which is attributed to the structs
(F, G) listed in Table 7. Moreover, grid maps can occupy a
large memory region as their size depends exponentially on

4 AUTODOCK-GPU

the number of grid points (cubic growth). A maximum limit
of 256 grid points would allow users to analyze reasonably
large binding regions while keeping the memory space be-
low 1.1 GB. Larger values would require excessive space that
cannot be allocated on typical GPU-card memories: e.g., 512
grid points would require more than 8 GB. Then, with the
current configuration, the maximum memory space required
to store constant arrays is 252 kB (A, . . . , E) + 45 kB (F, . . . ,
G) + 1,073 MB (GRIDS) = 1,074 MB, which is possible to
be stored on-chip.

Another concern is the storage for variable data, i.e., the in-
formation being updated during the entire docking procedure.
This data consists of both current and next populations, as
well as the scores of their component individuals. As all
docking runs are processed in parallel, the maximum mem-
ory size required to store current populations (Pmaxsize), and
individual scores (Emaxsize), both expressed in bytes, can be
calculated as follows:

Pmaxsize =R∗P ∗Lgenotype ∗Sfloat (3)

Emaxsize =R∗P ∗Sfloat (4)

where R and P are respectively the number of docking runs
and the population size (both specified by the user), Lgenotype
is the constant genotype length (= 64) in global memory, and
Sfloat is a size of a float or single precision floating-point
datatype (4 bytes). For R and P in Equations 3 and 4, we
have defined upper limits, too. This means that AUTODOCK-
GPU accepts for R and P any integer value ≤ 1,000 and ≤
2,048, respectively. If the user inputs either an invalid or an
out-of-range value, then AUTODOCK-GPU outputs a warn-
ing message, and then proceeds with execution using default
values ofR = 1 and P = 150. As corner cases, we would have
Pmaxsize = 1,000 ∗ 2,048 ∗ 64 ∗ 4 = 524.28 MB, and Emaxsize
= 1,000 ∗ 2,048 ∗ 4 = 8.19 MB, which together account for
532.48 MB. Considering both – current and next – popula-
tions and their scores, their total memory footprint together
is 1064.96 MB.

Summing up both maximum possible sizes of constant and
variable data, the rounded-up memory space required by
AUTODOCK-GPU is less than 2.2 GB, which is lower than
the amount typically available on consumer GPU cards, as
exemplified in Table 3. Thus, there is no need for compute-
specialized GPUs with larger memories, which are signifi-
cantly more expensive.

Main differences compared to AUTODOCK. The
AUTODOCK-GPU implementation involves modifications
to the original AUTODOCK functionality in order to better
exploit parallel processing, and the execution performance,
without negatively affecting the docking quality. These
modifications include the following:

Arithmetic precision. Scoring and search calculations in
AUTODOCK are performed using double-precision floating
point (64 bits). As previous studies (23, 26, 27) suggest that

performing docking computations with reasonably lower pre-
cision does not lead to deterioration in terms of best score and
clustering size, we opted to implement those calculations in
single-precision floating point (32 bits).

Arrangement of data structures. Data structures were re-
arranged for better parallel processing of rotation and pair-
wise interaction. Ligand flexibility can be described by two
rotation types. First, a general one that considers the ligand
as a rigid body, and a second type due to rotatable bonds for
which a tree-like structure is constructed. AUTODOCK se-
rially traverses the nodes of such flexibility tree in a recur-
sive manner. Although doing so is feasible on OpenCL de-
vices capable of enqueuing kernels independently from the
host (a feature known as device-side enqueuing), this would
not be portable to devices with more limited language sup-
port, i.e., prior to OpenCL 2.0 (28). To tackle this, the recur-
sion is translated into an iterative approach, which is achieved
by transforming the flexibility tree into an array-like rotation
list. This list is composed of integer-type items (32 bits) with
fields detailed in Table 1. Similarly, for the pairwise interac-
tion, instead of having a GPU (likely inefficiently) traversing
the tree, the host defines another array-like list, containing
intramolecular-contributing atomic pairs.

Selection scheme. Regarding the criterion to choose which
individuals will reproduce, the original proportional selec-
tion was replaced with binary tournament (default rate:
60%). In proportional selection, individuals with better-than-
average scores receive proportionally more offspring (22).
One of its major defficiencies is that if the initial popula-
tion contains one or two energetically-stronger individuals,
then these would dominate the rest, and consequently, would
prevent the population from exploring other potentially bet-
ter solutions by escaping from a local optimum (29, 30).
On the other hand, in tournament selection, sets of individ-
uals are randomly selected from the entire population. The
highest-scoring individual in the set is the tournament winner,
and therefore selected for crossover. This scheme also suf-
fers from diversity loss, which happens with large set sizes.
Our implementation minimizes this possibility as the mini-
mal tournament set size is chosen (i.e., two, hence the binary
denomination). Moreover, the major advantage of tourna-
ment selection is the low computational effort, especially if
implemented in parallel (30), which according the previous
studies (26, 27) results in faster executions than those of pro-
portional selection.

Specification of program arguments. AUTODOCK argu-
ments are specified using a docking parameters file (.dpf)
containing parameters to control various aspects of a dock-
ing job. Here, we replaced the .dpf file with command-line
program arguments, making the program more suitable for
scripting, which is useful for highly iterative tasks such as
virtual screening.

Local search methods. In addition to Solis-Wets, the
local search method in the original AUTODOCK4, this work
additionally newly implements the ADADELTA optimizer

AUTODOCK-GPU 5

Table 1. Bit-field description of a 32-bit rotation-list item.

Bits Description
7 - 0 ID of atom to be rotated (ATOMID)
15 - 8 ID of rotatable bond (ROTBONDID) around which

an atom with ATOMID is to be rotated
16 1: if first rotation of atom with ATOMID,

0: otherwise
17 1: if general rotation, then ROTBONDID is ignored,

0: otherwise
18 1: if dummy rotation, then no rotation,

0: otherwise
31 - 19 Unused

based on gradients of the scoring function.

Gradient of the scoring function. The process of docking
a ligand is implemented as an optimization problem where
different types of ligand motion correspond to variables to be
optimized. The first three variables control translation of the
ligand in x, y, and z directions; the next three variables –
φ, θ, and α – correspond to rotation of the ligand as a rigid
body; and the remaining ψ variables are associated with Nrot
rotatable bonds. These variables are also referred to as genes.
Collectively, they constitute a genotype, denoted by Omega:

Ω = x,y,z,φ,θ,α,ψ1, ...,ψNrot (5)

Each genotype corresponds to a different pose of the ligand.
The quality of a pose, from the biophysical standpoint, is
evaluated by a scoring function f :

f(x,y,z,φ,θ,α,ψ1, ...,ψNrot) (6)

Here, f is the same scoring function as in Equation 1, but ex-
pressed in terms of the optimization variables (genes) instead
of interatomic distances and atomic parameters. Docking a
ligand consists of finding the genotype Ω that corresponds to
the lowest possible value of the scoring function f . Gradient-
based optimizers use the gradient g of the scoring function f ,
with respect to the genotype Ω:

g =∇f(Ω) = ∂f

∂x
,
∂f

∂y
,
∂f

∂z
,
∂f

∂φ
,
∂f

∂θ
,
∂f

∂α
,
∂f

∂ψ1
, ...,

∂f

∂ψNrot

,

(7)

ADADELTA local search. ADADELTA (19) is a gradient-
based optimization algorithm, by which the genotype Ω is
updated at each iteration t:

Ωt+1 = Ωt+ ∆Ωt (8)

where ∆Ωt is the update vector, which depends not only on
the gradient g, but also on the history of past gradients and
past update vectors:

∆Ωt =−
√
E[∆Ω2]t−1 + ε√
E[g2]t+ ε

gt (9)

where E[∆Ω2] is a running average of squared updates, and
E[g2] is a running average of squared gradients:

E[∆Ω2]t = ρE[∆Ω2]t−1 + (1−ρ)∆Ω2
t (10)

E[g2]t = ρE[g2]t−1 + (1−ρ)g2
t (11)

where ρ and ε are ADADELTA’s hyperparameters.

In particular, the constant ε prevents the denominator in
Equation 9 from becoming zero if E[g2] is zero. Further-
more, ε is required to produce non-zero updates in the first
iteration (t = 0), because the running average of squared up-
dates of the preceeding iteration E[∆Ω2]−1 is assumed to be
zero. The running averages E[g2] and E[∆Ω2] are vectors of
length equal to the number of genetic variables. The update
rule is applied to each variable separately, implementing a
different learning rate for each dimension. The hyperparam-
eter ρ controls the amount of memory of preceeding iterations
for E[g2] and E[∆Ω2]. Smaller ρ make the running averages
more sensitive to the current iteration.

