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Abstract

The incorporation of mutual polarization in multiscale simulations where different

regions of the system are treated at different level of theory is important in stud-

ies of, for example, electronic excitations and charge transfer processes. We present

here an energy functional for describing a quantum mechanics / molecular mechanics

(QM/MM) scheme that includes reciprocal polarization between the two subsystems.

The inclusion of polarization alleviates shortcomings inherent in electrostatic embed-

ding QM/MM models based on point-charge force fields. A density functional theory

(DFT) description of the QM subsystem is coupled to a single center multipole ex-

pansion (SCME) description of H2O molecules in the MM subsystem that includes

anisotropic dipole and quadrupole polarizability as well as static multipoles up to and

including the hexadecapole. The energy functional and the coupling scheme is general

and can be extended to arbitrary order in terms of both the static and induced mo-

ments. Tests of the energy surface for the H2O dimer show that the QM/MM results lie
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in between the pure DFT and pure SCME values. The consistency of the many-body

contributions to the energy and analytical forces is demonstrated for an H2O pentamer.

1 Introduction

The basic principle in multiscale methods is a compromise between computational cost, accu-

racy, and transferability by combining two (or more) levels of theory for different parts of the

simulated system. The more sophisticated model is used to describe the region of the system

where the main part of the chemical/physical processes take place while the less sophisticated

model describes the remainder of the system needed to include the effect of the surroundings.

Often, the more sophisticated model involves calculating the electronic structure (quantum

mechanics, QM), while the less sophisticated model is based on a (semi)empirical potential

energy function (molecular mechanics, MM). This class of multiscale methods is usually

referred to as quantum mechanics / molecular mechanics (QM/MM). After the pioneering

work of Levitt, Warshel,1 and Karplus, the methodology for combining electronic structure

methods and potential energy functions in this way has been developed further in many

ways,2–21 and applied to a variety of problems in several scientific fields. While the initial

formulation and some subsequent advances included the effect of polarization of the MM

subsystem, this effect is usually not included in QM/MM simulations.

The present work seeks to remedy this by providing a general formulation for the coupling

of a QM model with a single center multipole expansion (SCME) polarizable force field for

molecules in the MM region. Here, the SCME describes H2O molecules.22,23 First, a brief

outline of the relevant background leading up to this work is given. Then, the SCME model

is reviewed in the context of multiscale schemes, followed by a formulation of the mutual

polarization of the QM and MM regions including analytical expressions for the atomic

forces. The third part describes the non-electrostatic/induction interactions at the QM/MM

interface. An assessment of the accuracy of the energetics and forces is provided by studies

2



of the water dimer. In an accompanying article, more extensive tests including liquid water

and H2O clusters are presented.24

2 Background

The QM/MM approach has been used extensively in studies of biochemical systems14,25–27

such as enzyme-based catalysis28 and medicine29 where the division into subsystems typically

cuts covalent bonds. Other important application areas are photochemistry30 and solvation

dynamics31–34 where subdivision can be made without cutting covalent bonds, e.g. between

the first and second solvation shells, or between solute and solvent. Likewise, theoretical

studies of heterogeneous electrocatalysis can benefit from a QM/MM approach to include

electrolyte structure and solvation effects in a more complete manner than is typically done

so far.35–41

Thanks to the continued development of exchange-correlation functionals in the past

decades, Kohn–Sham density functional theory42,43 (KS-DFT) has become an essential work-

horse in modern day computational chemistry and solid-state physics,44 and is thus also a

common choice for multiscale methods.14,45–50 While calculations of large, condensed phase

systems are usually limited to the generalized gradient approximation (GGA)and thereby

relatively low accuracy in many cases, the use of a QM/MM scheme opens the possibility of

using more accurate functionals for just the QM region.

Most commonly applied MM force fields are based on fixed charges on atomic centers

or charge sites.51–54 The parametrization of these models is often carried out in such a way

that a few thermally averaged bulk properties are reproduced by the model. Point charge

models are convenient choices for multiscale simulations since the electrostatic interaction

coupling to a QM system is then quite simple. The static partial charge values assigned to

the MM atoms do not allow for polarization of the MM subsystem. Therefore, they have

limited applicability beyond the physical conditions (such as pressure or temperature) and
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types of systems from which their parameters are derived. The H2O molecule is a notable

and important example, having a dipole moment of 1.8 D in gas phase and 3.1 D in ice Ih.55

The interaction between H2O is therefore strongly dependent on the local environment. The

electrical field around a water cluster and within ice obtained from a fixed, point charge

model fitted to liquid water has been shown to be inconsistent with results obtained from

electronic structure calculations.56

One way to improve the static charge models is to include explicit and self-consistent

polarization by (1) allowing the charge values at atomic sites to vary, or (2) by introducing a

molecular or atomic dipole as modeled by charges connected with springs (Drude oscillators),

or (3) through a more rigorous framework based, for example, on a perturbative decompo-

sition of quantum mechanical interactions57 – resulting in the multipole moment expansion.

The fragments within these models naturally adjust their representations of charge densities

to the electrostatic environment, and hence have the potential to be more transferable to

heterogeneous environments as well as be able to provide an accurate response to changes

due to chemical reactions and charge transfer processes. The molecular moment tensors and

polarizabilities as defined from the perturbative expansion are well defined quantities, and

can be extracted from high level quantum chemistry calculations or, in some cases, from

experiments.

Many models of polarizability exist,58–60 and extensive work has been done to utilizing

them in multiscale methodologies, to produce polarizable embedding (PE-) QM/MM meth-

ods.61–92 Originally, these efforts mainly focused on excited electronic states and Hartree-Fock

or configuration interaction methods,61,62,93 where the quantum chemical wave-function and

the polarizable sites are variationally relaxed in a mutual fashion. Further development

extended the efforts to more sophisticated quantum chemistry wave-function methods such

as coupled cluster,70–75,89 or time-dependent density functional theory.70,76–84,90 It is evi-

dent from the literature that PE-QM/MM is mostly scrutinized in the context of electronic

excitations.61,73,75–77,80–83,85,87,89,90,94 However, systems involving highly polar species,62,76,81
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inter- and intramolecular charge transfer,61,87,95 biological reaction centers,73,74,83,85 as well

as solvated ionic and small molecular systems have also been studied.63,74,76,78,91–93 Here,

we present a formulation and validation of a globally self-consistent polarizable multiscale

method that couples an explicit electronic description to a transferable and polarizable H2O

potential of high accuracy.22,23 The potential is based on a single center multipole expan-

sion (SCME) model and includes static multipole moment tensors up to and including the

hexadecapole. No point charges are included since the expansion is around a single center

in each of the neutral molecules. Furthermore, induced dipoles and induced quadrupoles

in response to both the electric field and the electric field gradient are included, whereas

commonly only dipole-induction is included. In contrast to isotropic atomic polarization

sites that have most frequently been used in PE-QM/MM methods, the present formula-

tion includes molecular anisotropic polarizability, a well defined quantity. Along with the

globally self-consistent scheme, the analytical derivatives with respect to the QM nuclear

coordinates and MM sites are presented, which allows for seamless use of the method in

structural relaxation and Born-Oppenheimer molecular dynamics.

