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Scientific literature is replete with descriptions of novel adsorbent materials, making the selection of such adsorbents for gas storage and
separation a trudging task, and often resulting in overlooked materials. Here, we use a high throughput methodology to process a dataset
of 28 000 adsorption isotherms from the NIST adsorption database (ISODB) and generate key performance indicators applicable to ambient
temperature binary separation on 1500 materials in the collection, with 30 adsorbed guests. The procedure is validated against high-quality
laboratory isotherms to confirm the accuracy of the derived indicators. The results are then collated in a powerful online dashboard, which
can be used to explore the binary correlations. Finally, we use this toolchain to scrutinize several challenging and industrially relevant case
studies and highlight some materials which may be promising for further analysis.
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1. Introduction1

A large proportion of the energy consumption of a raw ma-2

terials plant goes into separating various components of the3

product stream. When the physical properties of the com-4

pounds to be separated are nearly identical, their concentration5

is low, or when complex mixtures are present, traditional pro-6

cesses which rely on phase change, like distillation, may be7

prohibitively expensive. Consequently, there are strong incen-8

tives to perfect and implement alternative separation avenues,9

such as adsorption or membrane based processes1.10

In the case of gas separation, the potential use of porous11

materials may bring many-fold improvements in efficiency and12

selectivity. However, the selection process of a suitable material13

for a desired application is limited by the large possibility space14

of existing (or hypothetical) adsorbents. Zeolites, commonly15

employed as adsorbents, come in many real2 and possible316

structures. In the promising field of metal-organic frameworks17

(MOFs), more than 80 000 structures have been experimentally18

identified in the Cambridge Structural Database (CSD)4,5 and19

many more predicted to exist6–8.20

One desirable approach which has recently garnered much21

scientific interest is to predict well-performing materials22

through the use of computation. Such in-silico high through-23

put approaches usually focus on a “bottom-up” approach: to24

model or predict material properties and performance starting25

from their chemical structure, or descriptors thereof. Us-26

ing such methods, possible materials have been identified for27

CO2 capture9–12, Xe-Kr separation13,14 as well as storage of28

CH4,5,15–17 H2
18–20, and O2

21.29

However, these methods cannot yet reliably generate pre-30

dictions of synthesis pathways, thermal and chemical stability,31

or fully take into account structural features such as flexibility,32

defects, crystal size effects or interpenetration. While it may33

be only a matter of time until these challenges are surmounted34

(with promising advances being made22,23), there are likely35

many materials which already exist in the published literature36

Electronic Supplementary Information (ESI) available: one PDF file with all referenced supporting
information, and an animation of the online dashboard.

but have not been considered for the specific function where 37

they would excel. As a relevant example, a recent study has 38

shown that one of the best currently performing thermoelec- 39

tric materials could have been predicted 4 years before it was 40

associated with this application24. 41

This raises the question whether identifying materials for 42

a target separation could be feasible if it would be able to 43

scan all available literature. Associating materials with single 44

descriptive parameters, such as pore volume and surface area, 45

has already been attempted25. However, the task of convert- 46

ing published adsorption data into a searchable database is 47

not trivial, as isotherms are usually given as graphical figures 48

rather than numerical data. Even if it would be possible to 49

infer plot values, the isotherms are reported in a plethora of 50

units, basis and formats. Excellent progress has been made 51

by NIST26 to compile such a database. Currently the NIST 52

isotherm database (ISODB) comprises of more than 28 000 53

isotherms recorded on over 4 000 adsorbent materials, contain- 54

ing mostly MOFs but also zeolites, silicas, and carbons. While 55

some of the datapoints are obtained from simulations, many 56

of the isotherms in the ISODB originate from experiments, 57

and are therefore a true indication of the performance of the 58

real material. 59

The potential of exploring such a comprehensive dataset is 60

clear. However, analysis should be performed carefully. Re- 61

cently, Sholl and co-workers27 have published a report putting 62

into question the reproducibility of isotherms, using CO2 ad- 63

sorption data from the same NIST database. Their findings 64

highlight a large variability inherent to measured isotherms, 65

as on average “one in five CO2 isotherms [. . . ] cannot be 66

used to provide information that is qualitatively reliable about 67

the properties of the material”. A large contribution to this 68

divergence is likely accounted for by the variation introduced 69

through sample preparation and experimental methodology28. 70

However, it is often the case that the most important fac- 71

tor in the repeatability of adsorption isotherms is not the 72

measurement procedure, but the material itself. 73

From a pragmatic, applications standpoint, one can ask 74
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whether it is possible to use the database to identify mate-75

