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Abstract

Molecular mechanics force field parameters for macromolecules, such as proteins,

are traditionally fit to reproduce experimental properties of small molecules, and thus

they neglect system-specific polarization. In this paper, we introduce a complete pro-

tein force field that is designed to be compatible with the QUantum mechanical BE-

spoke (QUBE) force field by deriving non-bonded parameters directly from the electron

density of the specific protein under study. The main backbone and sidechain protein

torsional parameters are re-derived in this work by fitting to quantum mechanical dihe-

dral scans for compatibility with QUBE non-bonded parameters. Software is provided

for the preparation of QUBE input files. The accuracy of the new force field, and the

derived torsional parameters, are tested by comparing the conformational preferences

of a range of peptides and proteins with experimental measurements. Accurate back-

bone and sidechain conformations are obtained in molecular dynamics simulations of

dipeptides, with NMR J coupling errors comparable to the widely-used OPLS force

field. In simulations of five folded proteins, the secondary structure is generally re-

tained and the NMR J coupling errors are similar to standard transferable force fields,

although some loss of the experimental structure is observed in certain regions of the

proteins. With several avenues for further development, the use of system-specific non-

bonded force field parameters is a promising approach for next-generation simulations

of biological molecules.
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1 Introduction

Molecular mechanics (MM) force fields for biomolecular simulations have been under con-

tinuous development for many years.1–5 In traditional transferable force fields, every atom

in a molecule is assigned a type based on its atomic number, bonding and local chemical en-

vironment. The atom type then dictates the parameters that are used to model that atom’s

interactions.3 The force field parameters for each atom type are stored as a library, which

is built by carefully reproducing the experimental or quantum mechanical properties of a

benchmark set of small molecules.2–7 Due to the infeasibility of accurately parameterizing

all of chemical space, a balance must be made between the size of the library and potential

inaccuracy due to transferring parameters to molecules outside the fitting set. In many cases,

it is acknowledged that transferable force fields are not sufficiently accurate.8 When building

force fields for small molecules, the atomic charges are usually assigned in a system-specific

or “bespoke” manner, using methods such as RESP, CM1, or AM1-BCC.9–13 This is because

it is well-known that atomic charges polarize in response to their chemical environment (for

example, the presence of electron donating or withdrawing groups).8 Bespoke charges are

usually assumed to be compatible with the fixed Lennard-Jones parameters of the force field,

although these themselves have also been shown to be dependent on the local environment of

the atom.14 Although proteins must also experience polarization effects in both the charges

and Lennard-Jones parameters, protein force field parameters have always, to date, been

assigned from a transferable library.1–3,15 This leads to an inconsistency in the parametriza-

tion strategy used for protein force fields and bespoke small molecule force fields. This is

potentially problematic when studying properties that depend on the electrostatic potentials

of proteins, such as their interactions with small molecules, and there is no clear way around

this using traditional force field fitting methods.

To improve the consistency between charge and Lennard-Jones parameters, and also re-

duce the reliance on fitting to experimental data, one could either directly fit non-bonded

MM parameters to reproduce quantum mechanical (QM) energies and forces,16–19 or derive
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the non-bonded parameters of the force field directly from QM. In the latter approach, the

QM interaction energy may be broken down into physically motivated components using

intermolecular perturbation theory,20–22 though these methods are limited to quite small

system sizes. Encouragingly, Grimme’s quantum mechanically derived force field (QMDFF)

method is capable of outputting bespoke non-bonded force field parameters for molecules

comprising more than 100 atoms.23 Despite using fixed point charges, with no explicit polar-

ization term, the bespoke force field reproduces both QM inter- and intramolecular energies

to an accuracy of around 1 kcal/mol for small molecule benchmarks.

In recent years, we have been following a similar strategy to Grimme’s QMDFF, focusing

more on condensed phase properties and heterogeneous systems.24,25 The basis of this ap-

proach is the density derived electrostatic and chemical (DDEC) atoms-in-molecule (AIM)

scheme,26,27 which partitions the total electron density into approximately-spherical atom-

centered basins. Atomic charges are derived by integrating the atomic electron density over

all space and, in contrast to direct fitting of the QM electrostatic potential (ESP charges), it

is possible to derive chemically-meaningful DDEC atomic electron densities and charges for

both surface and buried atoms.28 A further advantage of this approach is that the Lennard-

Jones parameters may also be computed directly from the atomic electron densities, using

methods based on the Tkatcheko-Scheffler relations that are commonly used to incorpo-

rate dispersion effects into density functional theory (DFT) calculations.14,24 Similar to the

Grimme approach, these non-bonded parameters are derived from a single QM optimized

structure, which would be problematic if the charges show strong conformation dependence.

However, Manz and Sholl have demonstrated that DDEC charges are transferable between

different conformations of a molecule (as measured by their ability to recreate the QM elec-

trostatic potential), and they conclude that the charges are suitable for the construction

of flexible force fields.27 Furthermore, it should be noted that atoms-in-molecule electron

density partitioning lends itself naturally to the derivation of both off-site charges to model

electron anisotropy (such as lone pairs and σ-holes)25 and atomic polarizabilities,29 though
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we have not yet investigated a fully polarizable force field.

In keeping with our goal of deriving force field parameters directly from QM, rather than

fitting to experiment, we have supplemented the atoms-in-molecule non-bonded parameters

with harmonic bond and angle parameters derived directly from the QM Hessian matrix.30

There are a number of methods available for deriving bonded parameters from the QM Hes-

sian matrix,23,31 but our recent adaptation of the Seminario method32 (which we name the

modified Seminario method) is conceptually quite straightforward whilst yielding parameters

that reproduce QM vibrational frequencies with a mean unsigned error of 49 cm−1, below

that of OPLS (59 cm−1). Collectively, we have named these methods the QUantum mechan-

ical BEspoke (QUBE) force field. This name reflects the fact that force field parameters are

derived by the user specifically for the small molecule under study, directly from QM calcula-

tions. We have released a software toolkit (QUBEKit) that facilitates the derivation of small

organic molecule force field parameters, and also allows the user to derive the positions of

off-site charges to model anisotropic electron density and to fit dihedral parameters to QM

torsion scans.25 QUBE force fields have been derived for 109 small organic molecules, and

yield mean unsigned errors of 0.024 g/cm3, 0.79 kcal/mol and 1.17 kcal/mol in computed

liquid density, heat of vaporization and free energy of hydration.25 These results are com-

petitive with standard transferable force fields, which have been extensively fit to properties

such as these.

To achieve our goal of employing the QUBE force field in computer-aided drug design

applications, we require a compatible protein force field. Since the non-bonded parametriza-

tion strategy employed in QUBE is very different to that used in the standard biomolecular

force fields (e.g. AMBER, OPLS, CHARMM), there is no reason to believe that they are

compatible. However, by implementing the atoms-in-molecule non-bonded parameter deriva-

tion methods in the ONETEP linear-scaling density functional theory (DFT) software,33 we

have shown that it is feasible to derive these charges and Lennard-Jones parameters for en-

tire proteins.24 In this way, the number of fitting parameters is substantially reduced, and
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we have a consistent parametrization approach that can be applied to both small and large

molecules, including entire biomolecular assemblies. Since, in this approach, all non-bonded

parameters are derived from a single QM calculation, both the charge and Lennard-Jones

parameters naturally include the native state polarization effects of the environment. Impor-

tantly, we have shown that protein charges derived using DDEC electron density partitioning

recreate the underlying QM electrostatic potential with high accuracy, and that charges de-

rived for a NMR ensemble of BPTI protein structures are not too conformation-dependent

(standard deviations per residue less than 0.04 e).34 This is in contrast to the performance

of RESP charges, which have been shown to be significantly more conformation-dependent

for an ensemble of polypeptide structures.35 Additional simulations demonstrated the fea-

sibility and advantages of deriving bespoke parameters for a protein-ligand complex. The

computed relative binding free energy of indole and benzofuran to the lysozyme protein

using the environment-specific force fields (−0.4 kcal/mol) was in excellent agreement with

experiment (−0.6 kcal/mol), and was substantially more accurate than standard force fields

(−2.4 kcal/mol). However, the force field was in need of further development as the bespoke

non-bonded terms were used in combination with standard OPLS-AA bonded parameters.