ADADELTA is one of several first-order local optimization
algorithms. Ideally, we would have implemented a Quasi-
Newton method, such as BFGS (31), but we opted for a first-
order method because it is simpler to be integrated in our
highly-parallel OpenCL architecture. Examples of other pop-
ular first-order methods are Adam (32), and FIRE (33). All
these algorithms have hyperparameters that influence the cal-
culation of the update vector. We chose ADADELTA because
it has only two hyperparameters, ρ and ε, making it simpler
to optimize the algorithm for docking, while Adam and FIRE
have four and five hyperparameters, respectively. After eval-
uating ADADELTA using various combinations of ρ and ε
we set ρ = 0.8 and ε = 0.01, because these values provided
the best search performance (see Figure 6 and associated dis-
cussion).

Dataset. A dataset of 140 protein-ligand complexes
was used to compare our OpenCL implementation to
AUTODOCK4. Our dataset is mainly sourced from two well-
established sets for assessing docking methodologies for drug
discovery purposes: the Astex diversity set (34) and CASF-
2013 (35). We included all 85 entries from the Astex di-
versity set, in which most ligands have up to 10 rotatable
bonds. With regard to the CASF-2013 set, we included 35
complexes, enriching our set with ligands in the range of 11 -
20 rotatable bonds. Furthermore, we included 20 additional
complexes selected from the Protein Data Bank (36) cover-
ing a large range of rotatable bonds (up to 32) and displaying
both wide and narrow binding pockets.

Identification of global minima. We identified global min-
ima for the complexes in our dataset by analyzing the distri-
bution of scores produced by LGA runs (Figure 4). Increas-
ing the number of evaluations shifts the distribution of scores
towards more negative values (i.e., better scores). For most
complexes, we observed convergence of the distributions to-
wards a lower bound: once that lower bound is reached, in-
creasing the number of evaluations does not change the lower
bound, but increases the number of LGA runs that actually
found the lower bound score. The upper panel of Figure 4
shows an example of convergence towards a lower bound.
Based on this observation, we devised a criterion to system-
atically identify global optima, which is explained as follows:
for a protein-ligand complex, we consider the scores returned

6 AUTODOCK-GPU

by LGA runs with up to 8,192,000 evaluations. A total of 4
docking replicates are performed, where each replicate starts
with a different conformation and orientation of the input lig-
and. From each replicate, we retrieve the 5 top scores (out of
100 LGA runs), creating a subset of 20 scores. This proce-
dure is repeated for 4 docking replicates with 100 LGA runs
each, executed up to 4,096,000 evaluations. The best score
from each replicate is added to the subset of scores, increas-
ing its size from 20 to 24. If the difference between the best
and worst scores within the subset (of 24 scores) is less or
equal to 0.1 kcal/mol, the best score is considered to be the
global minimum. While there is no theoretical guarantee that
an even lower minimum does not exist, we did not observe a
single case in which the distribution of scores initially con-
verged to an intermediate value, and then escaped to an even
lower score after further evaluations. This suggests that the
distribution of scores is not easily trapped in local minima.
Moreover, varying local-search rate and local-search method
results in convergence to identical global minima: the largest
difference in global minima found from different dockings
was just 0.23 kcal/mol.

Technical details. All calculations reported in this work
employ a maximum of 300 local-search iterations. The max-
imum number of LGA generations is set to 99,999 to guaran-
tee that docking does not stop before the maximum number
of score evaluations is reached.

Ligand and receptor input files were prepared with
OpenBabel-2.4.1 (37), after removing all water molecules
and metal atoms for which AUTODOCK4 misses atom types.

Regarding software support, the latest AUTODOCK4.2.6 was
used as a single-threaded CPU baseline. For GPUs, OpenCL
drivers provided within the CUDA 10.0 and AMDAPPSDK
3.0 packages were used. For evaluating the portability of
OpenCL to multicore CPU machines, we employed the In-
tel SDK-2017 driver.

Measuring the evaluation rate. Docking a ligand involves
a large number of score evaluations, often in the order of mil-
lions. The time spent per evaluation is one of the factors de-
termining docking runtime. To calculate the evaluation rate,
we run dockings using a varying number of evaluations, and
fit a linear model defining the docking runtime y as a function
of the number of evaluations x:

y = ax+ b (12)

where b is the intercept with the y-axis and a is the slope.

The slope a is the rate at which score evaluations are per-
formed, which we chose to express in microseconds (µs)
per evaluation. Dockings were performed from 32,000 to
2,048,000 evaluations, in exponential increments of 2-fold,
providing 7 datapoints to fit the linear model from which the
evaluation rate is determined. Four replicates were performed
for each docking, and the minimum runtime was considered.
Identical results would be obtained if the average runtime

were considered instead of the minimum (evaluation rates in-
creased on average by only 1%). Evaluation rates for which
the coefficient of determination R2 is less than 0.99 were ex-
cluded. In the Results and Discussion section, we report the
evaluation rate for all 140 complexes in our dataset, running
AUTODOCK-GPU on different accelerators, and using either
Solis-Wets or ADADELTA as local-search methods.

RESULTS

Validating the scoring function implemen-
tation. Docked poses from AUTODOCK-GPU .dlg out-
put files were re-scored using AUTODOCK4.2.6 (keyword
epdb). A total of 1015 ligand poses from 10 complexes were
considered in this analysis. We observe that for docked poses
in the favorable range (no clashes), the differences are in
the order of 0.01 kcal/mol for grid-interpolated energies, and
0.02 kcal/mol for ligand-ligand (pairwise) interactions. In
the case of unfavorable energies, such as when clashes occur,
larger differences were observed. These differences are irrel-
evant for drug-design applications, because the interest is in
the most favorable poses of each ligand, whereas high-energy
(unfavorable) poses are discarded.

Score differences between AUTODOCK4 and AUTODOCK-
GPU are mainly attributed to the following two reasons.
First, scoring and search computations in AUTODOCK-GPU
are performed with single-precision arithmetic, which might
cause a loss of precision in comparison to double-precision
floats used in AUTODOCK4. Second, for quantifying ligand-
ligand interactions, AUTODOCK4 interpolates values from
look-up tables, while AUTODOCK-GPU evaluates the ana-
lytical form of the scoring function f (Equation 1). This im-
plementation discrepancy can cause larger score differences
– in the order of 1 or more kcal/mol – because some of
the scoring terms have steep energy profiles for short inter-
atomic distances. Despite the fact that score differences be-
tween AUTODOCK4 and AUTODOCK-GPU are insignificant
for well optimized ligand poses without steric clashes, users
should be aware of significant discrepancies in high-energy
poses arising primarily from the interpolation of ligand-
ligand terms in AUTODOCK4. In this regard, AUTODOCK-
GPU is a more accurate implementation of the scoring func-
tion.

Algorithmic performance. In the field of global opti-
mization, computational effort is often expressed as the num-
ber of fitness (or score) evaluations (38). More efficient algo-
rithms spend fewer evaluations to achieve a certain level of
performance.

Despite that the number of score evaluations may not corre-
late with runtime, using it for assessing algorithms, such as
Solis-Wets and ADADELTA, is advantageous. The reason is
that, in contrast to runtime, the number of score evaluations
allows the assessment of algorithmic performance indepen-
dently from code optimization, choice of compiler, and hard-
ware specifications.

AUTODOCK-GPU 7

nev
18

16

14

12

10

8

6

4

2

S
co

re
 (

kc
a
l/
m

o
l)

PDB ID: 1hvy

Nrot: 9

Global optimum

Ligand input pose

native

random #1

random #2

random #3

32 64 128 256 512 1024 2048 4096 8192

evaluations (in thousands)

5

10

15

20

25

S
co

re
 (

kc
a
l/
m

o
l)

PDB ID: 7cpa
Nrot: 15

Fig. 4. Distribution of scores returned by LGA runs with increasing number of evaluations. Each violin plot represents scores from 100 LGA runs, and the color is associated
with the input conformation and orientation of the ligand. The global minimum was identified for the protein-ligand complex represented in the upper panel (PDB ID: 1hvy),
but not for the complex in the bottom panel (PDB ID: 7cpa) because the distribution of scores did not converge towards a lower bound. The local-search method used is
ADADELTA, and the local-search rate is 100%.

Success rate of LGA runs. Our assessment of search per-
formance starts by determining if individual LGA runs are
successful or not. We use two criteria to define success, one
based on the docking score, and another based on the root
mean square deviation (RMSD) from the native pose deter-
mined by X-ray crystallography.

According to the score criterion, an LGA run is successful
if the returned pose has a score within 1.0 kcal/mol from the
best possible score for a given protein-ligand complex, i.e.,
the global minimum. The protocol for finding global minima
in our dataset is described in the Methodology section. We
found global minima for 105 out of 140 complexes, while for
the rest that was not possible due to the presence of a large
number of rotatable bonds, particularly for ligands containing
more than 19 of these.