In this article, a derivation is given of the self-consistent solution to the coupled QM

and MM energy functional that describes the static electrostatic interactions and mutual

electrostatic polarization. The coupling between the QM and MM parts is handled by the

atomic simulation environment (ASE) python based software.96,97 Electrostatic potentials

and gradients thereof – describing the interaction of the charge density of the QM system

and the multipole moment tensors of the MM system – are implemented in the real-space

grid-based projector augmented wave98 software GPAW.99,100 The self-consistent solution of

the induced moments of the MM system under the influence of the QM system is implemented

in a modified version of the original SCME potential function.22,23 In the following, we limit

the derivation to the point moments provided in the SCME model and do not provide the

specifics of the GPAW Hamiltonian and atomic forces. The Supplementary Information gives

more technical and implementation details.
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3 Single-Center Multipole Expansion

In the SCME model,22,23 the energy due to interaction between the water molecules is split

into two parts

EMM = EMM
ele+ind + EMM

NE (1)

where the first term describes the electrostatic plus induction interaction while the sec-

ond term represents non-electrostatic effects, including repulsive exchange interaction and

attractive dispersion interaction.

In the SCME model, each water molecule, i, is ascribed a dipole (µiα), quadrupole (θiαβ),

octupole (Ωi
αβγ) and hexadecapole (Φi

αβγδ) moment tensor, with origin at the center of mass

(COM). Furthermore, the external field, Vi
α (negative of the electric field), and field gradient,

Vi
αβ – evaluated at the COM of i due to the presence of j(6= i) SCME water molecules –

further induces the dipole, ∆µiα, and quadrupole, ∆θiαβ, moment tensors.57 The induction

terms include dipole–dipole (ααβ), dipole–quadrupole, (Aαβγ), and quadrupole–quadrupole

(Cαβγδ) polarizability such that 1

∆µiα = −ααβVi
β −

1

3
Aα,βγV

i
βγ (2)

∆θiαβ = −Aγ,αβVi
γ − Cγδ,αβVi

γδ (3)

where the external field is additive

Vi
α =

nMM∑
j 6=i

Vij
α (4)

1Throughout this work we make use of the Einstein summation convention. Greek indexes (α, β, . . . η)
represent the set of Cartesian components x, y and z; i.e. α is {x, y, z}, α1 = x, and α = β = · · · = η.

Repeated Greek indexes are to be summed over; for example −ααβVi
β =

∑3
s=1−ααβs

Vi
βs

. Vectors (and
matrices) between points in Cartesian space are naturally represented in terms of the indexes; for example
rα = (rx, ry, rz). Similarly the gadient operator is a vector operator, ∇α = (∇x,∇y,∇z) – and hence expands
a scalar field into a three component vector field, a three component vector field into a three-by-three matrix
field, etc.
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and given by

Vij
α = −Tij

αβ(µjβ + ∆µjβ)+
1

3
Tij
αβγ(θ

j
βγ + ∆θjβγ)

− 1

15
Tij
αβγδΩ

j
βγδ+

1

105
Tij
αβγδεΦ

j
βγδε (5)

Here we have introduced Coulomb interaction tensors between COM pairs i and j at Carte-

sian coordinates ri and rj where the zeroth order tensor is

T ij =
1

r
=

1

|ri − rj| (6)

and higher orders are given by the successive use of the gradient operator ∇α

∇αT
ij = Tij

α , ∇βT
ij
α = Tij

αβ, ∇ηT
ij
αβ... = Tij

αβ...η (7)

where

∇α =
∂

∂rα
=

(
∂

∂rx
,
∂

∂ry
,
∂

∂rz

)
(8)

and rα = (ri − rj)α. Similarly, the field gradient in equations (2) and (3) is given by

Vi
αβ = ∇βV

i
α.

This nonlinear scheme between equations (2)–(5) is solved iteratively since the induction

of the dipole and quadrupole moment tensors results in a change in the external field and

field gradient at the COM of the other j( 6= i) molecules, and vice versa.

The relationship between the external field in equation (5) and induced moments in

equations (2)-(3) is a general result for linearly induced moments where the internal energy

change required to induce the moments depends bilinearly on the on-site potential. By
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solving57,101

∂EMM
ele+ind

∂∆µiα
= 0 (9)

∂EMM
ele+ind

∂∆θiαβ
= 0, (10)

the resulting electrostatic plus induction energy functional becomes

EMM
ele+ind =

1

2

nMM∑
i

(
(µiα + ∆µiα)Vi

α +
1

3
(θiαβ + ∆θiαβ)Vi

αβ +
1

15
Ωi
αβγV

i
αβγ +

1

105
Φi
αβγδV

i
αβγδ

)
− 1

2

nMM∑
i

(
∆µiαV

i
α +

1

3
∆θiαβV

i
αβ

)
=EMM∗

ele+ind +

nMM∑
i

EMM,i
self (11)

where the first term on the right hand side describes the intermolecular electrostatic energy

of the static and induced moments. The second term on the right hand side is a self-energy

term that accounts for the energy required to distort a ground state charge density (whose

multipole expansion results in the static moment tensors) to a polarized charge density

(whose multipole expansion results in the static plus induced moment tensors) for each

MM molecule in the system. A generalization of the interaction between linearly induced

moments and resulting self-energy terms can be found elsewhere.101

It is customary to write the energy expression in equation (11) at self-consistency as

EMM
ele+ind =

1

2

nMM∑
i

(
µiαV

i
α +

1

3
θiαβV

i
αβ +

1

15
Ωi
αβγV

i
αβγ +

1

105
Φi
αβγδV

i
αβγδ

)
(12)

since there is a net cancellation between the self-energy and the intermolecular induced-static

and induced-induced electrostatic interactions. However, they cannot be assumed to simply

cancel out in a mutually polarizable QM/MM interface. A distinction is made made between

the total electrostatic plus induction and the intermolecular (or interspecies) electrostatic
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interaction plus induction with an asterisk, and the general form of equation (11) is used

throughout.