The use of these parameters potentially limits the accuracy of the force field due to in-

terdependency between the bonded terms, particularly the torsional parameters, and the

non-bonded components of the force field. This issue is the subject of the current paper.

In standard transferable force fields, the torsional component is typically parameterized

using QM dihedral energy scans, with the difference between analogous MM and QM energy

scans minimized by fitting the torsional parameters.1 Reparameterization of the torsional

terms has been shown to be a crucial step in improving the accuracy of force fields and this

has recently been demonstrated for AMBER ff15ipq, CHARMM36 and OPLS-AA/M.1,2,15

Bond and angle reparameterization has also been shown to be an essential stage in improv-

ing the accuracy of biomolecular force fields,2,36 although it is not so frequently carried out.

Since it is not currently feasible to derive accurate QM Hessian matrices for entire proteins,
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we have used the modified Seminario method to compute a complete set of bond and angle

parameters for the twenty naturally occurring amino acids.30 This work focuses on the re-

maining component of the force field, namely the re-fitting of key torsional parameters that

describe the backbone and sidechain dynamics of an amino acid. The methods and valida-

tion tests broadly follow the approaches employed in the development of OPLS-AA/M, the

latest OPLS force field.1 Torsional parameters are fit by minimizing the differences between

multiple QM and MM potential energy scans of dipeptide backbone and sidechain dihedral

angles. Our overall goal is to test the extent to which bespoke non-bonded parameters may

be combined with libraries of bonded parameters to produce a protein force field that is

compatible with our QUBE small molecule force field for use in computer-aided drug design

applications.

The performance of the QUBE protein force field is tested through comparisons be-

tween experiment and molecular dynamics (MD) simulations for a set of twenty dipep-

tides, the glycine tripeptide and alanine pentapeptide, and a range of small folded proteins.

This benchmark testset is similar to those used in the development of protein force fields

such as AMBER ff15ipq, AMOEBA, CHARMM36 and OPLS-AA/M.1,2,5,15 As we shall

show, the QUBE protein force field is competitive with standard transferable force fields

for the dipeptide set and alanine pentapeptide, while retaining the experimental structures

of small folded proteins reasonably well. To encourage further testing of the QUBE pro-

tein force field, MD input files for the molecules studied, as well as the necessary scripts

to convert the QM electron density to QUBE force field format have been made available

(https://github.com/cole-group/QUBEMAKER). Finally, in the conclusions, we outline a

roadmap for future improvements to QUBE.
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2 Theory

The functional form of the standard biomolecular force field has five components. Covalent

interactions between atoms are modelled using harmonic bond stretching and angle bending

parameters, while rotations about a bond are described by anharmonic 4-body torsional

terms. Non-bonded interactions are described by a sum of Coulombic interactions between

(usually) atom-centered point charges and a physically-motivated Lennard-Jones interaction,

which combines a short-range repulsive r−12 potential with a longer-range attractive r−6

interaction. We now provide an overview of how these various components are parameterized

in the QUBE protein force field, and contrast the approaches to those used in standard

transferable force fields. Since the methods used to parameterize the non-bonded, and bond

and angle terms have been extensively described elsewhere,24,25,28,30 we focus here on the

derivation of the torsional parameters.

2.1 Non-bonded Parameters

The non-bonded components of a molecular mechanics force field aim to describe the quan-

tum mechanical electrostatic, dispersion and exchange-repulsion interactions in a computa-

tionally efficient manner.37 The charge parameters are generally fit to the quantum mechan-

ical electrostatic potential of small molecules. The Lennard-Jones parameters are then fit to

reproduce experimental data, such as liquid densities and heats of vaporization.2,6,38

The aim of QUBE is to move away from the requirement for transferable force field

parameters, and instead to derive bespoke parameters for molecules directly from QM calcu-

lations. First, a QM simulation of the molecule under study is performed. From the output

of the QM calculation, the total electron density of the molecule is partitioned onto individ-

ual atoms using an atoms-in-molecule (AIM) weighting scheme. There is no unique method

to perform this partitioning, but we favor the density derived electrostatic and chemical

(DDEC) scheme,26,27 which is a weighted combination of the iterative stockholder atoms
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and iterative Hirshfeld approaches.39,40 With the electron density partitioned to individual

atoms, the atom-centered charges can be simply found by integrating the electron density

over all space (and adding the nuclear charge). We have implemented the DDEC approach

in the ONETEP software package, which allows us to perform QM calculations of, and

assign parameters to, systems comprising thousands of atoms. The derived charges have

been shown to be suitable for use in flexible force field design in multiple works, because

they are able to reproduce the underlying QM electrostatic dependence while exhibiting low

conformation-dependence.24,27,34 The charges are specific to the system under study and, by

performing the QM calculation in the presence of an implicit solvent model, polarization of

the charges in the condensed phase can be included in the model.24

The dispersion and exchange-repulsion interactions are described using a Lennard-Jones

potential with a form:

ELJ =
∑
i<j

Aij
r12ij
− Bij

r6ij
. (1)

The dispersion coefficient, Bij, is calculated from the partitioned electron density by us-

ing the Tkatchenko-Scheffler relationship to rescale the free atom dispersion coefficient by

the computed volume of the atom in the molecule.14,24 The standard combination rule,

Bij =
√
BiBj, can then be used to determine heteroatomic dispersion coefficients. The Aij

parameter, which describes the short-range repulsion between overlapping electron clouds,

cannot be readily calculated directly from the electron density. Instead it is computed by

requiring that the minimum in the interatomic Lennard-Jones potential coincides with the

estimated van der Waals radius of the atom in the molecule.24 This non-bonded parameter

derivation scheme requires just one fitting parameter per element (corresponding to the van

der Waals radius of the free atom in vacuum).
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2.2 Bond and Angle Parameters

The parameterization approach used to determine bond and angle harmonic force constants

in traditional force fields, such as OPLS and AMBER, is to fit them to reproduce QM data

or experimental normal mode frequencies. This creates interdependencies in the force field

parameters. That is, bond and angle parameters depend on the non-bonded and torsional

parameters used during the fitting process, and therefore they cannot be easily transferred

to the QUBE force field. Instead, we derive bond and angle force constants directly from the

QM Hessian matrix of the molecule under study, while equilibrium bond lengths and angles

are taken from the optimized geometry of the molecule.30 This method is a modification of

the Seminario method,32 and is based on the computation of the eigenvalues and eigenvectors

of the partial Hessian matrix, kAB:

[kAB] = −


∂2E

∂xA∂xB

∂2E
∂xA∂yB

∂2E
∂xA∂zB

∂2E
∂yA∂xB

∂2E
∂yA∂yB

∂2E
∂yA∂zB

∂2E
∂zA∂xB

∂2E
∂zA∂yB

∂2E
∂zA∂zB

 (2)

The harmonic bond force constants are given by:

kr =
3∑
i=1

λABi |ûAB.ν̂ABi | (3)

where ûAB is a vector in the direction of the bond AB, and νABi (λABi ) is an eigenvector

(eigenvalue) of the kAB matrix.

Similar methods may be used to derive the angle force constants, and we introduce

a correction to the standard Seminario method which takes into account the geometry of

the molecule under study.30 Consistent improvements in the computed normal modes were

demonstrated using this modified Seminario method for a range of molecules. In particular,

QM vibrational frequencies for a set of dipeptides were reproduced with an accuracy of

40 cm−1, which compares favorably with the OPLS force field (47 cm−1) and the original
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Seminario method (104 cm−1). Since the derived bond and angle parameters do not depend

on the choice of non-bonded and torsion parameters, the derived parameters are suitable for

use in the QUBE protein force field. Since large-scale polarization effects are expected to

be significantly less important for bond and angle parameters than for charges, we use the

library of bonded parameters provided previously30 (and the same atom types as those used

for OPLS-AA/M1).

Whilst preparing the protein simulations, it was found that our library was missing

parameters for the disulfide bridge between pairs of cysteine residues. These bond and angle

parameters were therefore derived using the QM Hessian matrix of dimethyl disulfide and

are supplied in Section S2.3 of the Supporting Information.

