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Polymorphism is the capacity of a molecule to adopt different conformations or molecular packing arrangements in the 

solid state. This is a key property to control during pharmaceutical manufacturing because it can impact a range of 

properties including stability and solubility. In this study, a novel approach based on machine learning classification 

methods is used to predict the likelihood for an organic compound to crystallise in multiple forms. A training dataset of 

drug-like molecules was curated from the Cambridge Structural Database (CSD) and filtered according to entries in the 

Drug Bank database. The number of separate forms in the CSD for each molecule was recorded. A metaclassifier was 

trained using this dataset to predict the expected number of crystalline forms from the compound descriptors. This 

approach was used to estimate the number of crystallographic forms for an external validation dataset. These results 

suggest this novel methodology can be used to predict the extent of polymorphism of new drugs or not-yet experimentally 

screened molecules. This promising method complements expensive ab initio methods for crystal structure prediction and 

as integral to experimental physical form screening, may identify systems that with unexplored potential. 

 

achine Learning methods (ML) are ubiquitous in many areas 

of modern science and have become a crucial tool where large 

amounts of data from different sources are available. There is 

a diverse range of ML algorithms available that have been applied to the 

modelling and prediction of complex systems and problems. Various 

factors have an impact on the suitability of ML approaches for different 

applications. Among those are the size and distribution of the training 

data in the features space, the correlation of the descriptors, the nature 

of the problem and its degree of non-linearity. The non-linearity of the 

problem considered in this study is one of the main drivers for the choice 

of the ML approach used. Support Vector Machine (SVM) and Random 

Forest (RF) are ML methods that have already been successfully used 

for classification and prediction of non-linear chemical processes (i.e. 

the features and the response are not correlated with a linear 

relationship) and they are suitable for large dimensional problems (i.e. 

many factors affect the response of the phenomena)1,2.  
     The k-Nearest Neighbours (k-NN) algorithm joins simplicity and 

intuitiveness. In the Mitchell group, this method was applied to predict 

the melting point for 4119 structurally diverse organic molecules and 

277 drug-like molecules. The performance of this algorithm was 

compared with the one from neural networks showing the strengths and 

the weaknesses to exploit their predictive models. Cross-validation and 

y-randomisation both proved to be good strategies for prediction 

validation3. Tropsha et al. highlighted the importance of validation 

techniques in Quantitative Structure-Property Relationship (QSPR) 

models before applying them on real world problems. They enumerated 
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several examples of predictive failure when the validation step was not 

considered carefully4.  

     QSPR modelling is by definition based on the assumption that 

changes in molecular structure are reflected in variation in the observed 

macroscopic properties of materials2. This approach does not require 

access to expensive, high-performance computing power and has been 

shown to deliver scalability, efficiency, robustness and predictability5. 

QSPR has been applied to predict a wide range of material properties 

such as physicochemical and biological properties of nanomaterials6, 

catalytic activity in homogeneous and heterogeneous catalysts7,8, 

protein adsorption, cell attachment, cellular proliferation on biomaterial 

surface9, glass transition temperature for polymers10, melting points for 

ionic liquids and others11. 

     Crystal structure prediction is a challenging area and one of the 

promising applications of QSPR and ML. Philipps et al. identified new 

types of crystalline structures from large data sets of coordinates. They 

deployed a hierarchy of pattern analysis techniques and applied ML 

with shape matching algorithms to extract and classify crystals into 

categories12. Clustering and the identification of intrinsic structural 

features in particle tracking data were also investigated using the 

Neighborhood Graph Analysis (NGA) method13. In inorganic 

chemistry, the Cluster Resolution Feature Selection (CR-FS) and 

support vector machine (SVM) classification were applied to predict the 

crystal structures of ternary equiatomic compositions based only on the 

constituent elements14. Moreover, Principle Components Analysis 

(PCA) was exploited to render structure maps of spinel nitrides 

(AB2N4)15.  
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Figure 1 | The 3-dimensional packing and crystallographic information (the distances, the angles and the volume of the unit cell) of two biologically active molecules 
(Chlorpropamide and Thiazolidinone) showing the five characterised polymorphic forms and the singular reported form in the second.  
 

     The Random Forest algorithm was able to predict full-Heusler 

structures and discriminate between Heusler and inverse Heusler 

structures16. 