rials of interest for gas separation. In the following work,76

we attempt to further investigate the ISODB dataset using77

high-throughput processing to generate and compare simple,78

one-dimensional key performance indicators (KPI), such as79

initial Henry constant, uptake and working capacity. A pow-80

erful interactive dashboard is constructed to explore the data81

as a function of various adsorbates, pressures and materials.82

Several well-known materials are then highlighted and com-83

pared with controlled laboratory experiments to validate our84

approach. We then attempt to draw conclusions from the85

dataset with respect to various common separations and a86

pressure swing adsorption (PSA) setup in mind.87

2. Materials and methods88

2.1. Isotherm selection and conversion. The entire dataset89

in the NIST adsorption database was downloaded using the90

publicly available API, which yielded ≈28 000 single compo-91

nent isotherms. All further processing of the database was92

performed using the pyGAPS software which was previously93

developed by us29. Data in the ISODB comes from a variety94

of published sources, including experimental and simulated95

isotherms with a variety of adsorbates, temperatures and units.96

In order to narrow down the dataset and ensure comparability97

the following steps were taken.98

• Only isotherms measured with 38 common adsorbates99

were selected, such as simple probes, light hydrocarbons100

and common vapours.101

• Isotherms which could not be converted to mmol g−1
102

vs. bar were discarded. This includes data reported103

on a volumetric material basis, simulation data which is104

reported per unit cell, and fractional coverage isotherms.105

All remaining isotherms were then converted.106

• No isotherms with less than 6 measurement points were107

selected, to ensure enough datapoints for latter processing.108

• Possible outliers were removed by selecting isotherms109

with pressure points under 100 bar, maximum loading un-110

der 100 mmol g−1 and an isotherm temperature of under111

443 K. Any such isotherms are likely errors in the data112

collection process and have little to no physical meaning.113

The process of data collation reduced the number of114

isotherms to ≈ 15 800. A distribution of the isotherms as115

a function of adsorbate and temperature can be found in116

Fig. 1. Isotherms were then selected in a (303 ± 10) K temper-117

ature range. The resulting dataset contains 5800 isotherms118

on 1503 materials with 30 adsorbates. It was assumed that119

this range of temperature does not have a stark effect on120

the amount adsorbed or other isotherm features. It should121

be noted that certain temperature-critical effects, such as122

structural transitions, may be sensitive to this approach.123

2.2. KPI selection. Predicting the separation performance of124

a material starting from pure component isotherms is not125

trivial. Most attempts at creating an universal application126

performance indicator (API) for a PSA separation rely on a127

combination of scalar properties such as: total uptake, working128

capacity, selectivity (approximated or predicted by methods129

such as Ideal Adsorbed Solution Theory), enthalpy of adsorp-130

tion, surface area, etc.30. The performance indicator is often131

further tuned with specific factors to account for the process 132

in question, desired separation efficiency, regeneration cost 133

and other constraints. 134

When working with a variable dataset, overprocessing of 135

the data will propagate errors to an unmanageable degree. We 136

therefore selected KPI which can be calculated directly from 137

a pure component isotherm and are relatively robust. We 138

have chosen three such parameters: initial Henry’s constant 139

KH,i, loading at a single pressure L(p), and working capacity 140

between two pressures WC(p1, p2). 141

The initial Henry constant can serve as a useful metric to 142

evaluate the strength of the interaction between a probe and 143

the adsorption site. What is more, the ratio of two Henry con- 144

stants can be a useful shorthand for estimating the selectivity 145

of a material31. Two possible methods of obtaining the initial 146

Henry constant were considered: linear and virial model fitting. 147

The linear method fits a line to the initial part of the isotherm, 148

more sensitive to the quality of the low pressure data, but 149

applicable to all isotherm types and features, The virial model 150

attempts to fit the entire dataset with a virial isotherm32, 151

then evaluates the resulting function at zero pressure. Full 152

details of the implementation of these methods are available 153

elsewhere29. It was found that both methods produce simi- 154

lar results, as seen in Fig. S1. The slope method was finally 155