According to the RMSD criterion, an LGA run is successful
if the returned pose is within 2 Å from the native pose. We
note that the job of search algorithms is to find the global min-
imum of the scoring function, and there is no guarantee that
the global minimum corresponds to a pose that is within 2 Å
RMSD from the native pose. This happens because scoring
functions are not perfect, and sometimes give better scores to
incorrect poses. Since our goal is to evaluate search perfor-
mance, we need to guarantee that the optimization target of
the search algorithm (i.e., the global minimum of the scor-
ing function) corresponds to a solution that is deemed correct
by the success criterion. Therefore, we only use the RMSD
criterion when the global minimum of the scoring function
is below 2 Å RMSD of the actual physical pose (78 out 140

complexes in our dataset).

Since the LGA algorithm is stochastic, we employ a statis-
tical approach involving a relatively large number of LGA
runs. Specifically, we perform four replicates of 100 LGA
runs, each replicate starting with the ligand in a different ori-
entation and conformation: one of the four inputs is the na-
tive pose, whereas the other three are a randomized pose each
(AUTODOCK VINA (8) was used for randomization). Using
this data, we calculate the fraction of successful LGA runs.

The fraction of successful LGA runs increases with the num-
ber of evaluations, and its corresponding success-rate curve
typically follows a sigmoidal profile (Figure 5). An insuffi-
cient number of evaluations results in a low (possibly zero)
probability of finding either the native pose or the global min-
imum. After a certain number of evaluations, the success
probability asymptotically approaches 100%. Increasing the
number of evaluations beyond the higher inflexion point pro-
vides only relatively small increases (∼10%) in the probabil-
ity of success.

Halfway number of evaluations (E50). From success
probability curves (Figure 5), we estimate the number of
evaluations required to achieve a 50% probability of success.
We refer to this number as halfway number of evaluations,
and abbreviate it as E50.

The values of E50 depend on both the protein-ligand com-
plexity, as well as the algorithmic efficiency of search meth-
ods. If the global minimum (or native pose) of a given
protein-ligand complex is easy to find, high-success proba-

8 AUTODOCK-GPU

0.0

0.2

0.4

0.6

0.8

1.0

E50 = 201

Solis-Wets

Ligand input pose

native random #1 random #2 random #3

E50 = 185

P
D

B
:

1
to

w
,
N

ro
t

=
 4

ADADELTA

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0.0

0.2

0.4

0.6

0.8

1.0

E50 = 12123

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

E50 = 550

P
D

B
:

1
sq

5
,
N

ro
t

=
 8

evaluations (in thousands)

S
u
cc

e
ss

 r
a
te

 (
sc

o
re

 c
ri

te
ri

o
n
)

Fig. 5. Fraction of successful LGA runs as a function of the number of score eval-
uations, using Solis-Wets and ADADELTA as local-search methods. The upper
plots correspond to an easy search problem with only four rotatable bonds (PDB ID:
1tow), while the bottom plots correspond to a moderately difficult ligand with eight
rotatable bonds (PDB ID: 1sq5). According to the score criterion, an LGA run is suc-
cessful if it reports a pose within 1.0 kcal/mol from the global optimum. The black
line is a fitted sigmoid curve (Equation 13) that estimatesE50, which is the number
of evaluations at which 50% of LGA runs are successful. The dashed orange lines
are a visual representation of E50 values.

bilites are achieved with a relatively small number of evalu-
ations. Analogously, lower E50 numbers indicate more ef-
ficient search algorithms, because the halfway performance
is achieved with less computational effort, i.e., fewer score
evaluations. This is illustrated in Figure 5, where the top and
bottom panels correspond to an easy and (moderately) diffi-
cult case, respectively. For example, considering the success-
rate curves for the moderately difficult complex (PDB ID:
1sq5) in Figure 5, it can be inferred that ADADELTA out-
performs Solis-Wets because it requires ∼20x fewer evalua-
tions to achieve 50% of success rate. In fact, for this com-
plex, using Solis-Wets – with 8 million evaluations per LGA
run – results in success rates between 30% and 50%, while
ADADELTA approaches 100% of success with only 2 mil-
lion evaluations.

In order to calculate E50 values, we fit the following sigmoid
function to the success-rate curves depicted in Figure 5:

Fraction of successful LGA runs = 1
1 +e−β(x−E50) (13)

where x is the number of score evaluations, while β and E50
are variable parameters optimized during sigmoid fitting.

Since E50 values describe search performance by a single
number, we use it to assess search performance on a large
number of protein-ligand complexes, by plotting E50 values
as a function of the number of ligand rotatable bonds Nrot.
Search difficulty increases with Nrot, because each rotatable

bond adds one dimension to the optimization problem. In the
following sections, we use E50 values to guide the optimiza-
tion of ADADELTA hyperparameters, and to demonstrate the
superiority of ADADELTA over Solis-Wets for large Nrot.

Tuning ADADELTA hyperparameters. As previously
mentioned, ADADELTA has two hyperparameters: ρ and ε.
In an initial stage of this work, we manually tuned these hy-
perparameters to yield low scores in as few evaluations as
possible, using a small number of protein-ligand complexes,
and visualizing the progression of scores over a few hundred
iterations. Eventually, we settled on ρ = 0.8, and ε = 0.01, but
noted afterwards that such ρ was smaller than the smallest ρ
(= 0.9) tested in the original ADADELTA publication (19).

To validate our initial choice of hyperparameters, we used a
subset of 19 protein-ligand complexes from our dataset (for
which global minima were identified), and tested six com-
binations of ρ (0.8, 0.9, 0.95), and ε (0.01, 0.0001) values.
Larger values for ε result in larger initial steps, because in
the first ADADELTA iteration (t = 0) the running average of
squared updates of the preceeding iteration E[∆Ω2]−1 is as-
sumed to be zero, so the magnitude of the update is scaled
by
√
ε (Equation 9). Smaller values for ρ reduce the impact

of preceeding iterations, making the optimization more sen-
sitive to the gradient of the current iteration (Equation 11).

Search performance was measured by E50 values, calculated
according to the score criterion (LGA is successful if reported
pose is within 1.0 kcal/mol from the global optimum). By
plotting E50 as a function of Nrot (Figure 6), we observed
that our initial hyperparameter setup (ρ = 0.8, and ε = 0.01)
yields the lowest E50 values among the tested hyperparame-
ter combinations. Decreasing ε from 0.01 to 0.0001 results in
larger E50 (i.e., lower performance), while increasing ρ re-
sults in very small performance gains. Fitting an exponential
equation of the form E50 = 2a∗Nrot+b (green dashed lines in
Figure 6) helps in quantifying performance: the lower the re-
gression coefficients (a and b), the smaller E50, and thus the
higher performance. This regression analysis confirms the vi-
sual interpretation ofE50 plots, as ρ = 0.8, and ε = 0.01 result
in the lowest a and b, and thus the smallest number of itera-
tions to reach a 50% probability of computing the optimum
solution.

Algorithmic performance of ADADELTA and
Solis-Wets. The algorithmic performances of ADADELTA
and Solis-Wets were compared by calculating their E50
values for all protein-ligand complexes in our dataset. More-
over, for both LS methods, E50 was calculated as a function
of Nrot, as well as for three different rates of performing
local search on a genetic population (LS rate): 6%, 25%, and
100% (Figure 7).

In general, both LS methods require more score evaluations
to achieve E50 if the ligand has a larger number of rotat-
able bonds (Figure 7). Interestingly, when using Solis-Wets,
E50 values increase more steeply with Nrot than when using
ADADELTA. This occurs for E50 values calculated based on

AUTODOCK-GPU 9

8
32

128
512

2048
8192

32768
131072

y= 20. 54x+ 6. 23

ε = 0.01

y= 20. 84x+ 7. 66 ρ
 =

 0
.8

0

ε = 0.0001

8
32

128
512

2048
8192

32768
131072

E
50

 (
in

 t
h
o
u
sa

n
d
s)

y= 20. 53x+ 6. 56 y= 20. 87x+ 7. 99 ρ
 =

 0
.9

0
0 3 6 9 12 15 18

Nrot

8
32

128
512

2048
8192

32768
131072

y= 20. 61x+ 6. 69

0 3 6 9 12 15 18

Nrot

y= 20. 98x+ 8. 03 ρ
 =

 0
.9

5

Fig. 6. Dependency of E50 on the number of rotatable bonds Nrot for six combi-
nations of ADADELTA hyperparameters ρ and ε. The score criterion was used to
calculate E50 values. The green dashed lines represents the fitted equation (also
in green). A total of 19 protein-ligand complexes were used, but it was not always
possible to fit E50 values, so there are less than 19 data-points in some plots.
Local-search rate is 100%, and the maximum number of local-search iterations is
300.

both the score and RMSD as criteria for LGA success. When
docking ligands with many rotatable bonds, ADADELTA
reaches a 50% success rate with fewer evaluations than Solis-
Wets. Notably, using Solis-Wets, we could not fit sigmoid
curves (Equation 13) for any ligand containing 12 or more
rotatable bonds because the LGA success rates were too low.
On the other hand, using ADADELTA resulted in E50 below
8 million for some complexes with more than 15 rotatable
bonds.