2.3 Torsional Parameters

Figure 1: An alanine residue showing the atom naming convention for dihedral angles. The
main dihedral angles reparameterized are φ (C-N-Cα-C), φ′ (C-N-Cα-Cβ), ψ (N-Cα-C-N) , ψ′

(Cβ-Cα-C-N), χ1 (N-Cα-Cβ-Xγ), χ
′
1 (C-Cα-Cβ-Xγ) and χ2 (Cα-Cβ-Xγ-Yδ). Xγ and Yδ (not

shown) are the neighboring heavy atoms in the side chains (if present).

With new bond, angle and non-bonded parameters derived, all that remains to complete

the QUBE protein force field is to obtain the torsional parameters. Unfortunately, it is in-

feasible to derive torsional parameters from QM simulations that are specific to each protein.

Therefore, we make the assumption that the derived parameters for dipeptides are transfer-

able to proteins, and in Section 4 we test the limitations of this assumption by validating

the force field against experimental peptide and protein dynamical observables.
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The torsional terms in a force field are a function of the dihedral angles (φ) in a molecule.

Here, we use the same functional form as the OPLS force field:

Vtors =
∑
k

V k
1

2
(1 + cos(φk)) +

V k
2

2
(1− cos(2φk)) +

V k
3

2
(1 + cos(3φk)) +

V k
4

2
(1− cos(4φk)) (4)

where the sum runs over all dihedrals (k) in the molecule and V k
1−4 are parameters to be

fit. We focus on reparameterizing the backbone (φ, φ′, ψ and ψ′) and sidechain (χ1, χ
′
1, χ2

and χ′2) torsional parameters (Figure 1). Re-fitting of the remaining torsional and improper

parameters are beyond the scope of the current work, and these parameters are instead taken

from the OPLS-AA/M force field.1 However, parallel efforts are being made to develop a

toolkit for automated parameterization of small molecules using the QUBE force field, which

will facilitate derivation of the remaining parameters in future.25

When fitting torsional parameters, the main objective is to minimize the difference be-

tween MM and QM gas phase dihedral energy scans. However, weighting schemes and

regularization can also be used to change the form of the error function that is minimized.

Regularization is a technique generally used to prevent overfitting to data. There are mul-

tiple forms of regularization that can be applied to improve fitting.2,25 In this work we use

a harmonic restraint that is added to the error function.2 This penalty term ensures that

torsional parameters do not deviate significantly from their initial value unless a significant

improvement in the agreement with the QM energy surface is observed. As we will show,

even with low levels of regularization (a small λ value), a sizeable increase in performance is

observed for the QUBE force field. The general form of the error function used in this study

is given by:

Error =

√∑n
j=1(E

j
MM − E

j
QM)2e−Wj/kBT

n
+ λ

4∑
i=1

(Vi − V 0
i )2 (5)

where kB is the Boltzmann constant, T is a weighting temperature, n is the number of

points at which the energy is evaluated, Wj is the contribution from the weighting scheme,

λ is the regularization coefficient (this term is independent of n and can take any positive
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value), Vi is the torsion parameter being optimized and V 0
i is an initial estimate of the

torsion parameter. Where we have used a harmonic restraint, we have used V 0
i = 0 as the

initial guess as previously suggested.41 The V4 term was set to zero throughout the fitting

procedure to avoid overfitting.1 Ej
QM and Ej

MM are the QM and MM optimized energies at

each sampled dihedral angle relative to the lowest QM or MM energy. MM scans allow all

other degrees of freedom to optimize, and so the structures are similar, but not identical, to

the QM structures. Weighting schemes are used to prioritize accuracy in particular regions

of the dihedral scan, for example in the β-sheet region of the Ramachandran plot. A range

of weighting schemes has been previously used, including schemes that prioritize the lowest

QM energies1 or that prioritize regions that have been shown experimentally to be most

populated by proteins.5,15

3 Methods

3.1 Torsional Parameter Fitting

Torsional parameter fitting followed the general strategy employed in the development of the

OPLS-AA/M force field,1 amongst others, in which parameters are fit to reproduce QM gas

phase potential energy surfaces. Fitting and validation was performed using dipeptides of

the form (Ace-X-NMe), where X is the amino acid, Ace is an acetyl group and NMe is the

N-methyl group.

3.1.1 QUBE Parameter Derivation

The ground state electron densities of the dipeptides were computed using the ONETEP

linear-scaling DFT code33 with the PBE exchange correlation functional and standard pa-

rameter settings, (Supporting Information S2.2).24 Since the reference QM potential energy

scans are performed in the gas phase, we have decided to derive QUBE force field charges

and Lennard-Jones parameters from the vacuum electron density (rather than in an implicit
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solvent). The assumption here is that the required correction to the MM potential energy

surface is approximately the same in the gas and condensed phases.

Charge and Lennard-Jones parameters were derived from the QM ground state elec-

tron density using the DDEC scheme26,27 as implemented in the ONETEP code28,34 (Sec-

tion 2.1). As discussed previously, DDEC charges show low, but non-zero, conformational

dependence.28 To account for this, the non-bonded parameters were derived for multiple con-

formations of each dipeptide and averaged. Input files for the full set of dipeptide structures

are provided in the Supporting Information. Non-bonded parameters on identical atoms (for

example, hydrogen atoms in a methyl group) were symmetrized. It should be noted that only

atom-centered charges were used in this work, though off-site charges to model anisotropic

electron density distributions, particularly on sulfur atoms,42 may lead to improvements in

future work.25 Bonded parameters were assigned to the dipeptides from the library developed

using the modified Seminario method using OPLS-AA/M atom typing rules.30

3.1.2 Potential Energy Scans

The torsional potential energy scans of alanine, glycine and all sidechains are the same as

those used in the development of the OPLS-AA/M force field, as described previously.1 In

brief, structures were relaxed in the gas phase using Gaussian 09 with a ωB97X-D functional

and a 6-311++G(d,p) basis set. Dihedral angles were scanned in 15◦ increments from -180◦

to 180◦. A single point energy calculation was then performed on the optimized structure

using the double hybrid functional B2PLYP-D3(BJ) and the Dunning basis set aug-cc-pVTZ.

A 2D scan of φ (C-N-Cα-C) and ψ (N-Cα-C-N) was carried out for alanine and glycine.

The sidechain energy scans follow the same methods as the backbone scans, except that

the single point B2PLYP calculation was not performed for all χ2 scans, as ωB97X-D was

shown to give sufficiently accurate results.1 These 1D scans give the energy as a function of

the χ1 dihedral angle (N-Cα-Cβ-Xγ) or the χ2 dihedral angle (Cα-Cβ-Xγ-Yδ). The ψ and φ

angles were constrained to an α-helical (φ = −60◦, ψ = −45◦) or a β-sheet (φ = −135◦, ψ =
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135◦) conformation. All scans used in this work can be found in the Supporting Information

of Ref. 1.

In this work, an additional 2D scan of the φ and ψ dihedral angles of serine was found

to be necessary for accurate torsional parameters for serine and threonine, which both have

a polar oxygen atom at the Xγ position. This followed similar protocols to those previously

described, however the sidechain χ1 angle now had to be taken into account. Scans were

performed at 30◦ increments of φ/ψ, for χ1 initially set to -60◦, 60◦ and 180◦. This gave three

2D energy scans for the main rotamers of serine. The minimum energy structure for each

φ/ψ angle was then used to construct the overall minimum φ/ψ potential energy surface

(Section S3.1).

3.1.3 Fitting Dipeptide Torsional Parameters

Torsional parameters were optimized by minimizing the error function shown in eq 5 using a

steepest descent algorithm. MM potential energy surfaces were computed by scanning dihe-

dral angles in 15◦ increments using the BOSS software.43 The backbone torsional parameters

for all dipeptides tested, excluding serine and threonine, were fit to the alanine and glycine

scans previously described. The total error for the two scans was given by:

ErrorTotal = 0.928× ErrorAla + 0.072× ErrorGly (6)

with the prefactors corresponding to the relative frequency of each amino acid in the human

proteome. Preliminary testing (Section S1.1) showed that a weighting function and regular-

ization did not significantly improve the conformations sampled during the dipeptide MD

simulations and so were not used (λ = 0, W = 0).

The remaining dipeptides, threonine and serine (both of which contain aliphatic hydroxyl

groups in their sidechain), were assigned identical backbone parameters that were fit to

reproduce the QM scans of serine. For these scans, regularization and weighting were shown
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to be necessary to produce dipeptide dynamics which were in agreement with experiment.

