
Predicting Macrocyclic Molecular Recognition with Machine Learning
Anthony Tabet,†,‡,¶,§ Thomas Gebhart,‖ Guanglu Wu,¶ Charlie Readman,¶
Merrick Pierson Smela,¶ Vijay K. Rana,¶ Cole Baker,⊥ Harry Bulstrode,§

Polina Anikeeva,‡ David H. Rowitch,§ and Oren A. Scherman∗,¶
†Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
‡Department of Materials Science & Engineering, Massachusetts Institute of Technology,

Cambridge, MA USA
¶Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge,

Cambridge CB2 1EW, UK
§Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Hills Road,

Cambridge CB2 0QQ, UK
‖Department of Computer Science, University of Minnesota, Minneapolis, MN USA

⊥Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA USA

Received August 12, 2019; E-mail: oas23@cam.ac.uk

Abstract: DFT calculations are used as training data to pre-
dict equilibrium binding constants of small molecules to cu-
curbit[7]uril (CB[7]) with kernel-based support vector machine
learning. This trained algorithm was then used to predict the
binding of two promising small molecule drugs in the clinic
against pediatric low grade glioma, TAK-580 and Selumetinib.
The algorithm predicted strong binding for TAK-580 and poor
binding for Selumetinib. These results were experimentally vali-
dated. It was also discovered that the slightly larger homologue
cucurbit[8]uril (CB[8]) is partial to Selumetinib, suggesting an
opportunity for tunable release kinetics by introducing differ-
ent concentrations of CB[7] or CB[8] into a system such as a
hydrogel depot for local drug delivery. We also qualitatively
demonstrated that these two drugs have different therapeutic
windows and may have utility in combination against low grade
gliomas. Finally, mass transfer simulations were performed to
show how CB[7] can independently tune the release of TAK-580
across time scales from seconds to a year without changing the
kinetics of Selumetinib. This work shows how machine learning
may prove valuable in the development of drug-delivery sys-
tems for combination therapies and the field of supramolecular
chemistry more broadly.

The application of machine learning in biology and chem-
istry has received heightened attention in recent years.1–5

This rapidly expanding paradigm is exciting due to the po-
tential of data science to improve small molecule drug dis-
covery, identify more efficient synthetic pathways, create
proteins with greater binding affinity to specific substrates,
and other applications. One such application that has not
yet been explored is predicting the molecular recognition of
small molecules with macrocycles.

Cucurbiturils are a class of symmetric macrocycles that
have applications within drug delivery, biosensing, cataly-
sis, and energy.6,7 These macrocycles have many advantages
over their non-symmetric counterparts such as cyclodextrins,
including temperature stability and robustness at acidic and
basic pH values,6 such as those that occur naturally in phys-
iology. The use of cucurbiturils to change the release kinetics
or pharmacokinetics of drugs has been previously reported
for chemotherapies such as temozolomide.8,9 Cucurbituril

acts as a competitive substrate for the active ingredient;
such a phenomena can reduce the effective concentration
and increase the half life of biologic and hydrophobic small
molecule drugs.10 Predicting whether a molecule will bind to
any cucurbituril, in particular cucurbit[7]uril, a priori could
be an invaluable tool in developing new chemical or material
systems.11

In this work, we report the prediction of 1:1 complexation
of small organic molecules with cucurbit[7]uril. Finding no
comprehensive, compiled body of data that could be used for
regression, we first created one. We also report the utility
of this regression in predicting the binding of two new small
molecule drugs that have received promising results in the
clinic and verify these predictions with experimental data.
Finally, we provide a qualitative example of the potential
use of these predictions in developing cocktail drug therapies
against a pediatric low grade glioma cell model.

The principle challenge for any machine learning appli-
cation is in building a sufficiently large training data set
that approximates the entire problem domain with as little
bias as possible.12 We performed density functional theory
(DFT) simulations on 146 unique molecules and 196 total
different solution conditions such as variable ionic strength
(Table S1).13,14 Of these, 145 were good guests for CB[7]
(obtained from the literature6). Seeing a lack of negative
controls, we also synthesized and/or tested three molecules
that could not bind to CB[7] and set these undetectable
binding events to output values of 0 to not skew the algo-
rithm with extreme values (Fig. S1-11).