Analysis of regression lines associated with the equation
E50 = 2a∗Nrot+b reveals that increasing the LS rate results in
lower coefficients a and b, and hence lower average E50 val-
ues. We argue that the a coefficient is more important than b
because it dictates how E50 scales with the number of rotat-
able bonds. The influence of LS rate is more pronounced for
ADADELTA than for Solis-Wets, with noticeable improve-
ments in E50 values after increasing LS rate from 6% to
25%. Moreover, there is virtually no difference in perfor-
mance when using either 25% or 100% LS rate, but using
100% is recommended because the corresponding a coeffi-
cients are slightly lower.

Let us compare the algorithmic performance of Solis-Wets
and ADADELTA by using their E50 values, calculated ac-
cording to the score criterion, and 100% LS rate. The re-
gression model predicts an E50 value of ∼ 20.99Nrot+5.50

for Solis-Wets, while for ADADELTA an E50 value of ∼
20.40Nrot+6.94 is predicted. For a ligand with zero rotat-
able bonds, the Solis-Wets E50 would be ∼45,000 evalu-
ations, whereas the ADADELTA E50 would be ∼123,000.

Therefore, ADADELTA needs ∼3x more evaluations than
Solis-Wets. If the number of rotatable bonds is increased
to 12, Solis-Wets would need ∼170,000,000 evaluations to
reach a 50% success rate, while ADADELTA requires only
3,400,000 (a 50x reduction). Assuming these equations are
still valid for 20 rotatable bonds, this factor would increase
to ∼1300x. In other words, ADADELTA would need ∼30
million evaluations, while Solis-Wets is predicted to require
∼40 billion instead.

The agreement of E50 values calculated using both the score
and RMSD criteria gives us more confidence in our analysis.
Before using the RMSD criterion, we hypothesized that the
role of ADADELTA was merely in removing clashes from
poses that were already very close to the X-ray pose, and
that Solis-Wets was just as good at producing poses within
2 Å RMSD from the X-ray, even though with less favorable
energies. The RMSD criterion for LGA success invalidates
this hypothesis, and shows that ADADELTA helps the LGA
to find the native pose.

To better determine the number of rotatable bonds be-
yond which ADADELTA outperforms Solis-Wets, we plotted
Solis-Wets E50 values against those of ADADELTA (Fig-
ure 8), both obtained using an LS rate of 100%. Ligands
with three or fewer rotatable bonds (light blue circles) are
typically below the equality line, which means that Solis-
Wets has lower E50 values, and hence a higher algorith-
mic performance. On the other hand, and according to the
score criterion, ligands with four or more rotatable bonds
have lower E50 values using ADADELTA. Interestingly, ac-
cording to the RMSD criterion, some ligands with Nrot be-
tween four and nine have lower E50 with Solis-Wets. Nev-
ertheless, the majority of ligands with four or more rotatable
bonds have lower E50 values with ADADELTA, according
to either the score or RMSD criteria. This analysis consid-
ers only complexes for which E50 values could be calcu-
lated for both Solis-Wets and ADADELTA, so the maximum
number of rotatable bonds is 11 (Solis-Wets has very low
success rates for ligands with 12 or more rotatable bonds,
and E50 values could not be estimated). Based on these re-
sults, we conclude that Solis-Wets has better algorithmic per-
formance for ligands with fewer than three rotatable bonds,
while ADADELTA has better algorithmic performance for
ligands with four or more rotatable bonds.

Evaluation rate performance. The runtime of dock-
ing depends mostly on the number of evaluations, often
reaching hundreds of millions. For example, performing 100
LGA runs with 2.5 million evaluations each results in 250
million evaluations being executed in a single docking. For
this reason, the evaluation rate is a useful indicator of dock-
ing performance. In this section, we evaluate some speedups
attained by GPU accelerators based on the evaluation rate –
the time spent per score evaluation – expressed in microsec-
onds (µs) per evaluation.

In Figure 9, we depict the evaluation rate attained when using
our full dataset, and executing AUTODOCK-GPU on differ-

10 AUTODOCK-GPU

8

32

128

512

2048

8192

32768

131072

y= 21. 02x+ 5. 48

Score criterion

y= 21. 31x+ 4. 08

RMSD criterion

y= 20. 51x+ 6. 64

Score criterion

y= 20. 56x+ 7. 06 LS
 r

a
te

:
0
.0

6

RMSD criterion

8

32

128

512

2048

8192

32768

131072

E
50

 (
in

 t
h
o
u
sa

n
d
s)

y= 21. 02x+ 5. 39 y= 21. 26x+ 3. 80 y= 20. 44x+ 6. 55 y= 20. 45x+ 6. 54 LS
 r

a
te

:
0
.2

5

0 3 6 9 12 15 18

Nrot

8

32

128

512

2048

8192

32768

131072

y= 21. 00x+ 5. 47

0 3 6 9 12 15 18

Nrot

y= 21. 27x+ 3. 50

0 3 6 9 12 15 18

Nrot

y= 20. 40x+ 6. 94

0 3 6 9 12 15 18

Nrot

y= 20. 40x+ 6. 84 LS
 r

a
te

:
1
.0

0

Solis-Wets ADADELTA

Fig. 7. Dependency of E50 on the number of ligand rotatable bonds Nrot for Solis-Wets and ADADELTA local-search methods. The LS rate is 6% in the top row, 25% in the
middle row, and 100% in the bottom row.

ent GPUs (listed in Table 3), as well as AUTODOCK4 on a
single CPU core. Evaluation rate speedups for each complex
in our dataset were calculated by dividing the evaluation rate
of AUTODOCK4 by that of AUTODOCK-GPU. To establish
a fair baseline, AUTODOCK4 was run on a recent compute
instance (c5.18xlarge) – provided by Amazon Web Services
(AWS) – that features an Intel Xeon Platinum 8124M CPU
@ 3.00GHz (Table 4).

AUTODOCK-GPU achieves the fastest evaluation rate on
a GTX 1080 Ti GPU using Solis-Wets, spending between
0.007 - 0.28 µs per evaluation, depending on the protein-
ligand complex. In contrast, AUTODOCK4 yields the lowest
evaluation rate, ranging between 1.25 - 54.7 µs per evalua-
tion.

In all platforms, more ligand atoms lead to slower calcula-
tions. For Solis-Wets, the time per evaluation increases in
an almost linear fashion with the number of ligand atoms
(Natom). For ADADELTA, the time per evaluation increases
in a more quadratic fashion. In consequence, ADADELTA
becomes slower in comparison to Solis-Wets for largeNatom
values. To provide an estimate, ADADELTA is about 4x as
slow as Solis-Wets for ligands with ∼20 atoms, and about
16x slower for ligands with ∼100 atoms.

Table 2. Evaluation rate (µs/evaluation) for different GPU platforms and vary-
ing number of ligand atoms. Evaluation rates reported here are interpolated by
polynomial fitting as shown in Figure 9.

Evaluation rate (µs / evaluation)
Solis-Wets ADADELTA

Ligand atoms 20 40 80 20 40 80
M2000 0.22 0.49 1.21 0.39 2.76 16.11
GTX 980 0.05 0.13 0.37 0.21 1.03 5.62
Vega 56 0.04 0.10 0.31 0.16 0.77 4.08
GTX 1080 Ti 0.03 0.06 0.17 0.06 0.44 2.40
AUTODOCK4 3.66 10.64 34.58

Overall, the evaluation rate speedup achieved by each GPU
depends on the hardware specifications (summarized in Ta-
ble 3), with more powerful GPUs attaining larger speedups.
Furthermore, evaluation rate speedups depend not only on the
accelerator platform, but also on the choice of LS method and
the number of ligand atoms (Figure 10). For dockings using
Solis-Wets, evaluation rate speedups increase with the num-
ber of ligand atoms, while the opposite behavior occurs for
ADADELTA. In the case of very large ligands (∼100 atoms),
we observed evaluation rate speedups of ADADELTA being
lower than 10x on a Vega 56 GPU.

AUTODOCK-GPU 11

Table 3. Comparison of selected hardware characteristics of the evaluated GPU-based accelerator cards.