Raccuglia et al. exploited a successfully failed experiments’ database to 

highlight the factors that control organically templated metal oxides 

reaction outcome. They applied different algorithms and found that 

SVM was the most robust one to mine the chemical information 

rendered from historical reactions17. The identification of crystal 

structure using optimisation of relevant thermodynamic potential in the 

space of atomic coordinates is gaining significant interest18. Various 

algorithms such as genetic algorithms or simulated annealing were 

exploited to determine the global energy configurations of crystal 

structures19. A ML model was trained on a dataset of ab initio 

calculation results for 7000 organic molecules. Various molecular 

descriptors such as nuclear charges and cartesian coordinates were 

exploited as features for a deep multi-task artificial neural network 

capable of predicting atomisation energy, ionisation potential and 

electron affinity simultaneously20. 

     Polymorphism is defined as “the existence of a solid crystalline 

phase of a given compound resulting from the possibility of at least two 

different arrangements of the molecules of that compound in the solid 

state”21,22. It is difficult to predict ab initio whether a specific molecule 

will adopt more than one crystal structure, how many polymorphs are 

likely to be observed, or the specific crystal packing arrangements and 

associated physical properties each polymorph will display23,24. Organic 

crystals are of paramount importance in different industrial sectors 

including agrochemicals, food, paint, energetic materials, and 

pharmaceuticals. The polymorphism of these entities dictates their 

flowability, stability, colour, solubility and mechanical strength25. In 

addition to the challenges related to the production control of a specific 

solid form, polymorphism is still posing intellectual property conflicts 

and prolonged legal battles26. 

     Considerable progress has been made in the field of crystal energy 

landscaping (i.e. calculating the thermodynamically feasible crystal 

structures within an energy landscape of possible polymorphs)27. This 

procedure can guide expensive, and time consuming experimental 

screening approaches for solid forms if thermodynamic and kinetic 

factors are both taken into consideration28,29. Although numerous ab 

initio predictive methodologies have been developed to deal with 

increasingly complex challenges (flexible conformers, multicomponent 

crystals), it is not yet possible to rely on such approaches without 

carrying out experimental investigations. Figure 1 shows the contrast 

between two biologically active molecules that present completely 

different behaviours in terms of experimental polymorphism. Indeed, 

while Chlorpropamide is reported to form at least 5 different crystalline 
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forms30, the cytotoxic Thiazolidinone is only reported to have a single 

polymorph in the Cambridge Structural Database (CSD)31. 

     The CSD does not contain a complete record of the full extent of 

polymorphism for all chemical entries,32 rather it includes all the entries 

that have been reported in the literature or reported directly by 

researchers to the Cambridge Crystallographic Data Centre (CCDC). 

Thus, it is possible that some molecules, with a single crystal structure 

entry, are highly polymorphic once studied in an extensive experimental 

polymorphic screening.  

The Random Forest method, in particular, has previously been 

successfully applied to the design of experimental screens assessing the 

completeness of experimental screens for solvate formation33; 

prediction of packing types from solvent properties34 and the 

crystallisability of organic molecules35,36. However, it has not been 

assessed as a predictive tool for the extent of polymorphism expected 

from a target molecule. In this work, we exploit curated data from the 

intersection of the CSD and Drugbank37 and implement a metaclassifier 

that enables the discovery of the true extent of polymorphism in organic 

molecules and their potential to crystallise in with new solid-state forms. 

This metaclassifier is the combination of various machine learning 

algorithms. Four types of datasets were exploited to build predictive 

models. The most robust model was selected to identify an organic 

molecule susceptible to exist in several solid states. The experimental 

validation was conducted by the crystallisation screening of this 

compound in 60 different solvents. 

Case study 1: Polymorphism prediction with 2D descriptors 

and with dimensionality reduction 
The nine statistical models (i.e. the eight machine learning models and 

the Prediction Fusion model) generated for the dataset of 2D structures 

with dimensionality reduction are summarized in Figure 2.A. The 

comparison between the different models showed that all the algorithms 

were successful in reaching acceptable accuracy of prediction (>60% 

for a six classes classification problem where the randomness is 
100

6
 % 

(i.e. This is the probability to predict the correct number of 

polymorphism by random guessing)) except for the Naïve Bayesian 

Multinomial and the multilayer Perceptron algorithm. k-Nearest 

Neighbours and Random Forest were the best methods with an accuracy 

of 86% and 85%, respectively. The exploitation of the Prediction Fusion 

enabled an improvement of the predictive capacity and demonstrated a 

synergetic effect of combining the probability generated from the 

different algorithms in one unique model. The Prediction Fusion 

method rendered an accuracy of 91% and a Cohen’s kappa of 90%. 

     The confusion matrix that is depicted in Table 1 explains the high 

accuracy that characterises the Prediction Fusion model. It is clear that 

the diagonal of this matrix, explaining the correct prediction, is very rich 

in samples.
 