4 Global Interaction

In order to arrive at a self-consistent model for the mutual polarization of the QM subsystem

and MM subsystem, we start by considering the interaction of the total system in a global

reference frame, chosen to be an orthorhombic box with a left handed Cartesian coordinate

system with origin at a box corner. The reference frame encompasses both the MM and QM

subsystems and has a total charge density ρ(r)

ρ(r) =

nsys∑
i

ρi(r) = ρQM(r) + ρMM1(r) + ρMM2(r) + . . . (13)

where i runs over all nsys charge densities in the system, and includes both the charge density

of the QM subsystem and conceptual charge densities in the MM subsystem, one for each

SCME molecule. The energy functional of the total system can then be written as

Esys
tot [ρ(r)] = EKS[ρQM(r)] + Esys

int [ρ(r)] (14)

where EKS[ρQM(r)] is the conventional KS–DFT energy functional of the QM charge density,

and Esys
int [ρ(r)] is a global interaction energy functional of the total charge density.

The QM energy functional is

EKS[ρQM(r)] = T [{ψQM}] + ECoul[ρQM(r)] + Exc[nQM(r)] +

∫
ρQM(r)Vext(r)dr. (15)

It contains a kinetic energy term of the non-interacting KS single particle states, {ψQM}, a

Coulomb term of the charge density, an exchange–correlation term that depends on the QM

electron density, nQM(r), and, for now, some arbitrary external potential term, Vext(r). A
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corresponding Hamiltonian is defined as

HKS
tot = HKS + Vext (16)

The global interaction term that couples the different charge densities is furthermore split

into two contributions

Esys
int [ρ(r)] =Esys

ele+ind[ρ(r)] + Esys
NE

an electrostatic plus induction term that depends on the total charge density, and a non-

electostatic term that does not depend on the charge density. It is assumed that the elec-

trostatic plus induction energy functional splits into two contributions

Esys
ele+ind[ρ(r)] = Esys∗

ele+ind[ρ(r)] +

nMM∑
i

EMM,i
self [ρ(r)] (17)

along the same lines as the energy expression in equation (11) for the linearly induced

moments of the MM system.

A total energy expression for the system is now written as

Esys
tot [ρ(r)] = EKS[ρQM(r)] + Esys∗

ele+ind[ρ(r)] +

nMM∑
i

EMM,i
self [ρ(r)] + Esys

NE (18)

Thus, it is apparent that a self-consistent solution of the QM charge density simultaneously

minimizing the KS-DFT energy functional and the total energy functional depends on the

self-consistent solution of the MM charge densities and the corresponding self-energy, and

vice versa.
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4.1 Electrostatic Multipole Embedding Model

We at first consider the static case where all of the individual charge densities are decoupled

(i.e. are in their ground state) and non-overlapping, and assume that the global intermolec-

ular electrostatic plus induction can be separated into two terms

Esys∗
ele+ind[ρ(r)] = Esys

ele [ρ(r)] + Esys∗
ind [ρ(r)] (19)

In terms of the total charge density, the electrostatic interaction can be written as

Esys
ele [ρ(r)] =

1

2

nsys∑
i

nsys∑
j 6=i

∫ ∫
ρi(r)ρj(r

′)

|r− r′| drdr′ (20)

The partial derivative of the electrostatic interaction leads to

∂Esys
ele [ρ(r)]

∂ρl(r′′)
=

nsys∑
j 6=l

∫
ρj(r

′)

|r′′ − r′|dr
′ (21)

expressing the electrostatic interaction potential V l(r′′) at some arbitrary coordinate r′′ in

the global reference frame. We can choose this charge density to be the explicit QM charge

density, or one of the conceptual charge densities of the MM subsystem and corresponding

coordinate of the COM of a SCME molecule. Choosing the latter we can write the potential

at site i due to all of the other j(6= i) charge densities as

V i =

nsys∑
j 6=i

V ij (22)

V ij =

∫
ρj(r)

|ri − r|dr (23)

where the shorthand abbreviation V i(ri) = V i is used. Isolating the term due to the QM

charge density gives

V i = V iQM +

nMM∑
j 6=i

V ij. (24)
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A Taylor expansion of the potential at site i due to a charge density associated with MM

molecule j in the V ij term leads to57

V ij = −Tij
αµ

j
α +

1

3
Tij
αβθ

j
αβ −

1

15
Tij
αβγΩ

j
αβγ +

1

105
Tij
αβγδΦ

j
αβγδ (25)

which is expressed in terms of interaction tensors and the multipole moment tensors asso-

ciated with each MM molecule. This Taylor expansion in turn expresses the electrostatic

potential acting on the QM charge density due to the MM subsystem

∂Esys
ele [ρ(r′)]

∂ρQM(r)
=

∂

∂ρQM(r)

nMM∑
j

∫
ρQM(r′)V r′jdr′ =

nMM∑
j

∫
δ(r− r′)V r′jdr′

=

nMM∑
j

(
−Trj

α µ
j
α +

1

3
Trj
αβθ

j
αβ −

1

15
Trj
αβγΩ

j
αβγ +

1

105
Trj
αβγδΦ

j
αβγδ

)
=V

QM/MM
ele (r) (26)

where the zeroth order tensor is in this case T rj = 1/(|r − rj|). Using all of the above, the

electrostatic interaction of the system can be expressed as

Esys
ele [ρ(r)] =

∫
ρQM(r)V

QM/MM
ele (r)dr

+
1

2

nMM∑
i

nMM∑
j 6=i

(
µiαV

ij
α +

1

3
θiαβV

ij
αβ +

1

15
Ωi
αβγV

ij
αβγ +

1

105
Φi
αβγδV

ij
αβγδ

)
=E

QM/MM
ele [ρQM(r)] + EMM

ele . (27)

The global electrostatic interaction splits into an explicit QM/MM electrostatic interaction

– written in terms of the QM charge density and the Cartesian multipole moments of MM

molecules – and an explicit MM electrostatic interaction.
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At this stage the energy functional can be written as

Esys
tot [ρ(r)] = EKS[ρQM(r)] + E

QM/MM
ele [ρQM(r)] + Esys∗

ind [ρ(r)] + EMM
ele +

nMM∑
i

EMM,i
self [ρ(r)] + Esys

NE

(28)

and what is left to be described is the global induction interaction, which includes the

interspecies QM/MM and intermolecular MM/MM induction interactions and corresponding

self-energy of the MM subsystem.