Critical to the binding affinity of molecules with CB[7] are
the size, aromaticity, and charge of the guest. Other, non-
intrinsic parameters such as solution temperature, pH, salt
and/or buffer concentration may also effect the equilibrium
binding constant.6,15 We sought to capture both intrinsic
and environmental properties of the binding event as po-
tential predictive features (Fig. S12). Many reports in the
literature fail to disclose critical environmental details such
as temperature or pH, which drastically limited our ability
to make a cohesive body of data covering the environmental
properties. The simulated body of data were unified as we
homogenously ran DFT simulations and extracted identical
parameters from the optimized results. Table S1 lists the
parameters initially considered.
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Figure 1. Prediction performance for optimal leave-one-out ex-
periments. The line of best fit based on predicted points is shown
in black, and the line representing perfect prediction is shown in
red (score = 1.50).

With 196 molecular samples consisting of 17 experimen-
tal and structural features, the constructed data set is
small sample-wise with a relatively high-dimensional fea-
ture space. Without heavily sub-setting the feature space
and losing potentially integral feature-interaction informa-
tion, training a model to find a subspace parameterizing
the underlying binding dynamics is difficult without strong
inductive biases provided a priori. Without such biases,
we instead looked to kernel methods, dual to more tradi-
tional subspace-learning methods, to provide a more sample-
efficient learning paradigm that can still capture the dynam-
ics of the feature space through the lens of properly-defined
sample similarity. A mathematical background for kernel
methods is provided in the supporting information.

Kernel featurization provides a non-linear representation
of the samples within some inner-product space. Support
Vector Machines (SVMs) are a family of models that can
capitalize on this expressive kernel structure by representing
examples as points in this space and determining an optimal
but well-behaved mapping that best describes the differences
between individual points. Although originally designed for
classification tasks, SVMs have a natural extension to re-
gression. Given the mathematical framework developed in
the supplementary information, we explored the capacity of
SVMs to predict the equilibrium binding constants of pub-
lished data.6 We performed a search over features to deter-
mine the best-performing subset of the feature space in coor-
dination with grid search over hyperparameters within the
model pipeline, namely γ, ε, C, |θ|, σ, and all permutations
of addition or multiplication of each kernelized feature. The
optimal hyperparameters (see supplementary information)
were chosen based on 5-fold cross-validation.

The environmental data were largely incomplete due to
the fact that many experiments in the literature do not re-
port at least one and often several of the environmental pa-
rameters such as temperature or pH. For samples missing
this information, we assumed temperatures of 298.15 K, and
pH values of 7. We also set other values, such as salt concen-
tration, to zero. These assumptions resulted in an environ-
mental feature set that was sparse and largely uniform (see
below). Viewing environmental factors as a single feature

vector, we also explored how the addition of environmental
information affected prediction performance.

A leave-one-out analysis was performed where the optimal
model was trained on the entire training set less one sam-
ple. The log of the equilibrium constant, logK, was then
predicted by the model for the held-out sample. Mean ab-
solute error was calculated across every combination of the
8 features listed in Table S1, and the subset with the low-
est error was chosen to go forward (Fig. S13-16, S18, S19).
Because the available environmental data lack diversity and
are unnaturally uniform across samples, their usage as an
additional feature often masked the underlying predictive
capacity of the structural features. This process of feature
reduction resulted in an optimal model consisting of 4 fea-
tures derived from DFT calculations: optimized orientation,
SCF density, electrostatic properties of each atom, and the
overall electric field gradient (Fig. S18). These results are
intuitive: both the size and electron distribution of small
molecule organics are key in determining binding to cucur-
bit[7]uril.6 Environmental parameters including salt concen-
tration are known to affect the binding of some molecules.6

However, the extent of changes is less than the error of our
model, so environmental parameters were not considered go-
ing forward.