An investigation of how the simulation error changes with regularization is given in Section

S1.2. The harmonic restraint parameter was set to λ = 0.05.

The sidechain scans for all dipeptides followed the same fitting process as the ala-

nine/glycine backbone with no weighting or regularization used. As atom-typing is not used

for the non-bonded parameter assignment in the QUBE force field, each set of sidechain

torsional parameters is also residue-specific. This differs from the approach used in OPLS-

AA/M in which sidechain torsional parameters with the same set of atom types are generally

assigned the same parameters.

In a number of cases it was necessary to make manual changes to the fitting process.

This was restricted to setting a number of torsion parameters to zero (that is, λ =∞) and

reducing the number of scans used in the fitting process. In particular, the aspartic acid ψ/φ

distribution was improved by setting the χ2 torsional parameters to zero. Additionally, using

only the QM energy scan with the lowest minimum energy in the fitting process was shown

to result in an improvement in the MD simulations of the dipeptides for the χ1 torsional

parameters of cysteine, methionine, serine and threonine. The need for manual input in

the fitting process was also required for developing OPLS-AA/M and is likely due to the

restrictive functional form of the torsional potential and the conformational dependence of

the energy scans.1 The full set of manual changes involved is listed, along with the final

torsional parameters, in Section S3.3.

3.1.4 Alanine Pentapeptide and Glycine Tripeptide

As the non-bonded parameters used are specific to the system under study, they are not

the same for an alanine dipeptide molecule as for the alanine pentapeptide (Ala5). The

alanine residue in the dipeptide is blocked by acetyl and N-methyl groups whereas the central

three alanine residues in Ala5 have neighboring alanine residues on both sides. Therefore,

varying environments exist for alanine residues in the different molecules. Consequently, the
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parameters found for the alanine dipeptide were found to be unsuitable for MD simulations

of Ala5 (Table S5). However, the use of a harmonic restraint in the fitting process resulted

in torsional parameters that were sufficiently accurate for the alanine and glycine peptide

simulations. Alanine and glycine backbone torsional parameters were refit to the QM energy

scans with λ = 0.50, no weighting was used. The optimal value used for the regularization

parameter was found by minimizing the differences between simulated and experimental

NMR observables for Ala5 (Table S5). We note that the J coupling error is not too sensitive

to the strength of the harmonic restraint. Separate torsional parameters are used for the

alanine pentapeptide and glycine tripeptide (Gly3), as residue-specific parameters should

result in a more accurate force field.

3.1.5 Protein Torsional Parameters

It is expected that optimal backbone torsion parameters for protein simulations are more

similar to those developed for Ala5 and Gly3 than for the set of dipeptides. We there-

fore use a regularization λ = 0.50 for all protein backbone torsional parameter derivation.

Alanine, glycine, serine, and proline torsional parameters are fit to available QM potential

energy surfaces and are therefore residue-specific. Threonine uses torsional parameters fit

to the serine torsional scan, and all other amino acid use torsional parameters fit to joint

alanine/glycine energy scans. These backbone parameters are combined with the dipeptide

sidechain torsional parameters to give the full QUBE protein force field parameter set.

3.2 Molecular Dynamics Simulations

3.2.1 Simulation Details

Following a number of previous force field studies,1,2,5,15 the QUBE force field was validated

through molecular dynamics (MD) simulations of a benchmark test set of five proteins. The

structures chosen (with the PDB codes shown in parentheses) were ubiquitin (1UBQ), GB3

(1P7E), BPTI (5PTI), binase (1BUJ) and a villin headpiece subdomain (2F4K).
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Figure 2: A flowchart illustrating the steps required to assign the QUBE protein force field.
Blue is used for non-bonded terms, yellow is used for bonded terms.

Figure 2 shows the steps required to set up a QUBE protein force field for a MD simu-

lation. As in Section 2.1, the ONETEP linear-scaling DFT software is used to compute the

ground state electron density of the five proteins, and assign the charge and Lennard-Jones

parameters from the partitioned atomic electron densities. Consistent with the QUBE small

molecule approach, every atom in the protein is assigned bespoke non-bonded parameters

derived from the quantum mechanical electron density. To model polarization effects in the

condensed phase, the electron density is computed first in vacuum, then using an implicit

solvent model44,45 with a dielectric constant of 80. The iPol approach used in AMBER

ff15ipq is then employed, with all non-bonded parameters set halfway between their vacuum

and condensed phase values.2 The purpose of this approach, as well as overcoming issues

associated with closing of the electronic band gap in large system sizes,46 is to account for

electrostatics and induction in the condensed phase in an effective manner using a fixed

point charge force field.47 Typical computational requirements for a QM calculation on a

small protein (≈ 1000 atoms) are approximately 2000 cpuhrs. In order to provide a con-

sistent and computationally efficient approach to assigning the non-bonded parameters, we

recommend minimizing the experimental structure using a standard transferable force field
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in explicit water prior to the DFT calculation. In this study, we used the OPLS-AA/M force

field for the initial minimization.

Table 1: The number of atoms of the proteins tested in this work along with a breakdown
of the parameters employed in the force field. The bespoke parameters are the non-bonded
terms derived from the electron density, the refit torsional terms are calculated in this work,
OPLS-AA/M dihedrals (and improper terms) are from Ref. 1 and the bond and angle terms
are from Ref. 30.

System Bespoke Refit OPLS-AA/M Bonds
Size Parameters Dihedrals Dihedrals and Angles

1P7E 862 2586 1224 2141 4282
1UBQ 1231 3693 1167 2292 4584
1BUJ 1712 5136 1161 2402 4804
5PTI 576 1728 1065 2362 4724
2F4K 892 2676 711 1509 3018

Following non-bonded parameter assignment, bond, angle and torsion parameters were

assigned as described in Section 2 based on the OPLS-AA/M atom types. For torsion and

improper types not re-parameterized in this study, OPLS-AA/M parameters are retained.1,7

Table 1 summarizes the number of bespoke non-bonded parameters for each protein stud-

ied, along with the bonded parameters that are parametrized using the dipeptide molecules

as described above. All parameters, including atom-specific non-bonded parameters, are

written to a CHARMM-style parameter file. The psf, pdb and inp files are provided in

the Supporting Information. We note that preparation of the parameter files is fully au-

tomated, and scripts and step-by-step tutorials are available from https://github.com/cole-

group/QUBEMAKER. MD simulations were performed using the NAMD software, using

input parameters detailed elsewhere (Section S2.1).1 Statistics were collected over a period

of 200 ns for dipeptides and Ala5 and Gly3, and 0.5 µs for the proteins. All MD simulations

were performed in triplicate.

3.2.2 Simulation Analysis

All backbone and sidechain dihedral angles sampled during the dipeptide simulations were

analyzed and compared with experimental data (Section S2.4). The simulated J coupling
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was calculated using the Karplus equation:

J(φ) = Ccos(2φ) +Bcos(φ) + A (7)

where φ is the relevant dihedral angle and A,B,C are the Karplus parameters which can be

derived from experimental measurements or QM calculations.48 For the alanine pentapeptide,

the J coupling error is calculated as:

χ2 =

∑N
j=1(< Jj >sim −Jj,exp)2/σ2

j

N
(8)

where < Jj >sim is the time-averaged simulated J coupling, Jj,exp is the experimental J cou-

pling, σ is the estimated systematic error48 and N is the number of J coupling measurements

considered.

The backbone J coupling term 3J(HN , Hα) was calculated from the dipeptide simulations

using the Karplus parameters proposed in Ref. 49 and the φ dihedral angles sampled, with the

experimental J coupling values taken from Ref. 50. The sidechains sampled were separated

into p(+60◦), t(180◦) and m(-60◦) rotamers and the populations of each were then compared

to protein coil library data.1

The J coupling values computed from the alanine and glycine peptide simulations could

be compared to multiple experimental values given in Ref. 51. Three separate Karplus

parameter sets were used as given in Ref. 48.