GPU-based Peak Peak Compute On-board Release Geometric
Accelerator Memory Performance Memory Year Average

Card Bandwidth (GFLOPS/s) (GB) Evaluation Rate Speedup
(GB/s) FP32 FP64 Solis-Wets ADADELTA

M2000 105.8 1786 55.82 4 2016 19.6 5.4
GTX 980 224.4 4981 155.6 4 2014 75.4 14.9
Vega 56 409.6 10566 660.4 8 2017 94.4 17.3

GTX 1080 Ti 484.4 11340 354.4 11 2017 157.8 36.0

8

32

128

512

2048

8192

32768

131072

Score criterion

0≤Nrot ≤ 3

4≤Nrot ≤ 7

8≤Nrot ≤ 9

10≤Nrot ≤ 11

8 32 12
8

51
2

20
48

81
92

32
76

8

13
10

72

ADADELTA E50 (in thousands)

8

32

128

512

2048

8192

32768

131072

RMSD criterion

S
o
lis

-W
e
ts

 E
50

 (
in

 t
h
o
u
sa

n
d
s)

Fig. 8. Direct comparison ofE50 values between ADADELTA and Solis-Wets using
100% LS rate.

Balancing algorithmic and evaluation rate
performance. In our previous analysis, we estimated al-
gorithmic improvements of ADADELTA over Solis-Wets to
be in the order of 50x (for ligands with 12 or more rotatable
bonds), as well as faster executions of Solis-Wets compared
to ADADELTA in the order of 16x (for ligands containing
∼100 atoms). Thus, for ligands with 12 or more rotatable
bonds, ADADELTA is the obvious choice, because the reduc-
tion in the number of score evaluations outweighs the faster
evaluation rate of Solis-Wets.

However, the choice between these LS methods is less ob-
vious for ligands with fewer than 12 rotatable bonds. To
clarify this, we calculated the time required to perform E50
evaluations with each method. This time-to-E50 is the prod-
uct of E50 by the corresponding evaluation rate (µs / eval-
uation) for each protein-ligand complex. By plotting the
resulting time-to-E50 values of Solis-Wets against those of
ADADELTA (Figure 11), we compare both LS methods in

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Solis-Wets

0

1

2

3

4

5

G
T
X

 1
0
8
0

 T
i

ADADELTA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120
0
1
2
3
4
5
6
7
8
9

V
e
g
a
 5

6

0 20 40 60 80 100 120
0

10

20

30

40

50

60

A
u
to

D
o
ck

4
.2

.6E
v
a
lu

a
ti

o
n
 r

a
te

 (
µ
s

/
e
v
a
lu

a
ti

o
n
)

Natom

Fig. 9. Evaluation rate of AUTODOCK-GPU and AUTODOCK4. Note that each sub-
plot has a different scale for the y-axis. The red lines are third-degree polynomial
fits. These fits were used to interpolate the evaluation rate values reported in Ta-
ble 2.

terms of time efficiency for reaching a 50% success rate on
a single LGA run. While ADADELTA is successful in fewer
evaluations than Solis-Wets for ligands with four or more ro-
tatable bonds, the faster evaluation rate of Solis-Wets com-
pensates for the larger number of evaluations. As a result,
ADADELTA is more time-efficient for ligands with eight or
more rotatable bonds, while Solis-Wets is more time-efficient
for ligands with seven or fewer rotatable bonds. These num-
bers were calculated using evaluation rates obtained with the
Vega 56 GPU, which has an intermediate performance within
the range of GPU cards we tested. While results may be
slightly different on other GPU cards, this analysis provides
an estimate of the time-efficiency of each LS method.

Additionally, we note that in the current version of
AUTODOCK-GPU, the number of evaluations is pre-
determined at the start of docking by a (user) command-
line option. Thus, the time-to-completion of docking is
not strictly related to the time-to-E50 described above.
However, in the future, self-tunning stopping criteria may

12 AUTODOCK-GPU

50

100

150

200

250

300
Solis-Wets

10

20

30

40

50

60

70

80

G
T
X

 1
0
8
0
 T

i

ADADELTA

0 20 40 60 80 100 120
60

70

80

90

100

110

120

130

0 20 40 60 80 100 120
5

10

15

20

25

30

V
e
g
a
 5

6

E
v
a
lu

a
ti

o
n
 r

a
te

 s
p
e
e
d
u
p

Natom

Fig. 10. Evaluation rate speedup of AUTODOCK-GPU (on GTX 1080 Ti and Vega
56 GPUs) over AUTODOCK4 (on a single CPU core of an AWS c5.18x instance).
Note that each subplot has a different scale for the y-axis.

10−4

10−3

10−2

10−1

100

101

102

103

Score criterion

0≤Nrot ≤ 3

4≤Nrot ≤ 7

8≤Nrot ≤ 9

10≤Nrot ≤ 11

10−4 10−3 10−2 10−1 100 101 102 103

ADADELTA time-to-E50 (in seconds)

10−4

10−3

10−2

10−1

100

101

102

103

RMSD criterion

S
o
lis

-W
e
ts

 t
im

e
-t

o
-E

50
 (

in
 s

e
co

n
d
s)

Fig. 11. Direct comparison of time-to-E50 values between ADADELTA and Solis-
Wets using 100% LS rate. For a given protein-ligand complex, time-to-E50 is the
product of E50 by the corresponding evaluation rate (µs / evaluation). Here, evalu-
ation rates were collected on the Vega 56 GPU platform.

be developed to automatically identify convergence (e.g.,
AUTODOCKFR (39)), and hence, reduce the overall compu-

tation time by preventing unnecessary evaluations from being
performed past the point of convergence. In that scenario,
the time-to-E50 could be a good estimator for the time-to-
completion of docking.

Runtime performance. Here, we report the achieved
runtime speedups of AUTODOCK-GPU (on various GPUs)
with respect to AUTODOCK4 (on a single CPU core). This
analysis is based on the time-to-completion, understood as
the total wall clock time spent by the docking program. The
corresponding runtime speedups are therefore slightly differ-
ent from evaluation rate speedups reported in a previous sec-
tion. While score evaluations account for the generally most
time-consuming part of docking, there are other tasks, such
as loading input files or clustering LGA final poses, that are
not accounted for by the evaluation rate. For this reason, re-
porting runtime speedups is complementary to evaluation rate
speedups.

For this analysis, we selected five different ligand-receptor
complexes with different number of atoms (Natom) and ro-
tatable bonds (Nrot). Although this set is small, it is yet
representative for the purpose of this section as it provides
enough variety of low (PDB ID: 5tim), medium (PDB ID:
2bm2, 5wlo), and high (PDB ID: 4er4, 3er5) molecular size
and complexity.

The results are presented in Figure 12. Overall, Solis-Wets
leads to higher runtime speedups than ADADELTA, in agree-
ment with the previously discussed evaluation rate speedups.
The better the GPU card, the higher the runtime speedups,
with a nearly 10x difference observed between the M2000
and the GTX 1080 Ti GPUs. For Solis-Wets, ligands with
more atoms yield higher speedups, while the opposite trend
is observed for ADADELTA. This is in agreement with the
severe evaluation rate slowdown observed for ADADELTA
with increased number of atoms. However, while a Solis-
Wets docking will finish faster for a given number of eval-
uations, ADADELTA may return significantly better poses,
both in terms of score and RMSD, due to its higher algo-
rithmic performance for ligands with many rotatable bonds,
especially eight or more.

Leveraging OpenCL portability. A key feature of
OpenCL is its portability. This allows running applications
– ideally with none or only minor recoding effort – on dif-
ferent devices. In this study, this feature was leveraged by
using multicore CPUs as execution platform in addition to
GPUs. Our implementation ensures that the porting effort
from GPUs to CPUs is reduced to just a re-compilation step,
i.e., re-building the application targeting a different device
architecture, but requiring no code changes.

Performance scaling on multicore CPUs. Performance
scaling refers to the performance enhancement due to an in-
crease of computing resources. This is typically translated
into shorter runtimes, and hence, into lower costs for such re-
sources. In order to assess the resource investment in terms of

AUTODOCK-GPU 13

Table 4. Hardware characteristics of evaluated CPU-based platforms. Prices comprise the basic cost of compute services only (40) (i.e., underlying servers in the EU zone),
and do not include charges for additional services (e.g., storage, database, migration, etc). In addition, as suggested for high-performance workloads (41), hyperthreading
was disabled, allowing only a single thread per CPU core.