Optimized orientation was the largest driver of model ac-
curacy in predicting logK (see supplementary information).
In pursuit of better intuition regarding model performance,
the equivalent SVM classifier was trained using the same
process as above. The confusion matrix in Figure S19 is
largely diagonal, with a bias towards over-predicting sam-
ples with a low value for logK. Also of interest was the
extent to which the preprocessing methods provided separa-
tion between samples. Figure S17 shows non-linear 2D pro-
jections of the combined kernels as well as the pre-kernelized
and post-kernelized features for the optimized DFT orienta-
tion.16 It is evident from these plots that the featurization
process creates useful separation between high and low val-
ues of logK.

We next sought to challenge the model and identify its
limits. Since the environmental data were disparate and
incomplete, our final model did not use these data. We re-

Figure 2. Normalized confusion matrix for the optimal SVM
classifier.
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Figure 3. Prediction performance for leave-one-out experiments
for environmental parameters only. The line of best fit based
on predicted points is shown in black, and the line representing
perfect prediction is shown in red.

moved any duplicate molecules at different conditions and
set the true logK as the average of all the reported values.
For example, methyl viologen was reported 14 times at dif-
ferent parameters such as temperature or salt concentration,
and so instead of having methyl viologen appear 14 times, it
appeared once (ESI). Interestingly, and perhaps expectedly,
the optimal model in this duplicate-free data set remained
the same. The duplicate-free data set was chosen for subse-
quent analysis and the performance, confusion matrix, and
corresponding ROC-AUC plot are reported (Fig. 1, 2, S17).

With a model in hand, we next sought to find its limita-
tions. First, we removed classes of families and tested the
model’s ability to predict any one member of that family
(Table 1, Table S2, Fig 4). For a family with n members, a
score was defined.

Score =
1

n

n∑
i=1

|logKi,actual − logKi,predicted|

Given the limited size of the dataset, we expect this algo-
rithm to be useful in identifying the binding of molecules
which a supramolecular chemist might expect to bind to cu-
curbiturils a priori. For example, molecules with extended
aromaticity are generally hypothesized to have some kind
of activity with cucurbiturils.15 This analysis shows that in
order to capture binding of molecules such as imidazolium
derivatives and adamantyl compounds, a data set contain-
ing these molecules is required. Imidazolium derivatives per-
formed the best out of all the groups considered when their
family was included in the training, and their error increases
more than 5 times when left out, suggesting the algorithm is
particularly sensitive to training on these types of molecules.
Small arylamines and viologen derivatives performed better
than the average data set regardless if the family was kept
in or out, suggesting analysis of these kinds of molecules is
robust and the physics of their binding is well-captured with
the remaining data.

We next performed classical machine learning controls.17

We first tested the performance of environmental param-
eters alone, which contain no chemical information about
the guest. We found they had poor predictive capabili-
ties (Fig. 3). We also tested whether we could predict the
logK by counting the number of carbons in each molecule

(Fig. S21). Similarly, we found poor predictive capabilities
with this approach. As expected, both models performed
worse than models which considered 3D structural data.
One potential bias in the data that could be leading to the
difference in the controls’ performance is the slight nega-
tive relationship of molecular weights of guests (Fig. S22) to
logK. Finally, we generated a random data set of identical
dimension with the same logK outputs and found this had
poor predictive capabilities (Fig. S23). We also randomly
reassigned logK values to different input data and found
this reshuffling had, as expected, poor predictive capabili-
ties (Fig. S24).

Within the domain of utility, this model can provide an
order-of-magnitude approximations of binding constants of
molecules we might suspect a priori have binding to cucur-
biturils. The mode can discriminate between molecules with
no binding, moderate binding, and strong binding (Fig. 2).
We next utilized it to predict whether binding can occur
between cucurbit[7]uril and two small molecule organics re-
cently identified as potentially promising drugs against pe-
diatric low-grade gliomas: a type II RAF inhibitor TAK-580
(formerly MLN2480; referred to here as RAF), and a MEK
inhibitor Selumetinib (also called AZD6244; referred to here
as MEK).18,19 Sun and colleagues recently reported RAF as
a more promising therapy than type I RAF inhibitors due
to its ability to bind to both fused and truncated v600.18