The Karplus parameters used for the protein simulations came from multiple sources,

with both Ref. 49 and Ref. 52 used for backbone parameters. Methyl sidechain Karplus

parameters are also supplied in Ref. 52, and Ref. 53 was used for all other sidechain Karplus

parameters.
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4 Results

4.1 Torsional Parameter Fitting

The final backbone torsional parameters and associated errors in the recreation of the QM

energy scans are given in Section S3.2 of the Supporting Information. For the alanine and

glycine scans, the error for the QUBE force field evaluated using eq 5 is 1.25 kcal/mol

compared to 0.93 kcal/mol for OPLS-AA/M, which is a reasonable level of agreement. For

proline and serine, the errors remain comparable to OPLS-AA/M.

For the sidechain torsional parameters (Section S3.3), the mean error in the recreation

of the QM potential energy scans for the QUBE force field is 1.29 kcal/mol, compared

to 1.12 kcal/mol for OPLS-AA/M. Particularly high errors occur for both the χ1 and χ2

glutamic acid scans, and the glutamine χ2 scan. For glutamic acid, the error is also high

for the OPLS-AA/M force field parameters, but the rotamer populations remained close to

the experimental data, and this may be due to a problem with the functional form used in

classical force fields.1 The OPLS-AA/M error in the potential energy scan for glutamine is

roughly half that of the QUBE force field. However, as we will show, the accuracy of the

glutamine dipeptide MD simulations is good, and so no further refinement was made to the

sidechain torsional parameters in this work.

Although a low error in the reproduction of the QM potential energy surface is clearly

the desired result, this does not necessarily correspond to accurate non-bonded force field

parameters. The degree to which torsional parameters can improve the fit between MM

and QM scans depends not only on the accuracy of the non-bonded, and bond and angle,

parameters, but also on the shape of the energy difference between the QM and MM scans.

The functional form used in classical MM force fields is very restrictive. However, the energy

difference between the QM and MM energy scans must be corrected by the functional form

for low errors to be achieved. Therefore, although we use errors in potential energy scans

as a guide to performance, they cannot be relied upon as a measure of the accuracy of a
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force field. Therefore, we now investigate the performance of the QUBE force field in MD

simulations.

4.2 Dipeptide Simulations

Extensive MD simulations were performed for each of the dipeptides. Computed NMR J

couplings provide a quantative measure of the accuracy of the backbone φ torsion angle

distribution sampled during the MD simulations. The full results are shown in Table S8.

The QUBE force field achieves a root mean square (RMS) error of 0.42 Hz, which can

be compared to 0.35 Hz for OPLS-AA/M.1 Encouragingly, the error in the J couplings

simulated using the QUBE force field is much lower than that of OPLS-AA (0.97 Hz) and

OPLS-AA/L (0.79 Hz).1 With the arginine dipeptide excluded from the QUBE data, the

error drops further to 0.33 Hz. Residue-specific arginine backbone torsional parameters

could be computed, however given that the φ/ψ distribution of arginine occupies the main

conformations expected, this is not investigated in this work.

Figure 3 shows the collective φ/ψ distributions from the dipeptide MD simulations, along

with the main expected protein conformational propensities.54 As discussed in Section S9

of the Supporting Information, it is important to consider the dihedral distributions present

as well as the J coupling data. Encouragingly, the φ/ψ distribution for the dipeptides show

that the major conformations present in protein structures are sampled in the QUBE MD

simulations. The ζ conformation does have a slightly lower ψ angle than suggested, and

there is an additional region with very low occupancy to the right of the γ conformation.

However, these are very small discrepancies.

The φ/ψ distributions for each individual dipeptide are shown in Section S4.2 of the

Supporting Information. Generally, similar areas of the φ/ψ distribution are occupied by all

the dipeptides. The serine and threonine dipeptides do not sample identical regions to the

other dipeptides, which is not unexpected given that they have a separate set of backbone

torsional parameters. There are several dipeptides which show populations of left-handed α-
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helical conformation. High left-handed helical populations have previously caused problems

for other force fields.55 However, since the occupancy of PPII and β regions always remain

higher than the the populations of the left-handed α-helical region, reducing the left-handed

helical population was not considered a priority in this work. The right-handed α-helical

populations are small for all the dipeptides. This is in agreement with experimental results.50

Figure 3: a) The φ/ψ distribution extracted from the dipeptide MD simulations, plotted in
the form −log(pψ,φ) (where pψ,φ is the probability of a region being occupied). The lighter
regions correspond to low probability areas including conformations that are not sampled
during the simulation. b) The major conformations observed in protein structures.54 The
right-handed α-helical region is labelled as δ and the left-handed α-helical region as δ′.

As well as the backbone conformations sampled, the sidechain rotamer populations were

also analyzed. In Figure 4, the simulated rotamer populations are compared to experimental

data taken from protein coil libraries (the data are given in the SI of Ref. 1). Given that

the experimental data are not specific to dipeptides, perfect agreement is not expected.

However, populations at extreme values would cause concern and a correlation between
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Figure 4: A comparison of the rotamer populations for the dipeptide MD simulations and
experimental values from the protein coil library. The dashed lines show the populations
that fall within ±20% of the experimental values.

the experimental and simulated values is favorable. Figure 4 shows that no dipeptides

have populations consisting of just one type of rotamer and there are no extremely high

values (as was observed for OPLS-AA and OPLS-AA/L1). The rotamer M populations are

occasionally slightly lower than expected. However, given the issues previously mentioned

with the experimental data used, further changes were not made to adjust the outliers.

The rotamer data, which were used to construct Figure 4, are reproduced in Table S9.

With a MUE of 14%, QUBE performs better than both OPLS-AA and OPLS-AA/L, which

have errors of 23% and 21% respectively.1 The error is not as low as OPLS-AA/M, which has

an error of 10%, however with further empirical changes to the torsional parameters the error

could likely be further reduced. Examining individual dipeptide errors, protonated histidine

and aspartic acid are found to have the highest errors. The protonated histidine experimental

data includes all ionization states of histidine and therefore may not be accurate, which

would explain the high error. The higher error in the simulated dynamics of the aspartic

acid dipeptide is more problematic and, in future versions of the QUBE force field, further

changes to these sidechain torsional parameters may be considered.
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4.3 Peptide Simulations

Table 2: The J coupling error for the alanine pentapeptide simulation. The Karplus parame-
ter sets are the same as those used previously.1 The values shown in parentheses correspond
to the J coupling errors excluding 2J(N,Cα).

J Coupling Error
Set 1 Set 2 Set 3

0.90 ± 0.03
(0.86 ± 0.03)

4.16 ± 0.01
(0.81 ± 0.03)

1.51 ± 0.02
(0.87 ± 0.03)

Figure 5: The ψ and φ distributions of the central residues of the alanine pentapeptide,
plotted in the form −log(pψ,φ) (where pψ,φ is the probability of a region being occupied).
The lighter regions correspond to low probability areas including conformations that are not
sampled during the simulation. .

The J coupling errors extracted from MD simulations of the alanine pentapeptide are

shown in Table 2, with the φ/ψ distribution shown in Figure 5 and further results given

in Section S5.1 of the Supporting Information. Three sets of Karplus parameters are used

to evaluate the error and the values in parentheses exclude the 2J(N,Cα) coupling term.

Issues with the 2J(N,Cα) coupling Karplus parameters are discussed in Section S9 of the

Supporting Information and elsewhere.1,2 The J coupling error for set 1 is very encouraging

and is lower than both the OPLS-AA/M (1.16 ± 0.02) and AMOEBA force field errors

(0.99).1,5 The errors for sets 2 and 3 with the excluded 2J(N,Cα) term are similar in value.

In the simulations carried out in this work, as well as the work of Amber ff15ipq and OPLS-

AA/M, the low β backbone populations present result in a high 2J(N,Cα) error for the
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second and third set of Karplus parameters.1,2 The pentapeptide conformation with the

largest population is PPII with 62 ± 2 % of the simulation spent in this conformation (Table

S11). This is similar to the conformational propensity observed for OPLS-AA/M (53.5 ±

0.2 %). Both force fields also result in a low α-helical population, which is consistent with

experimental data.15

Figure 6: The ψ and φ distribution for the glycine tetrapeptide (all residues are included)
using a) the QUBE force field and b) OPLS-AA/M, plotted in the form −log(pψ,φ) (where
pψ,φ is the probability of a region being occupied). The lighter regions correspond to low
probability areas including conformations that are not sampled during the simulation.