AWS Number Peak Peak Compute Total On-demand Release
CPU-based of Memory Performance RAM EC2 price Year

platform cores Bandwidth FP32 Memory EU zone
(GB/s) (GFLOPS/s) (GB) ($/hour)

c5.4xlarge 8 42 768 30 0.776 2017
c5.9xlarge 16 85 1536 70 1.746 2017
c5.18xlarge 36 128 3456 140 3.492 2017

0

50

100

150

200

2
3

x
1
8
x 2
8

x
3
2

x
3
2
x 4

6
x

6
8

x 8
4
x

8
9

x
8
8
x

4
8

x
9
0
x

9
6

x 1
0
6

x
1
0

6
x

6
3

x
1

0
7
x

1
6

3
x

1
7
2
x

1
6
3

x

S
o
lis

-W
e
ts

PDB ID

5tim

2bm2

5wlo

4er4

3er5

Natom

5

33

46

93

108

Nrot

0

7

10

30

31

0

10

20

30

40

50

8
.4

x
5

.1
x

3
.7

x
2

.1
x

1
.9

x

2
1

.4
x

1
3

.6
x

1
0

.0
x

5
.6

x
5

.2
x

1
8

.8
x

1
7

.3
x

1
3

.6
x

7
.8

x
7

.3
x

3
7
.5

x
2
9

.7
x

2
2

.6
x

1
3

.8
x

1
2

.9
x A

D
A

D
E
LT

A

M2000 GTX 980 Vega 56 GTX 1080 Ti

R
u
n
ti

m
e
 s

p
e
e
d
u
p

Fig. 12. Runtime speedups of AUTODOCK-GPU (on various GPUs) with respect
to AUTODOCK4 on a single CPU core. The number of LGA runs is 100, and the
number of evaluations is 2,048,000.

the returned performance gains, we discuss the performance
scaling behavior of AUTODOCK-GPU on multicore CPUs.

To do that, we selected AWS CPU instances equipped with
different numbers of cores – e.g., c5.4xlarge (8 cores),
c5.9xlarge (16 cores), and c5.18xlarge (36 cores)
– the latter being the same CPU platform used in pre-
vious experiments (only a single CPU core was used for
AUTODOCK4). This analysis was performed on the same
five complexes used for reporting GPU runtime speedups
(Figure 12).

In contrast to GPUs, where the overall performance when
running Solis-Wets increases along with Natom (Figure 12),
multicore CPUs yield lower runtime performance for larger
Natom values (Figure 13). For instance, on an 8-core instance,
Solis-Wets achieves∼12x of runtime speedup with the small-
est complex (PDB ID: 5tim), while only reaching ∼2x with

the largest one (PDB ID: 3er5). We attribute the differ-
ent speedup dependencies on Natom and Nrot values between
multicore CPU and GPU to the considerably larger number
of fine-grained computing cores on GPUs (e.g., 3584 CUDA
cores on a GTX 1080 Ti GPU) that more efficiently leverage
the larger fine-grained parallelism – provided by more atoms
and rotatable bonds – than by using fewer (here: eight) mul-
ticore CPU cores (e.g., a maximum of 36 cores on the AWS
c5.18xlarge instance).

From the numbers in Figure 13, it can be noted that speedups
increase with a factor of ∼2x when e.g., migrating from
an instance with eight cores (c5.4xlarge) to another
with 16 cores (c5.9xlarge). Slightly higher runtime
speedup gains are observed when migrating to the largest
c5.18xlarge instance, which can be simply explained
by the upgrade provided by having more than double the
number of cores (= 36). A similar speedup scaling behav-
ior was observed when running ADADELTA. Additionally,
Figure 13 depicts the resource-utilization efficiency, calcu-
lated as the ratio between the runtime speedup and the num-
ber of CPU cores present in the employed AWS CPU in-
stances. For each LS method, all CPU instances achieve sim-
ilar resource-utilization efficiencies, which are higher when
no rotatable bonds are present (5tim), achieving ∼1.4x and
∼0.75x when using Solis-Wets and ADADELTA, respec-
tively. For the other complexes (having more than seven
rotatable bonds), such efficiencies become lower but more
stable, i.e., ∼0.3x and ∼0.2x when using Solis-Wets and
ADADELTA, respectively.

While the larger AWS CPU instance (c5.18xlarge) pro-
vided the highest runtime speedup among all multicore CPUs
employed, it is relevant to contextualize its performance
when running AUTODOCK-GPU by comparing it against
high-end GPUs offered by AWS as well. For that pur-
pose, we considered one of the latest AWS GPU-based ma-
chines – i.e., a p3.2xlarge instance – equipped with a
single Volta (V100) GPU card, and costing 3.823 $/hour
in the EU zone (40). Figure 14 shows the much higher
runtime speedups achieved on the p3.2xlarge instance
(a maximum of ∼367x on 4er4) compared to those of
c5.18xlarge (also shown in Figure 13). Furthermore,
Figure 14 compares the economic efficiency yielded on both
instances. This latter metric, calculated as the ratio be-
tween the runtime speedups and their prices, shows that –
despite the slightly higher price-per-hour of p3.2xlarge
(3.823 $/hour) with respect to that of c5.18xlarge
(3.456 $/hour) – the returned gains in terms of the runtime

14 AUTODOCK-GPU

0

5

10

15

20

25

30

35

40

45

1
2
 x

2
.9

 x

2
.1

 x

1
.9

 x

1
.9

 x

2
1

 x

5
.8

 x

4
.2

 x

3
.7

 x

3
.8

 x

4
3
 x

1
3
 x

9
.3

 x

8
.3

 x

8
.4

 x

PDB ID

5tim

2bm2

5wlo

4er4

3er5

Natom

5

33

46

93

108

Nrot

0

7

10

30

31

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.
5

x
0.

4
x

0.
3

x
0.

2
x

0.
2

x

1.
3

x
0.

4
x

0.
3

x
0.

2
x

0.
2

x

1.
2

x
0.

4
x

0.
3

x
0.

2
x

0.
2

x

S
o
lis

-W
e
ts

0

5

10

15

20

25

30

6
 x

1
.3

 x

0
.9

 x

0
.8

 x

0
.8

 x

1
2

 x

2
.5

 x

1
.8

 x

1
.7

 x

1
.6

 x

2
5
 x

6
 x

4
.1

 x

3
.7

 x

3
.6

 x

CPU 8 cores
c5.4xlarge

CPU 16 cores
c5.9xlarge

CPU 36 cores
c5.18xlarge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
78

 x
0.

16
 x

0.
12

 x
0.

10
 x

0.
10

 x

0.
75

 x
0.

16
 x

0.
12

 x
0.

10
 x

0.
10

 x

0.
69

 x
0.

16
 x

0.
11

 x
0.

10
 x

0.
10

 x

A
D

A
D

E
LT

A

CPU 8 cores
c5.4xlarge

CPU 16 cores
c5.9xlarge

CPU 36 cores
c5.18xlarge

Runtime speedup Speedup / # cores

Fig. 13. Performance scalability (left) and resource-utilization efficiency (right), both in terms of the number of CPU cores. The number of LGA runs is 100, and the number
of evaluations is 2,048,000. For each ligand-receptor complex, same program commands were executed on all three CPU instances.

speedup are always higher for GPUs than for CPUs, when
using both LS methods. Therefore, it is worth investing on
larger machines (having more computing resources) for exe-
cuting AUTODOCK-GPU.

Porting AutoDock to other hardware accelerators. The
functional portability of OpenCL can be exploited fur-
ther. For instance, porting AUTODOCK-GPU onto emerg-
ing OpenCL-capable accelerators (which might lack driver
support from the vendor) would be feasible by using open-
source implementations such as POCL (42). Moreover, in
recent years, OpenCL has gained increasing attention from
manufacturers of highly reconfigurable accelerators such as
Field Programmable Gate Arrays (FPGAs). Development
tools and compilers for OpenCL on FPGAs are becoming
more competitive to those of GPUs and CPUs, and are clos-
ing the gap between all these technologies. Although per-
formance portability is still a known issue of OpenCL, our
previous study of AUTODOCK-GPU on FPGAs (43) shows
that this can be mitigated (up to a certain extent) with more
specialized programming styles and patterns.

CONCLUSIONS

This work describes AUTODOCK-GPU, an OpenCL-
accelerated version of AUTODOCK4 running on GPUs, en-
hanced with the ADADELTA gradient-based method used for

local search. We observed improvements of both algorithmic
performance as well as in the evaluation rate.

Algorithmic performance refers to the number of score eval-
uations required to achieve a pre-defined level of solution
quality. This level is based on the score defined by the
AUTODOCK4 scoring function, together with the structural
quality of docked poses (measured by the RMSD from the
native pose). Based on our experiments, the algorithmic im-
provement of ADADELTA over Solis-Wets increases with
the number of rotatable bonds. For a ligand with three or
four rotatable bonds, the algorithmic performance of both
local-search methods is similar. For a ligand with 12 rotatable
bonds, ADADELTA finds correct solutions while performing
only 1/50th of evaluations than Solis-Wets. For a ligand with
20 rotatable bonds, we estimate this reduction to increase to
1/1300. Algorithmic improvements of this magnitude can be
the difference between a successful and a failed docking.