Banerjee and colleagues also recently reported a promising
phase I clinical trial of MEK in children with low-grade
gliomas.19 We performed DFT geometry optimizations on
these two molecules and applied the SVM model. It was
predicted that RAF would be a good guest to CB[7] with
a logK of 4.61, while MEK would have very poor binding
with a logK of 1.18 (Fig. 5C). Similar values were obtained
if duplicate inputs were considered (Fig. S20). Synergistic
drug cocktails have more potent responses than the sum of
their individual components.20 A key challenge in develop-
ing drug cocktails is in their delivery because drugs have
different therapeutic windows requiring different release ki-
netics.21,22 The ability to independently modulate release
kinetics is an invaluable tool in the development of com-
bination drugs. Different binding constants with macrocy-
cles such as cucurbit[7]uril is one promising approach to in-
dependently modulate these kinetics. This prediction that
two promising drugs (Fig. S25) against pediatric low grade
gliomas is a potentially promising ‘hit’ in combination drug
delivery.

We experimentally validated whether these predictions on
the strong and poor CB[7] binding of RAF and MEK were
accurate. Upon addition of CB[7] to an aqueous solution of

Table 1. Summary of different subclasses of molecules identified in
the data set that were used to challenge the model.

Family of molecules Unique entries
small arylamines 4

viologen derivatives 6
methylene blue derivatives 9
perfluorinated compounds 13

amino acids 10
imidazolium derivatives 8
adamantyl compounds 12
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Figure 4. The score describes the mean difference between pre-
dicted logK and actual logK when each class of families is kept
or left out. Dashed grey line is the average score of the model
utilizing all the data.

RAF (1:1 molar ratio), the drug’s aromatic 1H NMR peaks
remained sharp and well resolved. The proton signals of
CB[7] split into two sets of equivalent peaks (Fig. 5A). These
two observations strongly suggest that RAF and CB[7] bind
favorably and statically.15 We also sought to identify pre-
cisely where RAF was binding with CB[7]. No information
on 1H or 13C NMR peak assignments could be found on
RAF from the manufacturer or in the literature, and so fur-
ther characterizations were carried out (Supplementary Sec-
tion S.3: Binding Analyses via NMR). Our results show that
CB[7] binds statically at the trifluoromethyl-substituted ring
in a 1:1 fashion (Fig. S29). Surprised by this result, we
sought to understand why CB[7] preferentially bound to the
bulkier trifluoromethyl-substituted ring if there was an alter-
native pyrimidine with a positively charged amine.6 Deuter-
ated hydrochloric acid solution (0.1 M) was titrated into a
solution of RAF alone (Fig. S30). The aromatic peak meta
to the primary amine shifted after a reduction to pH ≤ 2.
This suggests that the primary amine is, in fact, uncharged,
which may be a reason why CB[7] does not bind at the
pyrimidine ring. We then investigated whether RAF could
bind to CB[8] (Fig. S31). The aromatic peaks of the drug
do not remain well resolved as in the case with CB[7], but
rather they broaden and disappear. This suggests that RAF
does interact with CB[8] with low affinity and in a highly dy-
namic manner. Thus, CB[8] is not a good carrier for RAF,
while CB[7] is an excellent one with KCB[7] = 3.5×106 M-1

(Fig. S29).
We then validated whether the SVM prediction for MEK

was correct. MEK was added to an aqueous solution of
excess CB[7] to determine whether any interactions were oc-
curring (Fig. S32). In depth analysis is described in the
ESI. These data demonstrated that the drug does not bind
to CB[7], confirming that the SVM predicted poor bind-
ing of MEK with CB[7]. We then screened its binding to
CB[8] (Fig. S33). The shift and retention of sharp peaks
in the 1H NMR spectra suggested that the MEK inhibitor
binds more strongly and statically to CB[8] than RAF. The
downfield shifts of protons c, g, and h suggested that the ex-
tended imidazole ring is located near but outside the CB[8]
cavity. The upfield shift of protons a and b suggested that
the ethylene glycol unit is inside the CB[8] cavity. The min-
imal changes in protons d, e, and f were consistent with the