selected, as it is generally applicable. Uptake was calculated 156

by using a first order spline to interpolate between isotherm 157

points at various set pressures. No extrapolation above the 158

maximum recorded pressure point was performed. Working 159

capacity is calculated as the difference of two uptakes at differ- 160

ent pressures. These latter KPI can be used as performance 161

metrics when considering the quantity of material required 162

for a separation. Furthermore, for a given pair of gases, the 163

ratio of uptakes can also be a means to highlight materials of 164

potential interest. Including the differential enthalpy of ad- 165

sorption as a KPI, as proposed by Wiersum et al. 30 , would be 166

desirable. However, the isotherms contained in the ISODB do 167

not contain direct enthalpy measurements, and the use of the 168

Clausius-Clapeyron method is susceptible to error. Therefore, 169

no inclusion of this metric was possible. 170

2.3. Data consolidation and outlier detection. The KPI from 171

the previous section were calculated for each isotherm selected. 172

Consolidating the data in order to obtain a single representa- 173

tive point for each material was required. Therefore, for each 174

unique adsorbent the resulting KPI values were first passed 175

through gross outlier rejection, in order to remove any spurious 176

values resulting from non-physical isotherms. As such values 177

outside the 1e± 8 range were removed from further calcula- 178

tions. For robust outlier detection, the interquartile range 179

(IQR) for distributions which had more than 4 datapoints was 180

first calculated. Points were considered outliers if they were 1.5 181

IQR below or above the lower or upper quartile, respectively. 182

For datasets with less than 4 values, no points were considered 183

as outliers. The median of the remaining points was taken 184

as the final KPI value. To give an indication of scale, the 185

standard deviation was used. In the case of materials with a 186

single isotherm, the values were calculated directly. 187

All the processing steps and resulting datasets are avail- 188

able to download as Jupyter notebooks and JSON files on 189

the authors’ GitHub page at https://github.com/pauliacomi/ 190

separation-explorer. 191
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Fig. 1. A graphical description of the NIST ISODB dataset: the selected 15800 isotherms presented per adsorbate used and temperature at which the measurement took place.
Colour represents number of isotherms on a log scale.

3. Results and discussion192

3.1. Isotherm reliability. As it was clearly shown in the report193

by Sholl and co-workers27, inherent variability exists in pub-194

lished adsorption data. This reproducibility issue can also be195

seen in an analysis of specific surface area as calculated from196

nitrogen physisorption at 77 K (available in the SI). There-197

fore, for the employed processing methods to be trusted, the198

statistical approach detailed in the methods section should199

first be validated. For this purpose, we have used an internal200

isotherm database from the MADIREL lab, which contains201

collated results from our previous work and can be considered202

a high-quality reference. Most of these isotherms come from203

the work of Wiersum et al. 30 . Our database consists of ≈ 450204

isotherms measured on prototypical materials with various205

simple probe gases and light hydrocarbons.206

First, the databases were cross-referenced to find measure-207

ments with the same probes on materials present in both208

datasets. Then, the same KPI calculation methods and deriva-209

tion of single-point values were applied to the MADIREL-210

derived isotherms as to the NIST dataset. The common211

datapoints are displayed in Fig. 2.212

It can be seen that the two KPI correspond surprisingly well.213

An obvious spurious point appears in butane adsorption on214

CuBTC, but otherwise a good correlation is seen between the215

two databases. While this validation does not test all materials,216

it gives a good indication that the statistical methods we have217

applied can be considered adequate for most cases.218

3.2. Dashboard. Exploring such a large dataset is difficult with219

conventional methods. We have therefore constructed an220

interactive dashboard, which can be used to sift through the221

resulting relationships. The dashboard is accessible online222

at https://separation-explorer.herokuapp.com and can also be223

downloaded and executed locally from the previous GitHub224

Fig. 2. Comparison between KPI calculated on the basis of the internal MADIREL
dataset and the materials from the NIST database. Colours denote gases, while
marker shape denotes material. Error margins are not displayed.