4.2 QM/MM Induction Model

The evaluation of the induction involves two self-consistent cycles that are coupled. One

cycle is for the MM subsystem as described in Section 3. The second is for the quantum

mechanical system where a conventional iterative self-consistent field (SCF) method is used

to solve for the electron density that minimizes the KS–DFT energy functional, equation

(15). These two cycles are analogous in the sense that they are both based on the SCF

approach, hence cycle one is referred to as MM-SCF, and cycle two as QM-SCF. The idea of

coupling two different SCF cycles is not new and was first introduced in pioneering work on

PE-QM/MM.61 The SCF solver for the combined system is referred to as QM/MM-SCF.

In order to couple the two SCF solvers the relevant potentials and gradients thereof are

included in the self-consistent equations of the MM-SCF solver, such that the induced mo-

ments are polarized by the QM charge density. Similarly, for the QM-SCF, a self-consistent

solution involves diagonalizing the KS–DFT Hamiltonian corresponding to equation (15)

(HKS + V
QM/MM
ext ) |ψm〉 = εm |ψm〉 (29)

where V
QM/MM
ext includes both the electrostatic plus induction interaction as defined in this

section. In analogy to the classical variational condition of equations (9) and (10), the
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stationary point satisfies

∂EKS[ρQM(r)]

∂ 〈ψm|
= 0. (30)

The computational cost of reaching self-consistency for the MM-SCF is small compared

to the QM-SCF, so before coupling the two subsystems the MM-SCF is iterated until it

reaches the stationary point of the MM energy functional, equation (11). The MM moments

are

µi
′

α =µiα + ∆µiα (31)

θi
′

αβ =θiαβ + ∆θiαβ. (32)

At this stage the QM and MM subsystems are coupled, and from the point of view of the QM

subsystem the MM point moments in equations (31) and (32) are fixed, hence the QM/MM

electrostatic interaction energy is

E
QM/MM
ele [ρQM(r)] =

∫
ρQM(r)

nMM∑
j

(
−Trj

α µ
j′

α +
1

3
Trj
αβθ

j′

αβ −
1

15
Trj
αβγΩ

j
αβγ +

1

105
Trj
αβγδΦ

j
αβγδ

)
dr.

(33)

Similarly, from the point of view of the MM subsystem, there is a non-uniform field due to

the presence of the QM charge density. This can be expressed as an additional potential at

each MM site i as

V iQM =

∫
ρQM(r)T irdr (34)

with external field and field gradient

ViQM
α =

∫
ρQM(r)

(
− 1

r3
rα

)
dr =

∫
ρQM(r)Tir

α dr (35)

ViQM
αβ =

∫
ρQM(r)

(
3

r5
rαrβ −

δαβ
r3

)
dr =

∫
ρQM(r)Tir

αβdr. (36)

The instantaneous response of the MM sites to the additional potential has two effects. First,
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the induced moments as a result of the QM external field and field gradient will be

∆µiQM
α = −ααβViQM

β − 1

3
Aα,βγV

iQM
βγ (37)

∆θiQM
αβ = −Aγ,αβViQM

γ − Cγδ,αβViQM
γδ (38)

so the interspecies electrostatic plus induction interaction energy of the QM/MM system

becomes

E
QM/MM∗
ele+ind [ρQM(r)] =

∫
ρQM(r)

nMM∑
j

(
−Trj

α (µj
′

α + ∆µjQM
α ) +

1

3
Trj
αβ(θj

′

αβ + ∆θjQM
αβ )

− 1

15
Trj
αβγΩ

j
αβγ +

1

105
Trj
αβγδΦ

j
αβγδ

)
dr. (39)

Secondly, the self-energy of the MM sites also changes due to this instantaneous polarization

in a way that depends bi-linearly on the on-site potential101

E
QM/MM
self [ρQM(r)] = −1

2

nMM∑
j

(
∆µjQM

α VjQM
α +

1

3
∆θjQM

αβ VjQM
αβ

)
. (40)

In this way, the total QM/MM electrostatic plus induction energy is defined as

E
QM/MM
ele+ind [ρQM(r)] = E

QM/MM∗
ele+ind [ρQM(r)] + E

QM/MM
self [ρQM(r)]. (41)

The induced moments in equations (37) and (38) are now fixed, and by using the expres-

sion above, the form of the external potential that couples the MM subsystem to the QM
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subsystem becomes

V
QM/MM
ext (r) =

∂E
QM/MM
ele+ind [ρQM(r)]

∂ρQM(r)

=

nMM∑
j

(
Trj
α

(
µj

′

α +
1

2
∆µjQM

α

)
+

1

3
Trj
αβ

(
θj

′

αβ +
1

2
∆θjQM

αβ

)

+
1

15
Trj
αβγΩ

j
αβγ +

1

105
Trj
αβγδΦ

j
αβγδ

)

=V
QM/MM∗
ele+ind (r) + V

QM/MM
self (r) (42)

where the explicit Coulomb interaction with the static and induced MM moments combines

into a single term that includes the cost of inducing the moments – i.e. the self-energy. The

QM/MM interface energy can then be written as

E
QM/MM
ele+ind [ρQM(r)] =

∫
ρQM(r)V

QM/MM
ext (r)dr. (43)

This external potential is a key result, since if the self-energy counterbalancing the explicit

instantaneous polarization is taken into account, the QM and MM subsystems would over-

polarize each other. This term is added to the KS-DFT Hamiltonian of equation (29) and a

single iteration performed with the QM-SCF solver.