hypothesis that the bromo-substituted ring was not inside
or near the CB[8] cavity. It is well known that CB[8] can
thread poly(ethylene glycol) chains.6 The thermodynami-
cally favorable interactions between ethylene glycol repeat
units and CB[8] may explain why CB[8] preferentially binds
to the ethylene glycol unit of MEK. After addition of CB[8]
in ratios greater than 1:1, little change occurs in the spec-
tra, which suggested MEK and CB[8] bind in a 1:1 fash-
ion. These data show that two different drugs with differ-
ent therapeutic windows bind to different CB macrocycles.
MEK shows no binding with CB[7], yet RAF and CB[7] bind
strongly in a 1:1 fashion. Conversely, MEK binds to CB[8]
more statically than RAF. Combining these two drugs into
one therapy could give rise to a paradigm that provides a
unique opportunity to selectively tune the release or resi-
dence time of one drug independently of the other by simply
tuning the concentrations of CB[7] and CB[8] in the delivery
system.

We next sought to provide a qualitative example of the
potency of these drugs, and why modulating drugs to have
different release kinetics is an important capability in the
development of combination therapies. RAF/MEK combi-
nation therapies have been found to be efficacious against
other malignancies including leukemia and colorectal can-
cers.23 Recently BRAF and MEK dosages combined with
PD-1 blockade was shown to be an effective immunotherapy
approach against melanoma.24 We hypothesized that such a
combination may prove potent in a pediatric glioma model.
We screened for combinations of RAF and MEK against a
v600e mutant and identified a synergistic effect at 102 nM
concentration of both RAF and MEK together (Fig. S34).
This result suggests that by co-delivering RAF and MEK,
the concentration required of drug can be reduced at least
100 fold to achieve the same outcome. Further optimizations
may yield further reductions in required concentrations.

Finally, we develop a model to showcase how with these
binding affinities, CB[7] can be used to independently tune

Figure 5. (A) 1H NMR spectra of RAF alone (bottom) in
DMSO-d6/D2O solution, and with CB[7] in a 1:1 molar ratio
(top) in the same solution. (B) Illustration showing geometri-
cally accurate binding of RAF with CB[7]. (C) Predicted and
experimental logK of RAF and MEK.
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Figure 6. Simulated time-resolved release kinetics of RAF and
MEK with different concentrations of CB[7]. Figure shows five
day result of (A) RAF and (B) MEK. MEK shows no change in
concentrations as it does not bind to CB[7].

the release kinetics of one drug without changing the kinetics
of the other (Fig. 6). We model a spherical, non-degradable
hydrogel depot 0.375 mL in volume with bound CB[7] in
the matrix and 100 µM loaded drug concentrations. The
concentration of loaded CB[7] was varied. Across different
concentrations of CB[7], the release kinetics of RAF changed
several orders of magnitude in timescales (Fig. 6A, S35). By
contrast, the changing concentration of CB[7] did not change
the release kinetics of MEK (Fig. 6B). This result shows
the utility of this macrocycle in tuning the kinetics: a high
concentration can be loaded, and release can be prolonged
over time scales of interest for local drug delivery.21

In this work, DFT calculations were used as training data
to predict equilibrium binding constants of small molecule
organics to CB[7] with machine learning. A library was de-
veloped and used to identify which parameters provide pre-
dictive capability. This algorithm was then used to predict
the binding of two promising small molecule drugs in the
clinic against pediatric low grade glioma. The algorithm
predicted strong binding for the type II RAF inhibitor, and
poor binding for the MEK inhibitor, which was experimen-
tally validated. It was also discovered that CB[7] is partial
to binding the RAF inhibitor, and CB[8] is partial to bind-
ing the MEK inhibitor, suggesting an opportunity for tun-
able release kinetics by introducing different concentrations
of CB[7] or CB[8] into the system, perhaps in a hydrogel
depot. Finally, we qualitatively demonstrated that these
two drugs have different therapeutic windows and may have

utility in concert against low grade gliomas. Machine learn-
ing may prove valuable in the development of drug delivery
materials for combination therapies in the future, as well
as non-biomedical applications that requires predicting the
binding of small molecules to macrocycles. This work rep-
resents an original effort to bring machine learning to the
field of supramolecular chemistry. As datasets continue to
be generated and refined, the opportunities of data science
in supramolecular chemistry will continue to grow.
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