The evaluation rate is the time spent (in µs) per score evalua-
tion. On GPUs, the time spent in a single ADADELTA eval-
uation is 4x - 16x longer than in one Solis-Wets evaluation.
This is because ADADELTA requires the calculation of gra-
dients, which is computationally more expensive.Therefore,
for ligands with a small number of rotatable bonds, the al-
gorithmic advantage of ADADELTA does not outweigh its
increased computational cost. Taking into account both the
time spent per evaluation, as well as the number of evalua-

AUTODOCK-GPU 15

0

50

100

150

200

250

300

350

400

4
3
 x

1
3
 x

9
 x

8
 x

8
 x

2
0

0
 x

2
5
1
 x

3
3
0

 x 3
6
7
 x

3
5
5
 x

PDB ID

5tim

2bm2

5wlo

4er4

3er5

Natom

5

33

46

93

108

Nrot

0

7

10

30

31

0

20

40

60

80

100

1
2
 x

3
.6

 x

2
.7

 x

2
.4

 x

2
.4

 x

5
2
 x

6
6
 x

8
6
 x

9
6
 x

9
3
 x

S
o
lis

-W
e
ts

0

20

40

60

80

100

120

2
5

 x

5
.6

 x

4
.1

 x

3
.7

 x

3
.6

 x

1
2

0
 x

5
4
 x

4
8

 x 5
5

 x

5
1
 x

CPU 36 cores
c5.18xlarge

V100 GPU
p3.2xlarge

0

5

10

15

20

25

30

35

7
 x

1
.6

 x

1
.2

 x

1
.1

 x

1
.0

 x

3
1
 x

1
4
 x

1
2
 x 1

4
 x

1
3
 x

A
D

A
D

E
LT

A

CPU 36 cores
c5.18xlarge

V100 GPU
p3.2xlarge

Runtime speedup Runtime speedup / hour price

Fig. 14. Comparison of runtime speedup (left) and economic efficiency (right) between CPU and GPU instances on AWS: c5.18xlarge and p3.2xlarge, respectively.
The number of LGA runs is 100, and the number of evaluations is 2,048,000. For each ligand-receptor complex, same program commands were executed on both instances.

tions required to produce correct solutions, we estimate that
Solis-Wets is better for ligands with seven or fewer rotatable
bonds, while ADADELTA is better for ligands with eight or
more rotatable bonds.

Regarding runtime improvements, AUTODOCK-GPU
achieves speedups ranging between ∼2x and ∼170x on
GPUs, depending on the hardware specifications of the
accelerator platform, and the local-search method. The
number of ligand atoms also affects runtime speedups, with
larger ligands yielding higher speedups for Solis-Wets,
but lower speedups for ADADELTA. Interestingly, if the
accelerator platform is a multicore CPU, more ligand
atoms always cause a lower speedup, independently of the
local-search method used. This is probably due to less
effective parallelization of fine-grained tasks on CPUs, with
their reduced number (compared to GPUs) of available
processing elements (cores). We found that such tasks can
be parallelized more effectively on GPUs, with their many
(in the order of thousands) fine-grained processing elements.

The accelerator platforms tested in this study were com-
mercial GPUs from different vendors (Nvidia & AMD) that
ranged from low- to high-end devices. Using GPUs with such
different computing capabilities allows potential users to esti-
mate the performance of AUTODOCK-GPU on systems sim-
ilar to those available at their sites. Furthermore, we lever-
aged the portability of OpenCL by using AUTODOCK-GPU

on general-purpose multicore CPUs and showing that it is
still able to provide scalable performance gains. This could
be beneficial in research settings where high-end GPUs are
not available.

Finally, the improvements reported here are very large in
terms of improved computational efficiency. Although other
docking programs exist that implement gradient-based local-
search methods (e.g., AUTODOCK VINA), this work provides
a much faster computation of the AUTODOCK4 scoring func-
tion, adding a new highly efficient tool to the toolbox of
medicinal chemists.

ACKNOWLEDGMENTS. This work was supported by
the National Institutes of Health GMO69832 (to SF), the
AWS Cloud Credits for Research program, and by the
ALEPRONA funding program #57186883 from the Ger-
man Academic Exchange Service (DAAD) and the Peruvian
National Program for Scholarships and Educational Loans
(PRONABEC).

We thank JC Ducom and the HPC facility of The Scripps
Research Institute, as well as AMD Inc. for technical support.
We acknowledge the use of GNU Parallel (44), Matplotlib
(45) and Seaborn (46).

AVAILABILITY. AUTODOCK-GPU is open source under
a GPL licence. Its source code as well as its documentation

16 AUTODOCK-GPU

is available at:
https://autodock.scripps.edu

https://github.com/ccsb-scripps/AutoDock-GPU

REFERENCES

1. Brian K. Shoichet. Virtual screening of chemical libraries. Nature, 432:862–865, 2004.
2. John J. Irwin and Brian K. Shoichet. Zinc - a free database of commercially available com-

pounds for virtual screening. J. Chemical Information and Modeling, 45(1):177–182, 2005.
3. Brian K. Shoichet. Screening in a spirit haunted world. J. Drug Discovery Today, 11(13):

607–615, 2006.
4. Brian K. Shoichet and Brian K. Kobilka. Structure-based drug screening for g-protein-

coupled receptors. J. Trends in Pharmacological Sciences, 33(5):268 – 272, 2012.
5. Virginia A. Kincaid, Nir London, Kittikhun Wangkanont, Darryl A. Wesener, Sarah A. Marcus,

Annie Héroux, Lyudmila Nedyalkova, Adel M. Talaat, Katrina T. Forest, Brian K. Shoichet,
and Laura L. Kiessling. Virtual screening for udp-galactopyranose mutase ligands identifies
a new class of antimycobacterial agents. J. ACS Chemical Biology, 10(10):2209–2218,
2015.

6. Marc-André Elsliger, Ashley M. Deacon, Adam Godzik, Scott A. Lesley, John Wooley, Kurt
Wüthrich, and Ian A. Wilson. The jcsg high-throughput structural biology pipeline. J. Acta
Crystallographica Section F, 66(10):1137–1142, 2010.

7. Jung-Hsin Lin, Alexander L. Perryman, Julie R. Schames, and J. Andrew McCammon. The
relaxed complex method: Accommodating receptor flexibility for drug design with an im-
proved scoring scheme. J. Biopolymers, 68(1):47–62, 2003.

8. Oleg Trott and Arthur J. Olson. Autodock vina: Improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. J. Computational
Chemistry, 31(2):455–461, 2010.

9. Stefano Forli, Ruth Huey, Michael E. Pique, Michel F. Sanner, David S. Goodsell, and
Arthur J. Olson. Computational protein–ligand docking and virtual drug screening with the
autodock suite. Nature Protocols, 11:905–919, 2016.

10. David P. Anderson. Boinc: A system for public-resource computing and storage. In Pro-
ceedings of the 5th IEEE/ACM International Workshop on Grid Computing, Washington,
DC, USA, 2004. IEEE Computer Society.

11. World Community Grid. https://www.worldcommunitygrid.org. accessed Jan-
uary 30, 2019.

12. Daniel J. Mermelstein, Charles Lin, Gard Nelson, Rachael Kretsch, J. Andrew McCammon,
and Ross C. Walker. Fast and flexible gpu accelerated binding free energy calculations
within the amber molecular dynamics package. J. Computational Chemistry, 39(19):1354–
1358, 2018.

13. John E. Stone, David J. Hardy, Jan Saam, Kirby L. Vandivort, and Klaus Schulten. Chapter
1 - gpu-accelerated computation and interactive display of molecular orbitals. In GPU Com-
puting Gems Emerald Edition, Applications of GPU Computing Series, pages 5–18. Morgan
Kaufmann, 2011.

14. John E. Stone, Antti-Pekka Hynninen, James C. Phillips, and Klaus Schulten. Early ex-
periences porting the namd and vmd molecular simulation and analysis software to gpu-
accelerated openpower platforms. In High Performance Computing, Cham, 2016. Springer.

15. Sparsh Mittal and Jeffrey S. Vetter. A survey of cpu-gpu heterogeneous computing tech-
niques. ACM Computing Surveys, 47(4):69:1–69:35, 2015.

16. Evgenij Belikov, Pantazis Deligiannis, Prabhat Totoo, Malak Aljabri, and Hans-Wolfgang
Loidl. A survey of high-level parallel programming models. Technical Report HW-MACS-
TR-0103, 2013.

17. J. Diaz, C. Muñoz-Caro, and A. Niño. A survey of parallel programming models and tools
in the multi and many-core era. IEEE Transactions on Parallel and Distributed Systems, 23
(8):1369–1386, 2012.