Table 1. Confusion matrix from the fused predictive model of the case 

study 1 

Number of 

polymorphs Experimental polymorphism 

  1 2 3 4 5 6 

P
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o
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h
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m
 1 55 17 7 6 6 3 

2 3 88 0 3 0 0 

3 0 0 94 0 0 0 

4 1 1 1 91 0 0 

5 0 0 0 0 94 0 

6 0 0 0 0 0 94 

 

Table 2. Confusion matrix from the fused predictive model of the case 

study 2 

Number of 

polymorphs Experimental polymorphism 

  1 2 3 4 5 6 

P
re

d
ic

te
d

 

p
o
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m

o
rp

h
is

m
 1 90 3 0 1 0 0 

2 1 88 4 0 1 0 

3 5 23 53 8 4 1 

4 0 0 1 93 0 0 

5 0 0 0 0 94 0 

6 0 0 0 0 0 94 
 

Table 3. Confusion matrix from the fused predictive model of the case 

study 3 

Number of 

polymorphs Experimental polymorphism 

  1 2 3 4 5 6 

P
re

d
ic

te
d

 

p
o

ly
m

o
rp

h
is

m
 1 334 18 20 3 14 3 

2 8 266 52 31 16 19 

3 5 13 343 11 11 9 

4 2 11 9 359 3 8 

5 0 9 12 5 359 7 

6 3 6 20 5 10 348 

 

Table 4. Confusion matrix from the fused predictive model of the case 

study 4 

Number of 

polymorphs Experimental polymorphism 

  1 2 3 4 5 6 

P
re

d
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d
 

p
o
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m
o
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h
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m
 

1 366 4 6 11 2 3 

2 13 346 8 19 2 4 

3 17 13 297 35 20 10 

4 12 2 26 345 5 2 

5 4 0 5 7 376 0 

6 4 0 13 17 6 352 

 

 

Case study 2: Polymorphism prediction with 2D descriptors 

and without dimensionality reduction 
The nine models generated from the datasets of 2D structures using their 

corresponding molecular descriptors were plotted in Figure 2.B. They 

showed very similar performance to the Case study 1 and proved that 

the dimensionality reduction did not improve dramatically the 

performance of the obtained models in the Case study 1. It is shown that 

PCA improved the weakest models (i.e. Naive Bayesian and Multilayer 

Perceptron). Their accuracies increased from 9% and 18% to 55% and 

52%, respectively. The comparison of the confusion matrices between 

the two cases shows the enhancement of prediction for class 1. 

Therefore, in case 2, only 4 samples were predicted wrong, compared 

to 39 samples for the class of single form. It is noteworthy that the best 

models from case 1, where Principle components were used instead of 

the original molecular descriptors, had very similar results. The worst 

two predictive models were improved dramatically. For instance, the 

Multilayer Perceptron achieved an accuracy equal to 52% while it was 

18% when dimensionality reduction was considered. This proves that 

the reduction of the number of dimensions did not help to improve the 

already robust models and even led to a deterioration of relatively weak 

models such as the Naïve Bayes multinomial algorithm and the 

Multilayer Perceptron. The confusion matrix, as depicted in Table 2, 

explained the good performance of the Prediction Fusion model and 

showed an enrichment of the matrix’s diagonal in samples. 

Case study 3: Polymorphism prediction with 

crystallographic descriptors and with dimensionality 

reduction 
Case 3 exploits the information from the dataset of 3D structures. 

Instead of using the crystallographic descriptors, a Principle 

Components Analysis was conducted to reduce the dimensionality of 

the system to 9 components. Comparing to the two previous cases, all 



the obtained models in case 3, as illustrated in Figure 2.C, were less 

robust in predicting the polymorphism of the molecules of interest than 

the previous models of the 2D structures datasets. K-NN, RF and PF 

were still very robust to predict the polymorphism. Their accuracies are 

equal to 84%, 83% and 89%, respectively. The low number of 

independent variables can explain this robustness compared to the 

number of samples within the dataset. The corresponding confusion 

matrix for the Prediction Fusion models that are illustrated in Table 3 

explains the high accuracy in estimating the polymorphism from 3D 

structures and dimensionality reduction. 
 