The problems associated with using the Karplus parameters for Gly3 are discussed in

Section S9 of the Supporting Information and elsewhere.1,51,56 Therefore, we evaluate the

backbone conformations of Gly3 through its φ/ψ distribution alone. In Figure 6, the OPLS-

AA/M backbone conformational distribution is compared to that obtained using the QUBE
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force field. A lower α-helical population is occupied by the QUBE force field, but otherwise

both distributions are very similar.

The MD simulations presented here have demonstrated that the QUBE force field, and

the parameterization methods used to create it, are sufficiently accurate to recreate con-

formational propensities of short, flexible peptides. The errors in the simulated dynamics

of these molecules are comparable to OPLS-AA/M, and the φ/ψ distributions demonstrate

that the major conformations observed in protein structures are populated. Issues with

the transferability of torsional parameters have already been identified from the longer pep-

tide simulations, and are solved by applying regularization. In the following subsection,

the performance of QUBE for entire proteins is evaluated to demonstrate the feasibility of

applying the methodology to macromolecules and to further understand the intricacies of

fitting torsional parameters to a system-specific force field.

4.4 Protein Dynamics

Figure 7: A comparison of the QUBE and OPLS non-bonded parameters for ubiquitin. The
regions circled in correspond to carbonyl carbon atoms, which are expected to be electron
deficient and therefore require small A and B Lennard-Jones coefficients.24 Blue and dashed
black lines represent lines of best fit and y = x respectively.

The use of system-specific non-bonded parameters for biomolecular force fields allows for

long-ranged polarization effects to be included, which is expected to improve the accuracy of
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the force field, particularly for measurements such as protein-ligand binding affinity that are

sensitive to the electrostatic potential at the protein surface. A comparison of the QUBE

and OPLS non-bonded parameters for ubiquitin is shown in Figure 7. Figures for the other

proteins tested follow similar trends. As we have described, QUBE non-bonded parameters

are derived directly from the QM partitioned electron density, and so, each atom has a

unique charge and set of Lennard-Jones coefficients which depend on its environment. In

contrast, the OPLS parameters are read from a library of atom types. The QUBE and OPLS

charges correlate well with no clear outliers. As has previously been observed,24 the QUBE

Lennard-Jones parameters show a far greater level of variation than OPLS (and most other

force fields).

One assumption employed in the use of system-specific charges for proteins (and small

molecules) is that the derived parameter set is not too dependent on the molecular con-

formation. To investigate this assumption, the sensitivity of the non-bonded parameters,

for the GB3 protein, to the choice of input structure is investigated in Section S6.2. Ten

structures were extracted from a MD simulation employing the OPLS-AA/M force field, and

QUBE non-bonded parameters were computed for each snapshot. The standard deviation

of the charge distribution across the ensemble is just 0.02 e, supporting previous observa-

tions that the underlying DDEC atoms-in-molecule charges are relatively independent of

conformation.27,34

It is important to test whether these system-specific force field parameters translate into

more accurate protein interactions and dynamics. In this regard, although the conforma-

tional preferences of the peptides tested in the previous section are promising, it is not known

whether the torsional parameters will continue to be appropriate for use with proteins. As

the non-bonded parameters vary with the system studied, the transferability of torsional

parameters cannot be readily assumed. To assess this we begin by studying MD simulations

of the proteins ubiquitin and GB3.

The J coupling errors for ubiquitin and GB3 are summarized in Table 3. With an overall
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RMSE of 1.54 Hz, the error using the QUBE force field for ubiquitin is higher than that of

OPLS-AA/M, which has an RMSE of 1.12 Hz, but lower than OPLS-AA and OPLS-AA/L

with errors of 1.84 Hz and 1.70 Hz respectively.1 GB3 follows the same trend with an RMSE

of 1.10 Hz for the QUBE force field, compared to the error for OPLS-AA/M of 0.90 Hz,

whilst OPLS-AA and OPLS-AA/L both have an error of 1.46 Hz.1

Table 3: J coupling errors for the proteins ubiquitin and GB3.

Backbone Couplings (Hz) Sidechain Coupling (Hz) Overall
1997 Values 2007 Values 3J(Hα,Hβ) 3J(C′,Cγ) Methyl Cγ RMSE

Ubiquitin 0.94 ± 0.07 1.15 ± 0.05 2.40 ± 0.11 1.16 ± 0.20 1.20 ± 0.05 1.54 ± 0.07
GB3 0.93 ± 0.05 1.03 ± 0.05 1.80 ± 0.05 - 0.84 ± 0.02 1.10±0.04

The J coupling results suggest that whilst the transfer of torsional parameters from

dipeptides to proteins may cause some issues, the QUBE force field remains more accurate

than OPLS-AA and OPLS-AA/L. This is promising when we consider that OPLS has been in

development for many years with multiple iterations and parameter adjustments performed.

The 3J(Hα, Hβ) coupling term is the main contributor to the J coupling error. For GB3,

the 3J(Hα, Hβ) error for the QUBE force field is 1.80 Hz, this is well below the errors for

OPLS-AA and OPLS-AA/L of 3.71 Hz and 3.38 Hz respectively.

However, as discussed in Section S9 of the Supporting Information, the J coupling error

should not be used as the only measure of force field accuracy. To further test the per-

formance of the QUBE force field, we compared the φ/ψ torsion angle distributions and

root mean square deviation (RMSD) of the backbone Cα atoms of each residue from the

experimental crystal structure for five proteins (Section S7 of the Supporting Information).

The dihedral angles of the experimental structure are shown on each φ/ψ plot and these

experimental points, along with the previous data for AMBER ff15ipq (the φ/ψ plots are

given in the Supporting Information of Ref. 2) are used to evaluate the performance of the

force field. Figure 8 shows the five proteins tested, with the residue labels indicating the

main regions that deviated from the crystal structure during simulation.

Figure 9 shows the average RMSD of the Cα atoms of the five proteins from the experi-
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Figure 8: The experimental structures of the proteins tested. Regions that showed the most
significant deviation from the experimental structure in the simulations are labelled. The
red-white-blue color gradient represents the residue number.
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Figure 9: The mean RMSD, relative to the experimental structures, from the MD simulations
of the five proteins tested.
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mental crystal structures over the course of the simulation. Each line represents an average

over three separate MD trajectories. Both GB3 (PDB: 1P7E) and ubiquitin (PDB: 1UBQ)

remain close to the experimental structure for the first 100 ns of the simulation, though there

is some increase in RMSD to around 2–3 Å over the second half of the simulation.

The φ/ψ distributions of GB3 (Figure S8) and the RMSD per residue (Figure S7) help

us to further analyze the results. Residues which deviate from the experimental structure,

and the results from the AMBER ff15ipq force field, also tend to have high J coupling errors.

For example, residues 8–21 have a large deviation from the experimental structure and this

is reflected by high J coupling errors in this region. The backbone J coupling error, using

the 2007 Karplus parameters, for residues 8–21 is 2.00 Hz which is almost double the total

backbone error. This region corresponds to a β-sheet, which separates over the second half

of the MD trajectory and contributes to the increased backbone RMSD. Aside from this

region, the only other residues which show noticeable deviation from the crystal structure

are Val39, Asp40, Gly41 and Thr55. However, the small deviations that are present in these

four residues are also observed in simulations using the AMBER ff15ipq force field.2

Deviations between the simulated ubiquitin dynamics and experiment tend to be confined

to regions without clear secondary structures. Often this is of little concern since both

experimental NMR measurements and simulations with the AMBER force field also indicate

flexibility in these regions (e.g. residues 7–11 and 72–74). However, deviations from the

crystal structure in the disordered region between residues 54–66 is more of a concern, and

contributes to the high J coupling and rising RMSD of the protein backbone over the second

half of the simulation.

In contrast, Figure 9 shows that both the villin headpiece (PDB: 2F4K) and BPTI

(PDB: 5PTI) retain their experimental structures extremely well (average RMSD in the

range 1–2 Å). The three α-helices present in the villin headpiece are retained throughout

the simulations, and the φ/ψ distributions are in excellent agreement with experiment and

the AMBER force field (Figure S10). Similarly, in BPTI, regions with helical or β-sheet
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structures retain their structure. Some small changes in structure are observed (for example,

residues 10–12 in villin and 36–40 in BPTI), though these correspond to regions with no fixed

secondary structure or a bend.