18. Garrett M. Morris, Ruth Huey, William Lindstrom, Michel F. Sanner, Richard K. Belew,
David S. Goodsell, and Arthur J. Olson. Autodock4 and autodocktools4: Automated docking
with selective receptor flexibility. J. Computational Chemistry, 30(16):2785–2791, 2009.

19. Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. arXiv, abs/1212.5701,
2012.

20. Francisco J. Solis and Roger J. B. Wets. Minimization by random search techniques. J.
Mathematics of Operations Research, 6(1):19–30, 1981.

21. Ruth Huey, Garrett M. Morris, Arthur J. Olson, and David S. Goodsell. A semiempirical
free energy force field with charge-based desolvation. J. Computational Chemistry, 28(6):
1145–1152, 2007.

22. Garrett M. Morris, David S. Goodsell, Robert S. Halliday, Ruth Huey, William E. Hart,
Richard K. Belew, and Arthur J. Olson. Automated docking using a lamarckian genetic
algorithm and an empirical binding free energy function. J. Computational Chemistry, 19
(14):1639–1662, 1998.

23. Leonardo Solis-Vasquez and Andreas Koch. A performance and energy evaluation of
opencl-accelerated molecular docking. In Proceedings of the 5th International Workshop
on OpenCL, New York, NY, USA, 2017. ACM.

24. OCLADock - OpenCL Accelerated Molecular Docking. https://git.esa.

informatik.tu-darmstadt.de/docking/ocladock. accessed October 10,
2018.

25. The OpenCL Specification. https://www.khronos.org/opencl. accessed October
10, 2018.

26. Imre Pechan and Bela Feher. Molecular docking on fpga and gpu platforms. In Proceedings
of the 21st International Conference on Field Programmable Logic and Applications. IEEE,
2011.

27. Imre Pechan, Béla Fehér, and Attila Bérces. Fpga-based acceleration of the autodock
molecular docking software. In Proceedings of the 6th Conference on Ph.D. Research in
Microelectronics Electronics. IEEE, 2010.

28. OpenCL 2.0 Reference Pages. https://www.khronos.org/registry/OpenCL/

sdk/2.0/docs/man/xhtml. accessed October 10, 2018.
29. Jinghui Zhong, Xiaomin Hu, Jun Zhang, and Min Gu. Comparison of performance between

different selection strategies on simple genetic algorithms. In Proceedings of the Interna-
tional Conference on Computational Intelligence for Modelling, Control and Automation and
International Conference on Intelligent Agents, Web Technologies and Internet Commerce.
IEEE, 2005.

30. Noraini Mohd Razali and John Geraghty. Genetic algorithm performance with different se-
lection strategies in solving tsp. In World Congress on Engineering. IAENG, 2011.

31. Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2 edition, 2006.
32. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv,

abs/1412.6980, 2014.
33. Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumbsch. Structural

relaxation made simple. J. Physical Review Letters, 97(17):170201, 2006.
34. Michael J. Hartshorn, Marcel L Verdonk, Gianni Chessari, Suzanne C Brewerton, Wij-

nand TM Mooij, Paul N Mortenson, and Christopher W Murray. Diverse, high-quality test
set for the validation of protein- ligand docking performance. J. Medicinal Chemistry, 50(4):
726–741, 2007.

35. Yan Li, Li Han, Zhihai Liu, and Renxiao Wang. Comparative assessment of scoring func-
tions on an updated benchmark: 2. evaluation methods and general results. J. Chemical
Information and Modeling, 54(6):1717–1736, 2014.

36. Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig,
Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank. J. Nucleic Acids Research,
28(1):235–242, 2000.

37. Noel M. O’Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch, and
Geoffrey R. Hutchison. Open babel: An open chemical toolbox. J. Cheminformatics, 3(1):
33, 2011.

38. Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Pošík. Compar-
ing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In
Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Com-
putation, New York, NY, USA, 2010. ACM.

39. Pradeep A. Ravindranath, Stefano Forli, David S. Goodsell, Arthur J. Olson, and Michel F.
Sanner. Autodockfr: Advances in protein-ligand docking with explicitly specified binding site
flexibility. J. PLOS Computational Biology, 11(12):1–28, 2015.

40. Amazon EC2 Pricing. https://aws.amazon.com/ec2/pricing/on-demand/, .
accessed January 30, 2019.

41. Amazon Elastic Compute Cloud, User Guide for Linux Instances. https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html, .
accessed January 30, 2019.

42. Pekka Jääskeläinen, Carlos Sánchez de La Lama, Erik Schnetter, Kalle Raiskila, Jarmo
Takala, and Heikki Berg. pocl: A performance-portable opencl implementation. Int. J. of
Parallel Programming, 43(5):752–785, 2015.

43. Leonardo Solis-Vasquez and Andreas Koch. A case study in using opencl on fpgas: Creat-
ing an open-source accelerator of the autodock molecular docking software. In Proceedings
of the 5th International Workshop on FPGAs for Software Programmers, Berlin, Germany,
2018. VDE Verlag GmbH.

44. O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX Magazine, 36
(1):42–47, 2011.

45. J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

46. Seaborn, 10.5281/zenodo.592845.

APPENDIX
Table 5. Upper limits on AUTODOCK-GPU docking parameters (defined in /com-
mon/defines.h).

Upper limit Description (as Value
identifier maximum number of)

ATYPE_NUM Ligand atomic types 22
for smoothing

MAX_NUM_OF_ATOMS Ligand atoms 256
MAX_NUM_OF_ATYPES Ligand atomic types 14

for scoring function
MAX_NUM_OF_ROTBONDS Rotatable bonds 32

MAX_INTRAE_CONTRIBUTORS Intramolecular (pairwise) MAX_NUM_OF_ATOMS *
energy contributors MAX_NUM_OF_ATOMS

MAX_NUM_OF_ROTATIONS Rotations MAX_NUM_OF_ATOMS *
to be performed MAX_NUM_OF_ROTBONDS

MAX_POPSIZE Individuals in a population 2048
MAX_NUM_OF_RUNS Docking runs 1000

MAX_NUM_GRIDPOINTS Grid points per dimension 256

AUTODOCK-GPU 17

Table 6. Constant data structures and their members in AUTODOCK-GPU.

Struct Constant array Element Size Size Size
label struct member datatype definition calculation (Bytes)

A atom_charges float MAX_NUM_OF_ATOMS 4∗256 1024
atom_types char MAX_NUM_OF_ATOMS 1∗256 256

B intraE_contributors char 3∗MAX_INTRAE_CONTRIBUTORS 1∗3∗256∗256 196608
C reqm float ATYPE_NUM 4∗22 88

reqm_hbond float ATYPE_NUM 4∗22 88
atom1_types_reqm unsigned int ATYPE_NUM 4∗22 88
atom2_types_reqm unsigned int ATYPE_NUM 4∗22 88

VWpars_AC float (MAX_NUM_OF_ATYPES * 4∗14∗14 784
MAX_NUM_OF_ATYPES)

VWpars_BD float (MAX_NUM_OF_ATYPES * 4∗14∗14 784
MAX_NUM_OF_ATYPES)

dspars_S float MAX_NUM_OF_ATYPES 4∗14 56
dspars_V float MAX_NUM_OF_ATYPES 4∗14 56

D rotlist int MAX_NUM_OF_ROTATIONS 4∗256∗32 32768
E ref_coords_x float MAX_NUM_OF_ATOMS 4∗256 1024

ref_coords_y float MAX_NUM_OF_ATOMS 4∗256 1024
ref_coords_z float MAX_NUM_OF_ATOMS 4∗256 1024

rotbonds_moving_vectors float 3∗MAX_NUM_OF_ROTBONDS 4∗3∗32 384
rotbonds_unit_vectors float 3∗MAX_NUM_OF_ROTBONDS 4∗3∗32 384
ref_orientation_quats float 4∗MAX_NUM_OF_RUNS 4∗4∗1000 16000

Subtotal size (Bytes) 252528
GRIDS fgrids float MAX_NUM_OF_ATYPES * 4∗16∗2563 1073741824

MAX_NUM_GRIDPOINTS3

Total size (Bytes) 1073994352

Table 7. Additional constant data structures and their members for gradient calcu-
lation in AUTODOCK-GPU.

Struct Constant array Element Size Size Size
label struct member datatype definition calculation (Bytes)

F rotbonds_atoms int MAX_NUM_OF_ATOMS∗ 4∗256∗32 32768
MAX_NUM_OF_ROTBONDS

G rotbonds int 2∗MAX_NUM_OF_ROTBONDS 4∗2∗32 256
num_rotating_atoms_per_rotbond int MAX_NUM_OF_ROTBONDS 4∗32 128

angle float 1000 4∗1000 4000
dependence_on_theta float 1000 4∗1000 4000

dependence_on_rotangle float 1000 4∗1000 4000
Total size (Bytes) 45152

18 AUTODOCK-GPU