Case study 4: Polymorphism prediction with 

crystallographic descriptors and without dimensionality 

reduction 

The last case uses the 3D structures from the intersection of the Drug 

Bank and the CSD databases and their corresponding crystallographic 

descriptors such as the unit cell parameters. The performance of the 

different models was plotted in Figure 2.D. The utilisation of the 

original crystallographic descriptors improved the performance of all 

the models slightly, with no exception. Naïve Bayes Multinomial, 

Simple Logistic and the Multilayer Perceptron were the weakest 

predictive models. As before, k-NN, RF and PF were at the head of the 

list to estimate the polymorphism. Support Vector Machine, Ordinal 

Classic Classifier and the Gradient Boosted Trees had a relatively 

acceptable accuracy between 60% and 75%. The Prediction Fusion 

model exploited the probabilities from all the generated models with 

respect to their individual accuracies. Table 4 explains the robustness of 

this model through the sample-rich diagonal.

 

 
 

 

 

 

Figure 2 | Performance of the 8 independent machine learning algorithms to generate statistical models in: A- Case study 1, B- Case study 2, C- Case study 3, D- 

Case study 4. 
 

Descriptors importance 
When the Principle Components analysis was not applied for the 

datasets of 2D and 3D structures (i.e. case 2 and 4), it was possible to 

check the importance of the independent variable and to interpret their 

contribution to define the accuracy of the designed model. In the case 

of the 2D structures dataset, molecular descriptors were generated from 

the MOE and RDKit software packages. 

     After the pre-processing and filtration step, 169 molecular 

descriptors were employed to build different models. The backward 

selection was used in a loop with the k-NN algorithm as assessor of 

accuracy because it has already demonstrated a good prediction 

performance and it does not require other predictive models as in the 

case of the Prediction Fusion. Each descriptor was deleted at each 

iteration of the loop, and the accuracy was measured. The most 

important variables were those which significantly deteriorated the 

accuracy of the model. From the best 2D structure model, the most 

influential variables on the performance of the predictive models were: 

Q-VSA-NEG (Total negative van der Waals surface area), Q-VSA-Pol 

(Total positive van der Waals surface area). These two descriptors 

belong to partial charge descriptors. There are also the molecular 

quantum numbers MQN3 (number of chlorines) and MQN26 (number 

of acyclic single valent nodes), a_ICM (This is the entropy of the 

element distribution in the molecule). A detailed explanation of all the 

previous descriptors is included in the manual of MOE and RDKit 

software38,39. In the case of the crystallographic descriptors, the most 

influencial descriptors were the “a” and “b” parameters of the reduced 

cell. This was expected because these two parameters define most of the 

crystal geometry. 

In silico Discovery of hidden polymorphism 
The ultimate goal of this work was to discover polymorphism in 

neglected or new molecules. This can be conducted from 2D or 3D 

structures by applying the suitable model (i.e. one of the 4 cases 

explained above). Finding the real potential of a molecule to give a 

number of polymorphs has many benefits and can be exploited in 
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several stages of solid-state research. For instance, this information can 

be useful for an initial screening from large databases like ZINC40 and 

ChEMBL41. It is also practical for already investigated polymorphs to 

see whether other solid forms are missing, and further experimental 

screening would lead to producing them.  

     We exploited our predictive models to estimate the polymorphism in 

a subset (i.e. 100 different 2D structures from the CSD that has not been 

involved in any stage of designing the predictive models). This subset 

presents the occurrence of polymorphism for molecules that were not 

included in the Drug Bank like the majority of molecules in the CSD. 

The comparison of the distribution of the polymorphs in this subset 

according to their corresponding number of possible forms was 

summarised in Figure 7. k-NN, Random forest, and Prediction Fusion 

were selected as they are the most effective predictive models for 

estimating polymorphism. From the current experimental observations, 

it was clear that there was a dominance of the structures possessing two 

different polymorphs. All the different models estimated over 40% of 

the molecules in the CSD have 2 polymorphs. Currently, 54% of the 

database structures were classified as possessing just two solid forms. 

Except for the k-NN, RF and PF models estimated that structures with 

a single solid form are overestimated. Indeed, RF estimated that only 

4% of the structures have a unique crystalline form. Only 3 % of the 

database was predicted to have 4 different polymorphs. Interestingly, all 

the statistical models estimated a higher occurrence of structures having 

4 forms than the current experimental estimation. For examples, k-NN 

and PF predicted 7% and 13% of 4-forms occurrence, respectively. 

 

Figure 3 | Comparison of the distribution of the number of polymorphs of 
molecules in the CSD database if the predictive model of polymorphism is 

exploited or not. The bar chart presents the occurrence of polymorphism in each 

of the 6 classes. The blue and the black dashed curves show an approximate trend 
of this abundance before and after applying the predictive models, respectively. 