link. To operate, the user selects two probes from the list of 225

available adsorbates. The dashboard then creates a table of 226

all corresponding materials, as well as graphs of the previously 227

discussed KPI. A snapshot of the CH4 and CO2 correlation 228

is presented in Fig. 3. Each point represents the median KPI 229

value for one material. Points only appear when both KPI 230

are available for each gas selected. The colour of the points is 231

used to indicate the number of datapoints it represents, with 232

grey points signifying values calculated from a single isotherm 233

on each material. 234

The dashboard allows for a high level of interactivity. Hov- 235

ering over a point will display the material name, as well 236

as details about its dataset. One or multiple points can be 237

P. Iacomi et al. Preprint | August 13, 2019 | 3

https://separation-explorer.herokuapp.com


Fig. 3. Separation explorer dashboard overview of the CO2/CH4 dataset. Top left: the table of all materials with at least one point on display, sorted by ratio of Henry constants.
Top right: Henry constant correlation. Bottom left: uptake correlation at 10 bar pressure, value user-selectable in the slider beneath. Bottom right: working capacity in the 1 bar
to 15 bar pressure range, similarly selectable. Colour of the points is representative of the number of isotherms available per material, with grey denoting only one datapoint for
each gas. The NaN points are a result of no data being available for the material in the working pressure range.

P. Iacomi et al. Preprint | August 13, 2019 | 4



selected directly from the table or the graphs in order to dis-238

play the confidence range of the KPI as well as the material239

name. The hovered or selected material is highlighted in all240

relationships, to allow for an overview of its performance.241

The pressure at which uptake is calculated, as well as the242

pressure range in which working capacity is determined is user-243

selectable through the sliders under the respective graphs. The244

KPI at the selected pressure are displayed on-the-fly which245

allows to track their evolution at various increments. An246

example of such an animation can be seen in Supplementary247

Video 1.248

If one material is selected, the isotherms which were used to249

calculate the respective KPI for each adsorbate are displayed250

below the dashboard, together with the median calculated251

uptake. The user can click on an isotherm to follow the link252

to the respective ISODB page of the publication.253

Besides displaying the results in a graphical form, two per-254

formance indicators geared towards separation are calculated255

for the selected gases and displayed in the table next to each256

material. The simplest indicator is the ratio of the two Henry257

constants, as an estimation for the selectivity of the material258

towards the two gases as proposed by Knaebel31. A PSA selec-259

tion parameter is also calculated, similar to the one described260

by Rege and Yang 33 , but using the Henry constant ratio in261

place of the selectivity.262

SP SA = WC1

WC2
α12 ≈ WC1

WC2

KH,1

KH,2

The list can be sorted in order to highlight adsorbents which263

may be well suited for a separation according to these indica-264

tors.265

3.3. Case studies for varius separations. After validating the266

processing methodology and developing a toolset to explore267

the database from a binary separation perspective, we now268

turn to several case studies to exemplify the insights that can269

be extracted. We also attempt to highlight materials with270

known separation performance, as well as some less explored271

alternatives.272

3.3.1. CO2/CH4. Observing the graphs displayed in Fig. 3, we273

can discern several self-evident trends. The adsorption of274

CO2 clearly takes precedence over that of CH4 in nearly all275

materials. This is to be expected, due to the quadrupole276

moment of former molecule and the relatively non-specific277

dispersion interactions of the latter.278

The top 10 best performing materials as ranked by Henry279

constant ratio and the PSA selection parameter calculated280

between 1 and 5 bar are displayed in Fig. 4. Unsurprisingly,281

many zeolites, such as Zeolite LS-Ca-KFI or Zeolite NaX are282

highlighted as top performers when considering the ratio of283

Henry constants. It is well known that such materials are284

promising for carbon capture from natural gas9 due to their285

strong interaction with CO2. When considering the PSA selec-286

tion parameter, which also takes into account working capacity,287

zeolites are less desirable due to the small uptake difference288

between ambient pressure and higher pressures. Here, several289

amine-functionalised mesoporous MCM-41 materials emerge290

as possible candidates due to their high capacity for CO2291

adsorption compared to N2.292

In both graphs, the MIL-53 family of materials is seen to293

perform very well, which can be traced to to their flexible294

Fig. 4. The top 10 materials for CO2-CH4 separations as ranked by the ratio of Henry
constants (left) and the PSA selection parameter (right). Material labels are taken
directly form the ISODB.