After a single QM-SCF iteration the QM charge density is perturbed due to the presence

of the MM moments

ρ′QM(r) = ρQM(r) + ∆ρQM(r). (44)

This is the QM polarization analog of the polarization in the MM subsystem. In the next

step, the induced dipoles and induced quadrupoles are evaluated again, but the potential at

the start of the new MM-SCF cycle now includes the polarized QM charge density and the
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optimized moments of equations (31) and (32) as an initial guess

V i =

∫
ρ′QM(r)T irdr

+

nMM∑
j

(
−Tij

αµ
j′

α +
1

3
Tij
αβθ

j′

αβ −
1

15
Tij
αβγΩαβγ +

1

105
Tij
αβγδΦ

j
αβγδ

)
(45)

The induced moments are at first

∆µiα =− ααβ
(
ViQM
β +

nMM∑
j

Vij
β

)
− 1

3
Aα,βγ

(
ViQM
βγ +

nMM∑
j

Vij
βγ

)
(46)

∆θiαβ =− Aγ,αβ
(
ViQM
γ +

nMM∑
j

Vij
γ

)
− Cγδ,αβ

(
ViQM
γδ +

nMM∑
j

Vij
γδ

)
(47)

giving rise to new MM site-to-site external fields due to the induced moments by virtue

of equation (5). Equations (46)–(47) and (5) are iterated to convergence. At MM-SCF

self-consistency,

µi
′′

α =∆µiQM
α + (µi

′

α) (48)

θi
′′

αβ =∆θiQM
αβ + (θi

′

αβ) (49)

and the resulting MM intermolecular electrostatic plus induction energy is

EMM∗
ele+ind =

1

2

nMM∑
i

nMM∑
j 6=i

(
µi

′′

αV
ij
α +

1

3
θi

′′

αβV
ij
αβ +

1

15
Ωi
αβγV

ij
αβγ +

1

105
Φi
αβγδV

ij
αβγδ

)
. (50)

The potential in the equation above acts between the MM pairs only but it includes the

effects of the QM charge density through the polarized moments as defined in equations (48)

and (49). However, the MM self-energy at each site is given by the total external field and

field gradient at that site

EMM,i
self = −1

2

(
∆µiαV

i
α +

1

3
∆θiαβV

i
αβ

)
. (51)
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This concludes one QM/MM-SCF iteration. A new iteration is then initialized. The

moments in the parenthesis of equations (48) and (49) enter equation (33), and the polarized

QM charge density of equation (44) enters equation (34). This process is continued until

both the QM charge density and the MM induced moments reach a desired convergence

threshold. Figure 1 shows a schematic overview of the PE-QM/MM scheme.

At global self-consistency, the following identity holds

∫
ρ′QM(r)V

QM/MM
ext (r)dr =

nMM∑
i

(
µi

′′

αV
iQM
α +

1

3
θi

′′

αβV
iQM
αβ +

1

15
Ωi
αβγV

iQM
αβγ +

1

105
Φi
αβγδV

iQM
αβγδ

)
− 1

2

nMM∑
i

(
∆µiQM

α ViQM
α +

1

3
∆θiQM

αβ ViQM
αβ

)
(52)

and hence the energy functional of the combined system can be written as

Esys
tot = EKS[ρ′QM(r)] + E

QM/MM
ele+ind [ρ′QM(r)] + EMM∗

ele+ind +

nMM∑
i

(
EMM,i

self − EMM,iQM
self

)
+ Esys

NE (53)

where the fifth term on the right hand side is

EMM,iQM
self = −1

2

(
∆µiQM

α ViQM
α +

1

3
∆θiQM

αβ ViQM
αβ

)
. (54)

It is subtracted from the total MM self-energy such as to not double count this term, as it is

already present in the QM/MM electrostatic plus induction energy expression (equation (40))

as a result of the coupling scheme. Equations (52) is rigorously true at the QM/MM-SCF

stationary point, where the conditions of equations (9)–(10) and (30) are all simultaneously

valid. The energy functional expression in equation (53) is used for the derivation of the

analytical derivatives with respect to both the QM nuclei positions and the COM of the MM

sites. Figure 1 shows the resulting polarizable embedding QM/MM scheme, based on the

energy functional in equation 53.

Note that the total energy functional expression can be simplified further at the QM/MM-
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SCF stationary point by using equations (39), (52) and (54) to give

Esys
tot = EKS[ρ′QM(r)] + E

QM/MM∗
ele+ind [ρ′QM(r)] + EMM∗

ele+ind +

nMM∑
i

EMM,i
self + Esys

NE (55)

such that the interspecies QM/MM and intermolecular MM/MM electrostatic plus induction

interactions are described by the second and third term on the right hand side, and the MM

self-energy is expressed with a single term.

MM-SCF

New density
from potential

QM/MM-SCF

DFT External 
Potential

SCME Total 
Potential

SELF-
CONSISTENT?

Total energy 
and forces

Legend:
DFT
COUPLING
SCME

including terms 
from QM density

Global energy
expression

Including terms from MM
multipoles

Eqn. 42

Eqn. 53

Eqn. 45

Globally induced 
di/quadrupoles

Eqns. 37, 38

SELF-
CONSISTENT?

Eqns. 9, 10

Eqns. 9, 10, 30

No

Yes

Yes

No

Figure 1: Schematic outlining the global self-consistent scheme where a MM-SCF (blue) and
a QM-SCF (red) are coupled, resulting in the QM/MM-SCF cycle (purple). One iteration
of the QM/MM-SCF involves: first, fully self-consistently calculating the induced MM mo-
ments – under the influence of the QM charge density (from a previous iteration) through
an additional static potential at each classical site. Second, using the new updated numer-
ical values of the MM induced moments to evaluate the external potential as derived from
the QM/MM interface energy, equation (41), and iterate the QM-SCF once resulting in a
new QM charge-density polarized by the MM moments. This concludes one QM/MM-SCF
iteration.

4.3 Forces

Analytical expressions for the atomic forces are obtained from the negative gradient of equa-

tion (53) with respect to the position of the MM sites, or the position of the nuclei in the

QM system. Note that expression (55) leads to incorrect expressions for the atomic forces,

which will be adressed in the numerical tests presented later in this work. Consider first a
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QM nucleus, indexed as z

Fz
α =− dEsys

tot

drzα

=− ∂Esys
tot

∂rzα
− ∂Esys

tot

∂∆µiβ

∂∆µiβ
∂rzα

− ∂Esys
tot

∂∆θiβ

∂∆θiβ
∂rzα

− ∂Esys
tot

∂ 〈ψm|
∂ 〈ψm|
∂rzα

(56)

The atomic forces are evaluated at the stationary point of the total energy functional, where

the following conditions apply

∂Esys
tot

∂∆µiα
= 0,

∂Esys
tot

∂∆θiα
= 0,

∂Esys
tot

∂ 〈ψm|
= 0

Hence we only need to explicitly evaluate the first term on the right hand side of equation

(56), which is

Fz
α = −∂E

sys
tot

∂rzα
=− ∂EKS

∂rzα
− ∂

∂rzα

∫
ρ′QM(r)V

QM/MM
ext (r)dr− ∂Esys

NE

∂rzα

=Fz,KS
α + Fz,QM/MM

α + Fz,NE
α (57)

where the total force splits up into three individual components corresponding the KS–

DFT forces, the PE-QM/MM forces, and forces due to the non-electrostatic terms (see

Section 4.4). The first two terms on the right hand side depend on the particular KS-DFT

implementation, and for this implementation in GPAW the analytical forces due to the KS

term are given elsewhere.99,100 The contributions due to the QM/MM coupling are given

explicitly in the Supporting Information.