 

    This overall shape of polymorphism occurrence distribution was kept 

in the different predictive models. This is illustrated in Figure 3 with 

black and blue dashed curves for the predicted and the current 

experimental abundance of polymorphism, respectively. Interestingly, 

we observed that the predicted area of a high number of polymorphs 

(i.e. 4, 5 or 6 form per 2D structure) is wider than what has been 

achieved experimentally, thus far. The current statistics of the 100-

sample subset showed that there is no structure with six polymorphs. 

The same trend applies to the structures with five polymorphs. This 

leads us to conclude that building predictive models based on carefully 

selected molecules (i.e. structures that were heavily screened for 

polymorphism in the pharmaceutical industry) enabled the discovery of 

a hidden area of the chemical space. 

Experimental screening 
The X-Ray powder diffraction patterns of the crystallised samples, 

depicted in Figure 4.C provided evidence of the presence of new solid 

forms of pentoxifilline in addition to the already characterised form in 

the CSD database. The comparison of the Pearson correlation between 

the patterns identified 4 clusters as depicted in the dendrogram and the 

clusters plot below. Comparison of the X-Ray diffraction patterns of the 

samples crystallised in tetrahydrofuran, diethylene glycol, acetic acid 

and benzylamine shows the presence of additional Bragg reflections, 

which cannot be explained by the reference pattern. This is indicative 

of the presence of new solid forms, but the exact nature of these new 

forms is still not known. The DSC/TGA analysis, represented in Figure 

4.D and 4.E, confirms these results by thermal events identified which 

do not correspond to the crystallisation solvent or the thermal transition 

of the reference form within the temperature range investigated. ATR-

IR spectra were collected as a fingerprint for the new forms and 

compiled in Figure 4.FMinor differences in the spectra can be 

rationalised by the presence of different orientation of the pentoxifilline 

in space, which affects the non-covalent interactions such as the 

hydrogen bonds. 

     Two different datasets were extracted from the Drug Bank database 

and the CSD. They contain 2D and 3D structures or organic molecules 

and their corresponding polymorphism number. Molecular descriptors 

were employed as independent variables for 2D structures dataset and 

crystallographic descriptors were used for 3D structures dataset. PCA 

was exploited to reduce the dimensions of each of the two datasets, 

which allow the generation of 4 different datasets in total. 8 different 

machine learning algorithms were applied to the different dataset, and a 

metaclassifier was built from the probabilities estimated from each 

algorithm. 9 statistical models were rendered for each dataset with 

various capabilities to predict the real number of experimentally 

achievable polymorphs. It was clear that K-Nearest Neighbours and 

Random forest were reliably the most robust statistical models. A 

synergistic effect has also been obtained a metaclassifier called the 

Prediction Fusion. This latter gave higher accuracy than the RF or the 

K-NN models. It is also noteworthy to mention that the application of 

the dimensionality reduction for these systems did not improve the 

results but slightly deteriorate them. 

     In addition, the most robust models were exploited to detect the most 

influential descriptors on the polymorphism capability of each structure. 

As expected, the reduced unit cell parameters were the most important 

features in the case of 3D structures approach. A number of molecular 

descriptors such as the Total negative and positive van der Waals 

surface area and the number of chlorine atoms in the molecules were 

among the most influencing molecular descriptors on the models built 

from 2 structures.
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Figure 4 | Analysis of the crystallised pentoxifylline in the different solvents. A- Dendrogram of the most relevant samples screened experimentally and found in the 

literature, showing the similarity between the solid forms. B- Clustering plot of the selected samples distinguishing between the new form and the mixtures of the 
existing forms. C- X-Ray powder diffraction patterns of the reference material extracted from the CSD and the selected forms from the experimental screening. D- 
DSC traces of the selected forms presenting the thermal events occurring during the heating of the samples. E- ATR-IR spectra of the selected new polymorphs

     The comparison between the distribution of the abundance of the 

number of polymorphs in the current CSD with what was predicted from 

the best-designed models reveals a hidden area of chemical space that 

was potentially underestimated and under-screened for polymorphism. 

In other words, these models show the real potential of any known or 

unknown structure to give a certain number of crystalline forms. In the 

present work, the most robust model has successfully predicted the 

number of solid forms that are missing. This was validated 

experimentally by conducting a solvents screening that revealed the 

hidden forms. This has paramount practical importance for 

crystallographers and materials engineers because referring to the best 

of our knowledge today, this is the first computational tool based on 

data mining and machine learning that gives experimentalists an initial 

guideline about the hidden potential of organic molecules to render extra 

solid forms, not yet discovered and isolated experimentally.  
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Methods 
Database curation 
The datasets generated to build predictive models for the polymorphism of 

organic molecules were curated from two main databases: The Drug Bank 37 
(DB) and the Cambridge Structural Database42 (CSD). The choice of these two 

databases was based on the complementarity of information that they provide. 