We have also included in Figure 9 the protein binase (PDB: 1BUJ). This is an interesting

test case as the experimental NMR structual ensemble reveals a high degree of residue flexi-

bility, with loops that adopt multiple conformations (Figure S12), but it is also challenging.

The two α-helices present in 1BUJ, around residue 10 and residue 30, are generally well rep-

resented with the QUBE force field. However, in regions with no structure, a bend, or a turn

significant deviations from experiment are observed and the RMSD reaches extremely high

values. By way of comparison, the backbone RMSD using the AMBER ff15ipq force field

was 3.4 Å after 10µs of simulation, and after 0.5 µs was approximately 3 Å. In the AMBER

ff15ipq work, the high RMSD was attributed to variability in the loop regions, which had

also been observed in experimental structures.2 Closer examination of the φ/ψ distributions

of each residue reveal the difficulty of capturing accurate conformational preferences. For

example, the NMR ensemble for Lys38 shows the presence of both β-sheet and α-helical

conformations. These are also observed in MD simulations using both AMBER ff15ipq and

the QUBE force field, but the proportion of each conformation is different. The ensemble

of Ser66 is not well represented with AMBER ff15ipq, but with the QUBE force field all

structures in the ensemble are captured to some degree, although an additional α-helical

conformation is also observed.

Table 4 summarizes the performance of the QUBE protein force field across the peptide

and protein datasets presented in this study, and compares it with analogous assessments of

the OPLS force fields studied previously.1 Overall, QUBE out-performs legacy OPLS-AA and

OPLS-AA/L force fields, but is less accurate (with the exception of alanine pentapeptide

simulations) than the latest OPLS-AA/M force field. This is an encouraging result for

this first generation protein-specific force field, but also indicates that there is room for

improvement of QUBE within the fixed functional form of the biomolecular force field. The

32



next section summarizes our roadmap for future development and application of the QUBE

force field.

Table 4: Summary of averaged simulation errors compared to experiment for QUBE (this
work) and OPLS force fields.1 See the main text for details of the simulations.

QUBE OPLS-AA/M OPLS-AA OPLS-AA/L
Dipeptide Rotamer Populations 14% 10% 23% 21%

Dipeptide 3J(HN ,Hα) / Hz 0.42 0.35 0.97 0.79
Ala5 J coupling (set 1) 0.90 1.16 2.31 2.35

Ubiquitin J Coupling RMSD / Hz 1.54 1.12 1.84 1.70
GB3 J Coupling RMSD / Hz 1.10 0.90 1.46 1.46

5 Discussion and Conclusion

The assumption that biomolecular force fields must be parametrized against the experimental

properties of small molecules has persisted since MM simulations began and remains in all

force fields under widespread use.6,57,58 In this work, we look to challenge this assumption

by deriving system-specific non-bonded parameters, from linear-scaling QM simulations,

for consistency with the QUBE small molecule force field. These non-bonded terms were

used here alongside libraries of (non-bespoke) bond and angle parameters, derived using the

modified Seminario method,30 and newly reparametrized torsional terms.

We have shown here that using system-specific non-bonded force field parameters can

result in accurate conformational preferences for short peptides. Rotamer populations and

simulated J couplings for the dipeptide molecules are in good agreement with experimental

data and compare favorably with the latest OPLS force field. For longer peptide molecules,

the problems associated with fitting torsional parameters to a system-specific force field be-

came more apparent. Using regularization in the fitting process was shown to overcome

these issues and resulted in a J coupling error of just 0.90 ± 0.03 for the alanine pentapep-

tide. Further work investigating disordered peptides will ascertain how general this fix is.

The accuracy of the peptide simulations supports the use of our non-bonded and modified
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Seminario bonded parametrization strategies. In protein MD simulations, the RMSD of the

backbone atoms relative to experimental structures remained low, below 2 Å, for two of the

five proteins tested. The α-helices present in all of the proteins generally remained close to

the experimental structures, but the β-sheets exhibited greater loss of structure, and regions

with no clear structure or exhibiting a turn regularly deviated from the starting structure.

These regions also contributed greatest to J coupling errors. Despite this, the majority of

the regions in the proteins retained their experimental structure and the J coupling errors

for GB3 and ubiquitin were below those of OPLS-AA and OPLS-AA/L, two force fields

regularly used in biomolecular modelling studies.

Whilst developing QUBE, manual adjustments to some torsional parameters were re-

quired. This was also required in the development of OPLS-AA/M, and we can infer from

this that automatically fitting backbone and sidechain torsional parameters using dihedral

energy scans is still challenging. The most obvious failure of dihedral energy scan fitting was

that for a number of sidechains it was more accurate to set the torsional parameters to zero

than to use the originally derived terms. This is in part due to the functional form used,

with potential improvements to this discussed below, but is also due to the poor sampling

of relevant structures by scanning one or two dihedral angles at a time. This problem is re-

duced by the iterative fitting methods used in AMBER ff14ipq and ff15ipq,2,38 which sample

the structures used for torsional parameter fitting by performing MD simulations with the

current iteration of the force field. This approach will be considered in future versions of the

force field.

Another potential source of error is the choice of modified Seminario method for derivation

of bond and angle force constants. However, this method has been shown to accurately

reproduce QM vibrational frequencies,30 and importantly also reproduce QM intramolecular

potential energy surfaces of drug-like molecules when combined with the QUBE non-bonded

and torsion parameters.25

There are also additional considerations involved in using a library of torsional parameters
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alongside system-specific non-bonded parameters. The torsional parameters are fit using one

set of non-bonded parameters but are then used for a range of environment-dependent non-

bonded terms. This is likely the reason for the importance of regularizations in this study.

During the sidechain torsional parameter fitting process it was observed that the optimal

torsional parameters for α-helical and β-sheet backbone conformations can vary greatly.

It may be possible to address this issue by changing the functional form of the torsional

component of the force field. The functional form currently used is inaccurate due to the

parameter dependency on only a single dihedral angle. The coupling between torsional

terms has been addressed in a number of different ways.59–62 These include the use of the

CMAP term in CHARMM22, a grid based correction used to improve the backbone torsional

energetics.61 Extending the CMAP correction so it is dependent on the χ1 sidechain dihedral

angle has also recently been investigated.62 The functional form could also be improved by

adding a torsion-torsion coupling term as employed in previous studies.60

Importantly, the flexibility of the QUBE parametrization process means that changes

to the torsional parameters are not the only alterations that could be made to improve

the accuracy of the benchmark validation tests studied here. It is not just protein-protein

interactions that determine structure, but also interactions with the water model. In par-

ticular, the balance between electrostatic and dispersive interactions has been shown to be

crucial.63,64 Interactions between the QUBE force field and the TIP3P water model may be

responsible for some of the instabilities in structure that we have observed, and development

of a QUBE water model may lead to improved dynamics and computed free energies of hy-

dration.25 An advantage of using a parametrization scheme that depends almost entirely on

QM data is that alterations to the parametrization strategy or functional form can be readily

inserted into the existing workflow. There is future scope for improvement in the choice of

exchange-correlation functional used to derive non-bonded parameters, for example through

the use of hybrid functionals,65 or the choice of electron density partitioning methods,66 or

the addition of off-center charges to model electron anisotropy effects.25 More fundamentally,
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we have the opportunity to investigate improvements to the functional form of the force field

itself, for example, by adding higher order dispersion terms beyond the dipole-dipole interac-

tion37,66,67 or by altering the short-range repulsion term.37 A future QUBE polarizable force

field is also envisaged and, towards this goal, the derivation of accurate atoms-in-molecule

atomic polarizabilities is under investigation.68

As presented in the Results section, the general picture that emerges is that this first

generation quantum mechanical bespoke force field is an improvement over legacy OPLS-AA

and OPLS-AA/L force fields, but is out-performed by the most recent OPLS-AA/M force

field for simulated dynamics of folded proteins in their native state. While we have previously

shown that DDEC charges are not too dependent on small conformation changes,28 further

investigation is needed to establish the utility of QUBE for protein folding simulations.