To evaluate the atomic forces on a MM COM site i, a term corresponding to the first
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term on the right hand side of equation (56) needs to be evaluated

Fi
α = −∂E

sys
tot

∂riα
=− ∂EMM

ele+ind

∂riα
− ∂

∂riα

∫
ρ′QM(r)V

QM/MM
ext (r)dr

− ∂

∂riα

(
EMM,i

self − EMM,iQM
self

)
− ∂ENE

∂riα

=Fi,MM
α + Fi,QM/MM

α + Fi,NE
α (58)

with three components corresponding to MM, QM/MM interface and non-electrostatics

terms. Note that there is no term associated with the self-energy. The proof is presented in

the Supporting Information.

Using the identity in equation (52), the second term on the right hand side is

Fi,QM/MM
α =− ∂

∂riα

nMM∑
j

((
µj

′

β +
1

2
∆µjQM

β

)
VjQM
β +

1

3

(
θj

′

βγ +
1

2
∆θjQM

βγ

)
VjQM
βγ

+
1

15
Ωj
βγδV

jQM
βγδ +

1

105
Φj
βγδεV

jQM
βγδε

)

=−
(
µi

′

β +
1

2
∆µiQM

β

)
ViQM
αβ −

1

3

(
θi

′

βγ +
1

2
∆θiQM

βγ

)
ViQM
αβγ

− 1

15
Ωi
βγδV

iQM
αβγδ −

1

105
Φi
βγδεV

iQM
αβγδε (59)

where the third to fifth order gradients of the electrostatic potential due to the QM charge

21



density are given by

ViQM
αβγ =

∫
ρQM(r)

(
−15

r7
rαrβrγ +

3

r5
(rαδβγ + rβδαγ + rγδαβ)

)
dr (60)

ViQM
αβγδ =

∫
ρQM(r)

(
105

r9
rαrβrγrδ −

15

r7

 rαrβδγδ+ rαrγδβδ+ rαrδδβγ

+rβrγδαδ+ rβrδδαγ+ rγrδδαβ


+

3

r5
(δαβδγδ + δαγδβδ + δαδδβγ)

)
dr (61)

ViQM
αβγδε =

∫
ρQM(r)

(
− 945

r11
rαrβrγrδrε

+
105

r9

 rαrβrγδδε+ rαrβrδδγε+ rαrβrεδγδ+ rαrγrδδβε+ rαrγrεδβδ

+rαrδrεδβγ+ rβrγrδδαε+ rβrγrεδαδ+ rβrδrεδαγ+ rγrδrεδαβ


−15

r7


rαδβγδδε+ rαδβγδγε+ rαδβεδγδ+ rβδαγδδε+ rβδαδδγε

+rβδαεδγδ+ rγδαβδγε+ rγδαδδβε+ rγδαεδβδ+ rδδαβδγε

+rδδαγδβε+ rδδαεδβγ+ rεδαβδγδ+ rεδαγδβδ+ rεδαδδβγ


)
dr (62)

The MM COM force terms due to both the MM-MM interactions and QM/MM interface

interactions have two contributions; the first contribution is an explicit term corresponding to

derivatives of the external field and gradients thereof (as shown above); and the second term

is an implicit one depending on the rotation used to define the MM moment tensors in the

global reference frame relative to the local frame for each MM COM site. The implicit terms

(often referred to as the torque) are outside the scope of this work, as well as redistribution

of the COM forces onto the atomic positions of each MM water molecule. This is described

in the original SCME work.22,23 A brief summary on the derivatives of commonly used local

frames and associated rotation operations can be found elsewhere.102
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4.4 Non-electrostatic Interactions

The non-electrostatic interactions in the QM/MM interface are split into two contributions,

repulsion and dispersion

ENE = Erep + Edisp (63)

The dispersion and repulsion interactions between QM and MM molecules are taken to be the

same as in SCME22,23 with a physically justifiable change to the phenomenological repulsion

function as discussed below. The interactions are centered on the oxygen atoms of the QM

and MM molecules, so the distance r refers to the O-O distance, r = |riO − rjO|, between

molecular pairs ij. ntot = nQM +nMM, where nQM refers to the number of QM oxygen in the

combined system.

The dispersion energy is

Edisp = −
ntot∑
i

ntot∑
j<i

(
C6

r6
g6(r) +

C8

r8
g8(r) +

C10

r10
g10(r)

)
(64)

with isotropic coefficients up to tenth order. This series corresponds to second-order per-

turbation correlation between dipole–dipole, dipole–quadrupole, and quadrupole–quadrupole

(or dipole–octupole) polarizabilities.57 The coefficients C6, C8 and C10 are taken from Wormer

and Hettema.103 At short range, the interaction is smoothly switched off with a Tang-

Toennies104 type damping function

gm(r) = 1− e−τdr
m∑
k=0

(τdr)
k

k!
(65)

to avoid divergence of the series expansion. The function depends on the damping parameter,

τd, approximately corresponding to the inverse decay length of the charge density of an H2O

molecule.