In the CSD, which is approaching one million crystal structure entries, each 
molecule entry may have metadata field describing its polymorphism and 

whether it is available in the DB with the corresponding reference. The DB 

currently has 9292 entries comprising 3189 small molecule drugs, 926 
approved biotech (protein/peptide) drugs, 108 nutraceuticals and over 5,069 

experimental drugs. To evaluate the role of ML in predicting polymorphism in 

the drug like molecules, a subset database was created. Filters were applied to 
the full CSD database, to identify entries that were organic molecules with 

recorded polymorphs (i.e. >1 distinct crystal structure with the same formula 

unit) and which also appeared within the DB. The choice of the intersection 
between the two databases, depicted in Figure 5, was based on the increased 

likelihood that commercially available drugs will have been screened 

experimentally for polymorphism and more likely to have a complete record of 
the number of experimentally achievable crystallographic forms compared with 

molecules investigated in academia or other industries. While it is still probable 

that all forms may not have been reported in the public domain or even 
structurally characterised to allow them to be included in the CSD, this 

database still provides a useful training set to assess the potential application of 

ML. From the initial CSD dataset of 15202 3D structures, only 883 structures 
remained after the filtration process. These three-dimensional structures can be 

further categorised into 178 two-dimensional structures (smiles). The 15202 3D 

structures for the 883 molecules also include redeterminations, variable 
temperature studies, conformational polymorphs, polymorphic forms, co-

crystals, salts, hydrates and solvates. Therefore, a manual filter was used to 

discard co-crystals and redeterminations of each molecule. Although they have 
chemically different compositions, the salts, hydrates and solvates were kept in 

our datasets because they have very relevant information that determines the 

diversity of the polymorphic forms, especially for pharmaceutical applications.  

 
Figure 5 | The intersection between two different databases: CSD and Drug 

Bank giving drug like molecules that have likely been screened for 

polymorphism with entries in the CSD. 
 

Confirmation of polymorphism was provided by checking the original 

published source article for each selected REFCODE entry. Although some 
papers claim the existence of molecules with up to 9 different polymorphs such 

as the flufenamic acid43, the datasets ignored these molecules as they are a very 

extreme minority that risks unbalancing the datasets heavily. In the other 

extreme of the polymorphism spectrum, only molecules that are commercially 

available as drugs were considered as “true negative” as any drug is expected to 

be screened for polymorphism before it becomes available in the market. There 
are several works that claim the presence of 60 different solid forms for 

Atorvastatin but surprisingly none was reported in the CSD because no single 

crystal was identified and isolated.44 The final dataset used in this study 
considered six classes that describe chemicals in the database with 1, 2, 3, 4, 5 

or 6 discrete, crystallographically different polymorphs including solvates and 
salts but not co-crystals.  

 
3 www.knime.com 

Data workflow 
The pre-processing of the 833 3D structures dataset “condensed” in 178 2D 

structures dataset was carried out through a series of data transformation and 
cleaning available in Knime3 software and described in Figure 645–47. The initial 

data transformation was the generation of molecular descriptors for the 2D 

structures dataset. This step was not performed in the case of the 3D structures 
dataset because crystallographic descriptors will be used instead of most of the 

molecular descriptors generated with MOE48 and RDKit47 nodes available in 

Knime. In a second step, structures having descriptors with missing or highly 
correlated values (i.e. Correlation threshold was set to 0.9 as a lower limit of 

correlation) were also eliminated from both datasets. The descriptors with low 

variance (i.e. Variance upper bound was set to 0.01) were discarded, too. A 
normalisation between 0 and 1 was additionally applied to unify the scale 

employed for the different descriptors. The order of samples was randomly 
chosen via the “Shuffle” node. The Synthetic Minority Over-sampling 

algorithm to balance the classes of each dataset was used49. This step was 

crucial to get balanced classes in each dataset. Figure 6 illustrates in a pie chart 
the occurrence of the different classes (i.e. Number of polymorphs) before the 

application of the balancing process through the SMOTE algorithm. This 

technique oversamples only the minority classes and takes into account the 5 

nearest neighbours. In the final pre-processing stage, the Principle Components 

Analysis was applied to reduce the dimensionality of the dataset especially 

when hundreds of descriptors were included. Therefore, starting from the two 
datasets (the 2D structures list and the 3D structures list), two new datasets 

were generated where the principal components replaced the original molecular 

or crystallographic descriptors. 
A number of principal components were used by keeping 95%, and 90% of the 

variance were preserved for the 2D and the 3D structures datasets, respectively. 