Hence, although we have outlined our roadmap to future improvements, a natural question

is: where can the QUBE protein force field be used now (especially given the higher cost

of parameterization compared to transferable force fields)? Importantly, it has been shown

previously that the use of system-specific force field charges leads to improvements in binding

energetics of small molecules,8 and reproduction of the QM electrostatic potential for both

small molecules27 and proteins.34 Therefore, although simulated protein backbone dynamics

is an important test, we envisage the QUBE small molecule and protein force field being

particularly important for the study of intermolecular interactions in the condensed phase.

Indeed, QUBE was originally developed to provide, by construction, a compatible protein

and small molecule force field for computer-aided drug design, where an accurate surface

electrostatic potential of the protein is crucial. In this regard, the absolute binding free

energies between the L99A mutant of T4 lysozyme and six benzene analogs have been recently

computed using QUBE with a mean unsigned error of 0.85 kcal/mol, which compares very

favorably with OPLS-AA/M (1.26 kcal/mol).69 Although further work is required to establish

this accuracy across a significantly wider range of protein-ligand complexes, the promise

of these initial biomolecular simulation results indicate a viable pathway toward improved
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protein dynamics and interactions using quantum mechanical bespoke force fields.

Acknowledgement

This research made use of the Rocket High Performance Computing service at Newcas-

tle University, and the Darwin/CSD3 Supercomputer of the University of Cambridge High

Performance Computing Service (EPSRC Grant EP/J017639/1 and EP/P020259/1). The

authors acknowledge financial support from EPSRC grant EP/R010153/1 (DJC) and the

EPSRC Centre for Doctoral Training in Computational Methods for Materials Science un-

der grant EP/L015552/1 (AEAA).

Supporting Information Available

Results of preliminary parametrization work, details of the parametrization methods used,

the QM backbone energy scans, the torsional parameters employed, the dipeptide and pep-

tide J coupling and φ/ψ results, the protein non-bonded parameters, the protein MD results,

Ramachandran plots for alanine and glycine and a discussion of the J Coupling analysis.

References

(1) Robertson, M. J.; Tirado-Rives, J.; Jorgensen, W. L. Improved Peptide and Protein

Torsional Energetics with the OPLS-AA Force Field. J. Chem. Theory Comput. 2015,

11, 3499–3509.

(2) Debiec, K. T.; Cerutti, D. S.; Baker, L. R.; Gronenborn, A. M.; Case, D. A.;

Chong, L. T. Further along the Road Less Traveled: AMBER ff15ipq, an Original

Protein Force Field Built on a Self-Consistent Physical Model. J. Chem. Theory Com-

put. 2016, 12, 3926–3947.

37



(3) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Dar-

ian, E.; Guvench, O.; Lopes, P. E. M.; Vorobyov, I.; Jr., A. D. M. CHARMM general

force field: A force field for drug-like molecules compatible with the CHARMM all-atom

additive biological force fields. J. Comput. Chem. 2010, 31, 671–690.

(4) Wang, L.-P.; Martinez, T. J.; Pande, V. S. Building Force Fields: An Automatic,

Systematic, and Reproducible Approach. J. Phys. Chem. Lett. 2014, 5, 1885–1891.

(5) Shi, Y.; Xia, Z.; Zhang, J.; Best, R.; Wu, C.; Ponder, J. W.; Ren, P. Polarizable Atomic

Multipole-Based AMOEBA Force Field for Proteins. J. Chem. Theory Comput. 2013,

9, 4046–4063.

(6) Jorgensen, W. L.; Tirado-Rives, J. The OPLS [optimized potentials for liquid sim-

ulations] potential functions for proteins, energy minimizations for crystals of cyclic

peptides and crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666.

(7) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the

OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic

Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236.

(8) Jorgensen, W. L.; Jensen, K. P.; Alexandrova, A. N. Polarization Effects for Hydrogen-

Bonded Complexes of Substituted Phenols with Water and Chloride Ion. J .Chem.

Theory Comput. 2007, 3, 1987–1992.

(9) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A well-behaved electrostatic

potential based method using charge restraints for deriving atomic charges: the RESP

model. J. Phys. Chem. 1993, 97, 10269–10280.

(10) Vanommeslaeghe, K.; Guvench, O.; MacKerell, A. D. Molecular Mechanics. Curr.

Pharm. Des. 2014, 20, 3281–3292.

38



(11) Storer, J. W.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Class IV charge models: A

new semiempirical approach in quantum chemistry. J. Comput. Aided Mol. Des. 1995,

9, 87–110.
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(53) Pérez, C.; Löhr, F.; Rüterjans, H.; Schmidt, J. M. Self-Consistent Karplus Parametriza-

tion of 3J Couplings Depending on the Polypeptide Side-Chain Torsion χ1. J. Am.

Chem. Soc. 2001, 123, 7081–7093.

(54) Hollingsworth, S. A.; Karplus, P. A. A fresh look at the Ramachandran plot and the

occurrence of standard structures in proteins. Biomol. Concepts 2010, 1, 271–283.

(55) Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; Bert, L. d. G.; Grubmüller, H.;

MacKerell, A. D. CHARMM36m: An Improved Force Field for Folded and Intrinsically

Disordered Proteins. Nat. Methods. 2016, 14, 71–73.

(56) Nerenberg, P. S.; Head-Gordon, T. Optimizing Protein-Solvent Force Fields to Repro-

duce Intrinsic Conformational Preferences of Model Peptides. J. Chem. Theory Comput.

2011, 7, 1220–1230.

(57) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.;

Profeta, S.; Weiner, P. A new force field for molecular mechanical simulation of nucleic

acids and proteins. J. Am. Chem. Soc. 1984, 106, 765–784.

(58) Ponder, J. W.; Case, D. A. Force fields for protein simulations. Adv. Protein Chem.

2003, 66, 27–85.

(59) Friederich, P.; Konrad, M.; Strunk, T.; Wenzel, W. Machine learning of correlated

dihedral potentials for atomistic molecular force fields. Scientific Reports 2018, 8, 2559.

(60) Palmo, K.; Mannfors, B.; Mirkin, N. G.; Krimm, S. Potential energy functions: From

consistent force fields to spectroscopically determined polarizable force fields. Biopoly-

mers 2003, 68, 383–394.

(61) Buck, M.; Bouguet-Bonnet, S.; Pastor, R. W.; MacKerell, A. D. Importance of

the CMAP Correction to the CHARMM22 Protein Force Field: Dynamics of Hen

Lysozyme. Biophys. J. 2005, 90, L36–L38.

44



(62) Kang, W.; Jiang, F.; Wu, Y.-D. Universal Implementation of a Residue-Specific Force

Field Based on CMAP Potentials and Free Energy Decomposition. J. Chem. Theory

Comput. 2018, 14, 4474–4486.

(63) Piana, S.; Donchev, A. G.; Robustelli, P.; Shaw, D. E. Water Dispersion Interactions

Strongly Influence Simulated Structural Properties of Disordered Protein States. J.

Phys. Chem. B 2015, 119, 5113–5123.

(64) Robustelli, P.; Piana, S.; Shaw, D. E. Developing a molecular dynamics force field for

both folded and disordered protein states. Proc. Natl. Acad. Sci. U.S.A. 2018, 115,

E4758–E4766.

(65) Dziedzic, J.; Hill, Q.; Skylaris, C.-K. Linear-scaling calculation of Hartree-Fock ex-

change energy with non-orthogonal generalised Wannier functions. J. Chem. Phys

2013, 139, 214103.

(66) Manz, T. A.; Limas, N. G. Introducing DDEC6 atomic population analysis: part 1.

Charge partitioning theory and methodology. RSC Adv. 2016, 6, 47771–47801.

(67) Stone, A. J.; Misquitta, A. J. Atom atom potentials from ab initio calculations. Int.

Rev. Phys. Chem. 2007, 26, 193–222.

(68) Manz, T. A.; Chen, T.; Cole, D. J.; Limas, N. G.; Fiszbein, B. New scaling relations

to compute atom-in-material polarizabilities and dispersion coefficients: part 1. Theory

and accuracy. RSC Adv. 2019, 9, 19297–19324.

(69) Cole, D. J.; Cabeza de Vaca, I.; Jorgensen, W. L. Computation of protein ligand binding

free energies using quantum mechanical bespoke force fields. Med. Chem. Commun.

2019, 10, 1116–1120.

45



Graphical TOC Entry

46