A modified Born-Mayer potential is used for the exchange-repulsion. Before presenting

the expression for the QM/MM interface, we recall the original expression in the SCME
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potential function22,23

Erep =

nMM∑
i<j

A(1 +B(ξi) +B(ξj))r
−b
ij e
−crij (66)

where the function B depends on the local density of molecules, ξi, and has the following

values

B(ξi) =


0 if ξi ≤ 1600∑5

n=0 anξ
n
i if 1600 < ξi ≤ 8000

0.0875 if 8000 < ξi

(67)

while the molecular densities are evaluated as

ξi = C

nMM∑
j 6=i

e−drij

r3ij
. (68)

Since the repulsion potential has its interaction centers in the molecular centers of mass,

the resulting repulsion interaction is isotropic. The molecular density term in equation (68)

provides a phenomenological way of taking into account the change in exchange repulsion due

to the polarization where the mixing of excited electronic states changes the decay length of

the electron density.22,23 At the QM/MM interface, the MM-MM repulsion terms then need

to be evaluated with molecular densities evaluated over the entire system, so (68) becomes

ξi = C

ntot∑
j 6=i

e−drij

r3ij
(69)

For a QM molecule, there is no molecular density dependent term associated with it, since

its charge density responds and adjusts to the environment by virtue of the self-consistent

equations. In particular, the external potential at each MM site due to the QM charge density

is modified by interaction tensor damping functions, which effectively introduce short-range

repulsion. This effective repulsion becomes more pronounced if the MM site moves closer to
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a QM molecule, or the electron density of the QM region polarizes (decay length changes)

and overlaps more with an MM site. See the Supplementary Information for more details.

So while the MM-MM repulsion terms are still evaluated from equation (66), the QM-MM

terms are evaluated from

Erep =

nMM∑
i

nQM∑
j

A(1 +B(ξi))r
−b
ij e
−crij . (70)

Note that the sum over the molecules in the MM subsystem still has the molecular density

term associated with it.

5 Implementation and Computational Details

In order to implement the mutually polarizable coupling scheme efficiently, the QM-SCF

cycle is modified in such a way as to simultaneously solve for the KS ground state charge

density and the external potential. A procedure where the de-coupled ground state charge

density is first obtained and then the two subsystems coupled is not efficient. Instead,

the external potential at each QM-SCF step is updated. However, since the octu- and

hexadecapoles are static these higher order terms only need to be evaluated once at the start

of the cycle, while the first and second order terms corresponding to the induced dipole and

induced quadrupole need to be evaluated at every iteration. We make use of the highly

paralellizable grid-based nature of GPAW as well as permutation symmetry of the tensors

to make the interface efficient. See the Supplementary Information for more details. The

coupling scheme is presented schematically in figure 1.

The position of MM sites in the global reference frame will possibly place them within the

QM grid space, and hence close to or on top of a grid-point. Potentials and gradients in terms

of the interaction tensors will diverge resulting in what is commonly known as the polarization

catastrophe – as coined by Thole in his seminal paper.105 This is the polarization analog of

the charge spill-out effect encountered in electrostatic embedding QM/MM models. In order
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to avoid the catastrophe, we have included tensor damping functions based on Gaussians.106

Effectively, the functions smear out the point moments and describe a screened interaction

as the distributions start to overlap. See the Supplementary Information for more details.

The DFT calculations are carried out within the generalized gradient approximation, in

particular the PBE107 and BLYP108,109 functionals. The calculations were carried out using

a real space grid with mesh size of 0.15 Å. The dimer calculations were started from the

optimized SCME dimer geometry and the interaction energy calculated by subtracting the

DFT monomer energy from the total energy of the system (as the SCME molecules have by

definition no ground state energy). Possible energetic irregularities arising from the coarse

real-space grid were avoided by making sure that the QM molecule position relative to the

grid did not change for any of the coordinates scanned.

A accurate coupling scheme does not introduce artifacts that affect the total energy and

atomic forces.13 The artifacts can be divided into two classes: (1) The energy of the coupled

QM/MM system is smaller or larger than the energy obtained from using either the pure QM

or pure MM model. (2) Different sub-divisions into QM and MM regions give substantially

different energy.

6 H2O Dimer

Studies of the water dimer interaction energy reveal how the hydrogen bonding is represented

in the multiscale framework; the roles of the H-donating and the H-accepting water molecules

in a hydrogen bond are different. This provides a good test case for assessing the second

type of artifacts described above. Throughout this section we let ’xc/SCME’ denote the case

where the hydrogen donating molecule is in the QM region described either with the PBE

or BLYP xc-functional, while the hydrogen accepting molecule is described with SCME, and

vice versa for ’SCME/xc’.

Figure 2 shows various cuts through the potential energy surface of the H2O dimer. The
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Figure 2: Scans through the potential energy surface of the H2O dimer, calculated with PBE
(labeled PBE/PBE), with SCME (labeled SCME/SCME) and the two possible QM/MM
configurations (labeled PBE/SCME and SCME/PBE). The curves are generated by taking
the relaxed SCME dimer geometry and scanning the variable indicated on the horizontal
axes. Only the degree of freedom defining each scan is varied without structural relaxation.
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top left graph shows the interaction energy as a function of distance between the two O-

atoms. For almost all of the binding region, both PBE/SCME and SCME/PBE curves are

within the energy range spanned by the pure PBE and pure SCME results. Furthermore,

the two QM/MM results are similar, differing by only 3.6% with respect to the average at

an O-O distance of 2.9 Å. The position of the minimum varies slightly. This is due to the

importance of the electronic density associated with the lone pair on the H-acceptor molecule

for defining the hydrogen bonding geometry. When this electron density is obtained from

DFT, the resulting SCME/PBE curve minimum is closer to the pure PBE result. On the

other hand, when the H-acceptor molecule is modeled with SCME, the PBE/SCME curve

minimum is at a O-O distance closer to the pure SCME result. At short distances where the

repulsion is strong, the QM/MM results are too repulsive. This is ascribed to shortcomings

in our QM/MM adaptation of the of the repulsion model in the SCME potential function58

and will be addressed in future work.

The top right graph of figure 2 shows the acceptor wagging-angle ω. The scan corre-

sponds to a transference of the hydrogen bond from one lone pair on the O-atom of the

H-acceptor molecule to another and should result in a shoulder on the curve. Both QM/MM

configurations reproduce the behaviour of this subtle but important interaction, whereas

QM/MM models based on simple point charge MM potentials miss this feature altogether

when the H-acceptor molecule is in the MM region, because the two lone pairs are reduced to

a single point of partial charge. The shoulder is somewhat exaggerated in the SCME/PBE

curve, corresponding to the slightly deeper O-O distance well. This could be a result of

the effective polarizability produced by GGA functionals being too high,110 which results in

a QM density producing a stronger field which thus again more strongly induces the MM

moments. However, the two coupled curves still lie within the two single-model limits.