These percentages were chosen in the way of keeping the maximum of the 
variance in the Data and generating in the same time a reasonable number of 

principal components for the case 2 and 4 that will be described later. At the 

end of the pre-processing phase, four different datasets were compiled and 
ready to be trained over machine learning algorithms (i.e. the two original 

datasets and the two obtained with PCA). 

Crystallographic and molecular descriptors 
The four datasets have different number and type of descriptors as depicted in 

Table 1. In the first dataset using the 2D structures, only molecular descriptors 
were included. These descriptors highlight the properties of the whole 

molecule, and they can be categorised into constitutional, geometrical, 

topological and electronic descriptors. For instance, one cites the molecular 
mass, the number of carbon atoms, the polar surface size, the charge, the count 

of halogen or hydrogen atoms in the molecule of interest. etc. In the second 

dataset, these descriptors were replaced by the principal components generated 
from the dimensionality reduction. It is noteworthy that these descriptors have 

no chemical meaning but were defined to reduce the dimensionality of the 

feature space and ease the task of machine learning algorithms. In the third 
dataset, crystallographic descriptors were employed including the unit cell 

parameters and the volume of the cell. etc. Finally, the fourth dataset is the 

dimensionally reduced dataset obtained from the application of PCA on the 
crystallographic descriptors (i.e. the third dataset). The table below summarises 

the number and the type of descriptors used for each dataset. 
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Figure 6 | Data flow and the different steps followed from the data collection, passing through the pre-processing and generation of machine learning models and 

ending with a meta classifier design to predict the polymorphism of unknown structures. 

 

 
Figure 7 | The occurrence of polymorphism in the datasets and the role of the 

SMOTE algorithm to balance the classes. 

 

Choice of machine learning classifiers 
8 different algorithms were selected from Knime nodes to train the models over 
the 4 datasets: Naive Bayes Multinomial50, Ordinal Classic classifier51, Simple 

logistic52, Multilayer Perceptron53, Support Vector Machine54, k-Nearest 

Neighbours55, Gradient Boosted Trees and Random Forests. Figure 8 
demonstrates how the curated data were classified into 2D and 3D structures 

and how these two datasets were treated differently by applying the original 

features (i.e. molecular descriptors or crystallographic parameters). 4 datasets 
were finally obtained according to the pre-processing method. Random 

Forest,56 Gradient Boosted trees.57 All these classifiers were implemented in 

Weka nodes available within Knime software.58 All these algorithms were used 
with their default settings except the followings. In SVM, the “Hyper Tangent” 

was chosen as a kernel with a kappa equals to 0.1 and delta equals to 0.5. In the 

K-Nearest Neighbours classifier, the number of neighbours was chosen to be 6 
as the number of classes in the datasets. In Random Forests classier, the number 

of trees was adjusted to 500. 10-fold cross-validation was applied for each 

classifier. The accuracy and Cohen’s kappa were used as metrics to evaluate the 
performance of the models. Also, Confusion matrices, Recall, Precision, 

sensitivity, specificity and F-measure were provided for each class of each 

classifier. 

Meta-classifier design 
Once the eight classifiers were trained over the four datasets, probabilities of 
classification (i.e. the probability for each of the 6 classes of the response) were 

generated. The “Prediction fusion” node was employed to combine the 

probabilities from the different classifiers and weigh them according to the 
robustness of the obtained model. These weights Wi correspond to the accuracy 

obtained from each ML model. This is translated by the formula 

below: 𝑃𝑓𝑢𝑠𝑖𝑜𝑛 =
∑ 𝑃𝑖 ×𝑊𝑖

𝑘=𝑀𝑖
𝑖=1

8
 (1) 

where Pfusion is the overall probability of that particular class, Mi is the model 

among the eight selected model, Pi is the individual probability per model, and 

Wi is the scaling factor that is equal to the accuracy of the model Mi. Like for 
individual classifiers, the same metrics were employed to characterise the 

overall model from the prediction fusion. 
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Figure 8 | The partition of the curated datasets into 4 categories where 2D and 3D structures are generated, then 8 different machine learning algorithms were 

applied to generate statistical models from molecular/crystallographic descriptors or from principal components of PCA. 