gate-opening behaviour. For example, in the iron variant MIL- 295

53(Fe)34, the CO2 opening step occurs at 5 bar while CH4 296

does not re-open the structure at this pressure. It should be 297

noted that the top performing material designated as “MIL-53” 298

in Fig. 4 is actually the amino-terephtalic acid linker variant, 299

or MIL–53 (Al)–NH3
35. 300

One further material which appears to show good perfor- 301

mance according to both predictors is Sr-UPRM-5, a flexible 302

titanium silicate templated either with tetrapropylammonium 303

(TPA) or tetrabutylammonium (TBA), originally reported by 304

Marcano-González et al. 36 and herein referred to as TPA- 305

Activated or TBA-Activated, respectively. 306

3.3.2. C3H6/C3H8. The difficulty of thermodynamic separation 307

of a propane/propylene mixture can be discerned from the 308

KPI correlation observed in Fig. 5. Both the Henry constant 309

and the uptake at 0.5 bar are fairly closely matched. 310

Fig. 5. Correlation of Henry constant (left) and uptake at 0.5 bar (right) for propane
and propylene, with several highlighted materials. Lines are guide for the eye at
x = y.

Here, we can highlight three materials which are selective 311

towards propylene: CuBTC, TO-MOF and ZnBuPBDC. It 312

is well known that CuBTC preferentially adsorbs the unsatu- 313

rated component due to the strong interaction of its copper 314

paddlewheel with the double bond37. The second material is 315

part of an isostructural series of pillared MOFs tuned for ki- 316

netic separations of propylene/propane mixtures38. However, 317

it is worth pointing out that, to our knowledge, no study of the 318

separation performance of ZnBuPBDC was ever performed39. 319
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Another observation can be made by noting that an inverse320

selectivity can be seen in ZIF-7, where propane is preferen-321

tially adsorbed over propylene40, predicted by its location in322

the lower right quadrant of the Henry constant correlation.323

It should also be specified that the calculated KPI take into324

account only equilibrium isotherms. Therefore, any kinetic325

effects cannot be assessed, and are indeed more likely to lead326

to well-performing materials.327

3.3.3. Contaminants in post-combustion carbon capture. Traces of328

water or sulphur and nitrogen oxides (SOX/NOX) in flue gas329

have a profound impact on post-combustion carbon capture.330

Due to strong interactions with the adsorbent material and331

poor regenerability, such contaminants are detrimental to CO2332

adsorption performance. Indeed, this can be visualised by333

comparing the KPI for the desired adsorbed component and334

such contaminants. If selecting H2O/CO2 we can observe335

that the initial Henry constant ratio is above unity for 80%336

of materials. This suggests a preference for water adsorption337

over carbon dioxide. When the two components are SO2/CO2,338

there are no ratios below 2.339

Fig. 6. Correlation of Henry constant (left) and uptake at 1 bar (right) for H2O and
CO2, with MIL-47(V) highlighted. Most materials are seen to have a preference for
water.

If considering materials which have a low selectivity for340

CO2, it may be possible to identify adsorbents which could341

be well suited for impurity-rich inlet streams. Here, we can342

highlight MIL-47(V),41 as a MOF which appears to show a343

weaker affinity towards water. It should be noted that the344

only water isotherm available originates from a simulation345

study42.346

4. Conclusions347

In this work we have shown that processing the NIST dataset348

can allow for significant insight into the performance of pub-349

lished materials for specific separations. By comparing the350

ISODB dataset against an internal high-quality standard, we351

prove that the variability present in publication data does352

not broadly affect the calculation of KPI such as Henry con-353

stant, uptake or working capacity. The obtained indicators354

were then incorporated in an online dashboard, which allowed355

visual exploration of the material performance and trends of356

various applications.357

It should be noted that this study can only highlight a nar-358

row range of existing materials for cherry-picked applications,359

with undoubtedly many more which may be of interest for360

different topics. We encourage the reader to explore the online361

dashboard at their own convenience.362

As the methods of text scraping and digitisation improve, 363

the amount of experimentally-derived data available for further 364

processing will only increase. With a more powerful statistical 365

approach or a selected subset of isotherms like the internal 366

MADIREL database, more complex processing may be per- 367

formed, such as prediction of binary separation selectivity 368

through Ideal Adsorbed Solution Theory. In the future, we 369

can also envisage a combined approach that would use such 370

real-world dataset processing to validate the in-silico high 371

throughput simulation methods currently employed. 372
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