The results on the interaction energy of rotating the H-donor molecule around its oxygen

and the normal spanned from there to the hydrogen atoms produces the β-angle plot, in the

bottom left region of figure 2. Here, again, the PBE/SCME minimum is shifted towards the
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pure SCME minimum and SCME/PBE towards PBE, in accordance with the analysis of the

O-O distance cut. Lastly, the two bottom right plots of the figure show consistent results

between the QM/MM results and the single-scale models for the two dihedral angles.
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Figure 3: Potential energy curves for the water dimer, this time using BLYP.

Figure 3 shows the analogous results when the BLYP functional is used for the QM

region instead of the PBE functional. In general, the difference between the two single-scale

descriptions are then larger, but the QM/MM curves are similar to those obtained using the

PBE functional, showing the same trend depending on with model is used for the lone pairs

on the H-acceptor molecule.

It is well known that GGA functionals have several, but different, shortcomings when de-

scribing liquid water.110 This difference can be traced to the different exchange-enhancement

factor in the functionals. The two functionals compared here represent extrema in this re-

gard – BLYP being strongly repulsive in the exchange-overlap region (i.e. the region where

electron densities between two water molecules overlap), whereas PBE is weakly repulsive.
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This results in clear differences in the binding energy curves of the H2O dimer, for example.

However, the two functionals give similar static and induced moments for an H2O molecule,

and as a result their electrostatic coupling to the MM multipole moment tensors are near

identical for the dimer, further supporting the validity of the self-consistent electrostatic cou-

pling scheme presented here. Another shortcoming of most commonly used GGA functionals

is the lack of dispersion interaction.

6.1 Tests of forces

An essential part of atomic scale simulations is to have accurate evaluation of the forces acting

on the atoms, for efficient structure relaxation, energy barrier calculations and dynamics

simulations. In order to test and verify the analytical expressions for the forces presented in

section 4.3, the forces acting on the molecules in the H2O dimer are compared with numerical,

finite difference calculations. Figure 4 shows the results. The graph shows the force acting
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Figure 4: Test comparing the analytical forces on the center of mass to the numerical forces.
Top row: the QM/MM configuration with the H-donor molecule being described with PBE.
Bottom row: MM/QM, where the H-acceptor molecule is described with PBE.

on the center of mass of each one of the H2O molecules in the dimer, since this is the most

direct test within the SCME formalism where there is just a single expansion center per
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water molecule. The dimer is placed in the x, y plane, so there is no force in the z direction.

The force can subsequently be distributed on the atoms, or the molecules propagated in time

using rigid-body dynamics since the torque on each molecule is also calculated.

Figure 5 shows how the analytical forces converge as convergence criteria for the various

quantities, such as density, wavefunctions, total energy, dipole, and quadrupole are tightened

by an order of magnitude. The difference computed with respect to the value obtained with
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Figure 5: Differences in analytical QM/MM forces of the H2O dimer in the SCME-optimized
geometry. The dimer is oriented in the simulation cell in the same way as in figure 4.

the tightest tolerance, ∆F = F − F1e−10 is shown. As expected, the difference decreases

systematically as the convergence criteria are tightened. The difference is largest for the QM

molecule due to the coarseness of the real space grid used in the DFT calculation.

7 H2O Pentamer

Due to the many-body nature of both the repulsion potential and the MM-SCF and QM/MM-

SCF induction loops, it is important to test the analytical forces in systems containing more

than a single molecule within each subsystem. An incorrect inclusion of the MM self-energy

in the QM/MM coupling can lead to inconsistent forces. For example, in the QM/MM dimer

the external field at the MM site is due to the QM charge density only, hence the self-energy

terms EMM,i
self and EMM,iQM

self in equation (53) cancel each other out exactly. However, in a

system containing more than one MM site such a cancellation will not occur. Furthermore,

the total energy expressions in equations (53) and (55) would result in the same numerical

forces, but different analytical forces, with the latter expression giving wrong force terms.
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Figure 6: x- and y-components (left and column, respectively) of analytical (lines) and
numerical (circles) forces of a test-case using an arficial configuration designed to best probe
our coupling (inset). The bottom two plots show the difference in meV / Å between the
analytical and numerical forces.

Figure 6 shows the results of a comparison between analytical and numerical forces in a

pentamer H2O cluster in a non-equilibrium geometry chosen to test all aspects of the B(ξi)

function in equation 70 (see inset in in figure 6). The standard convergence criteria of the

DFT calculation is used, while the di- and quadrupole convergence criteria were set to 10−9

ea0 and ea20, respectively, in units of the elementary charge e, and the Bohr radius a0. The

lower two graphs show the difference between the analytical and numerical forces in the

two relevant dimensions. The difference is overall largest for the QM subsystem, consistent

with the tests on the dimer. For the SCME-molecules a small error becomes evident at

extremely short distances due to the use of the Tang-Toennies damping function in the

interaction tensors, which is not included in an entirely consistent way in the original SCME

formulation.23 However, this error manifests itself only at O-O distances below ≈2.4 Å, (r in

the figure from 8-10 Å) and will not be relevant in, for example, simulations of liquid water

at ambient conditions.
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Conclusions

A reciprocal polarizable embedding QM/MM energy functional is presented as well as a

minimization scheme that couples ground state electronic structure calculations based on

KS-DFT and an accurate single center multipole expansion model of H2O molecules. In the

former case the QM/MM interface energy is expressed as an external potential such that the

ground state charge density of the QM system is polarized by the MM region. Similarly, the

self-consistent induced moments of the MM sites include the external field and field gradient

due to the QM charge density. In this way both the QM-SCF or MM-SCF calculations are

carried out in the usual way except that the relevant numerical values are passed between the

QM and MM parts. The MM model of the H2O molecules includes static molecular moments

up to and including the hexadecapole, as well as induced dipole and quadrupole moments

in response to the external field and field gradient. The energy and resulting analytical

forces are in agreement with numerical tests for both the dimer and pentamer clusters, the

consistency being systematically improved as convergence tolerances in the calculations are

reduced.

The PE-QM/MM energy surface for the H2O dimer is intermediate between the pure

QM and pure MM energy surfaces. Furthermore, the two different GGA functionals used,

PBE and BLYP, give nearly identical results since they give similar polarizability. The

difference between the pure PBE and pure BLYP dimer results is mainly due to the different

semi-local part and is most apparent when two water molecular densities start to overlap.110

In future work, we will explore higher-level exchange-correlation functional approximations

and self-interaction corrected energy functional description111 of the QM region for improved

accuracy, as well as an extension of the SCME potential function for flexible H2O molecules.
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