 

Table 5. Number and nature of the descriptors used as 
independent variables to build the predictive model 

 2D structures 3D structures 

 Case 1 a Case 2 b Case 3 c Case 4 d 

Number of 

dimension

s 

44 169 9 12 

Number 

samples 
564 564 2352 2352 

a 2D structures treated without PCA , b 2D structures traded 

with PCA, c 3D structures treated without PCA 
(crystallographic descriptors) , d 3D structures treated 

with PCA 

 

Features selection 
The backward features selection59 was carried out in the last stage of the data 

analysis and the machine learning model design. The classifier that renders the 
best predictive model was incorporated in the loop of features selection. This 

technique eliminates each descriptor consecutively and builds a predictive 

model with the classifier of choice (i.e. One feature was removed in each 
iteration of the elimination loop until all features are eliminated at the end of 

the loop). In each iteration, all the features are tested by discarding them once 

then, the feature that has the highest impact on the accuracy is deleted for the 
next iteration. The models are ranked according to their accuracy, and the most 

important features are the ones that affect the most the robustness and the 

accuracy of the model. Therefore, the most important feature is the one that 
gives the lowest accuracy for the model when it has been eliminated before the 

training step. 

Solvent screening 

Pentoxifylline (CAS Number 6493-05-6) was purchased from Sigma Aldrich. 

Samples of 100mg each were recrystallised in 66 different solvents listed in the 

supporting information with their available physical properties. Each solution 
was heated near the boiling point of the corresponding solvent to ensure the full 

dissolution of the starting material. Once clear solutions are obtained, they were 

left to cool to ambient temperature. They were then kept in atmospheric 
conditions to evaporate the solvents. The pure polymorphic forms and the 

percentage compositions of all the sample mixtures were characterized by 

differential scanning calorimetry–thermogravimetry (DSC-TG), XRPD, and 
ATR-IR spectroscopy. 

 

Powder X-Ray Diffraction 

For crystalline form identification, a small quantity (10-50 mg) of the sample 

was analysed using transmission XRPD data collected on a Bruker AXS D8 
Advance transmission diffractometer equipped with θ/θ geometry, with primary 

monochromated radiation (Cu Kα1 λ= 1.54056 Å), a Vantec PSD and an 

automated multiposition x-y sample stage. Samples were mounted on a 28-
position sample plate supported on a polyimide (Kapton, 7.5 µm thickness) 

film. Data were collected from each sample in the range 4-35° 2θ with a 

0.015°2θ step size and 1 s per step count time. Samples were oscillated in the x-
y plane at a speed of 0.3 mm s-1 throughout data collection to maximise particle 

sampling and minimise preferred orientation effects. Thermogravimetry 

analysis 

Netzsch STA 449 F1 Jupiter® performed DSC and TGA simultaneously 

allowing the monitoring of remaining solvent evaporation. 

Differential scanning calorimeter analysis 

Differential scanning calorimetry–thermogravimetric experiments were 

performed on a Netzsch DSC214 Polyma differential scanning calorimeter. The 

heating rate for all polymorphs was kept constant at 20°C/min and all runs were 
carried out from 25 °C to 250 °C. The measurements were performed in 

aluminium crucibles, nitrogen was used as the purge gas in ambient mode, and 

calibration was performed using indium metal. The cooling of the samples was 
conducted for all the samples after a temperature plateau at 250 °C. 

Attenuated Total Reflectance–Infrared Spectroscopy 

Attenuated total reflectance–infrared spectra were collected on a Bruker 

TENSOR II FT-IR spectrometer with Opus v7.5 software. The spectrometer is 

fitted with a KBr beamsplitter, which operates in the range 8000–10 cm-1 with a 
universal ATR accessory (‘PLATINUM’ diamond ATR-accessory), and 

HYPERION (IR microscope). Spectra were collected in the 4000–650 cm-1 

range with a resolution of 4.00 cm-1 and scan number of 4. 

https://www.sigmaaldrich.com/catalog/search?term=6493-05-6&interface=CAS%20No.&N=0&mode=partialmax&lang=en&region=GB&focus=product


 

 

GRAPHICAL ABSTRACT 

 

Polymorphism is a physical feature that characterises solid crystalline compounds Its regulation is crucial 
for the control of other properties such as the solubility or mechanical resistance. Machine learning is a 
modern statistical tool exploited to learn from the existent data and to generate models that predict how 
the molecule is able to give a number of solid forms. This computational tool provides a guideline to 
experimentalists in order to spot molecules with potentially underestimated polymorphism and to ease 
the discovery of novel materials. 
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