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One of the most common criticisms of machine learning is an assumed inability for models to extrapolate,
i.e. to identify extraordinary materials with properties beyond those present in the training data set. To
investigate whether this is indeed the case, this work takes advantage of density functional theory calculated
properties (bulk modulus, shear modulus, thermal conductivity, thermal expansion, band gap and Debye
temperature) to investigate whether machine learning is truly capable of predicting materials with properties
that extend beyond previously seen values. We refer to these materials as extraordinary, meaning they
represent the top 1% of values in the available data set. Interestingly, we show that even when machine
learning is trained on a fraction of the bottom 99% we can consistently identify 3

4 of the highest performing
compositions for all considered properties with a precision that is typically above 0.5. Moreover, we investigate
a few different modeling choices and demonstrate how a classification approach can identify an equivalent
amount of extraordinary compounds but with significantly fewer false positives than a regression approach.
Finally, we discuss cautions and potential limitations in implementing such an approach to discover new
record-breaking materials.

1 Introduction

Materials science has embraced the idea of data-driven
research with consistent success [1, 2, 3, 4, 5, 6]. Al-
though some research has focused on using experi-
mentally derived properties from literature [7, 8, 9,
10], many researchers have also focused on predicting
density functional theory (DFT) computed properties
using a variety of different featurization schemes and
learning approaches [11, 12, 13, 14, 15, 16, 17, 18].

A large portion of these publications cite the ben-
efits of machine learning for screening purposes, as
experts have long recognized that it is impossible to
manually traverse chemical space [19, 20]. This direc-
tion of query has, however, invoked a very appropri-
ate concern. Despite examples of success [4, 21, 22, 5],
there is skepticism in the field [23] as to whether ma-
chine learning can truly find extraordinary materials
from the overwhelming combinatorial complexity that
arises from chemical space. This concern is one that
lies in a fundamental assumption of many machine
learning techniques, i.e., that data is independent and
identically distributed (i.i.d.) [24].

For a materials scientist, the i.i.d. assumption im-
plies the training data fairly represents the full diver-
sity of reality. This is clearly not the case due to data
set bias. For example, some compounds are easier to
synthesize and simulate or may be of more interest to

researchers due to cost, performance in applications,
or novelty. For this reason one must ask: do we have
the information necessary, on a physical level, to even
determine whether a material is extraordinary given
highly clustered and largely “run-of-the-mill” mate-
rials in the data set? With this in mind, questions
of the efficacy of machine learning for screening pur-
poses are valid.

Disregarding the bias implicit in materials selec-
tion, this work seeks to establish whether machine
learning systems have the potential to predict the
most exceptional materials from existing data. As
a best case scenario, we consider identifying extraor-
dinary chemical compositions from a list of well es-
tablished DFT computed properties. The ability to
complete this simplified screening task represents a
minimum requirement if we are to seriously consider
machine learning tools when screening for extraordi-
nary materials. In this work, we explore the perfor-
mance of various machine learning algorithms for the
task of predicting extraordinary materials. Using the
Automatic-FLOW for Materials Discovery (AFLOW)
database [25], we are able to select compounds from
a library which contains structures obtained from the
Inorganic Crystal Structure Database (ICSD) [26].
With this data, we quantify the potential performance
one might expect when seeking to identify extraor-
dinary materials outside of the training set using a
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machine learning system. Furthermore, we show the
results of applying a trained model to the Pearson
Crystal Database (PCD) [27] and discuss the impli-
cations of the resulting predictions.

2 Methods

2.1 Featurizing the Data

The composition-based feature vector (CBFV) is a
simple way of featurizing chemical compositions by
performing mathematical operations on the element
properties. Typically, the result of these operations
are a set of unique vectors for each unique chemi-
cal composition. Using this approach, the CBFV can
then be mapped to a target material property using
various machine learning algorithms. This technique
has been popular and fits well into a materials screen-
ing narrative [28, 29, 2]. In this work we use a fea-
turization scheme (see supplemental code) that con-
siders the average, range and variance of the element
properties. The train and test data is also scaled via
scikit-learn’s StandardScaler and Normalizer us-
ing the training data statistics.

2.2 Defining Extrapolation

The traditional notion of extrapolation loses meaning
in the context of composition-space since elements are
both discrete and finite. In the case of fractional com-
positions, all materials can be thought of as an inter-
polation between the pure elements. This is analo-
gous to a ternary phase diagram with many regions
which are not thermodynamically stable. A true ex-
ample of extrapolation would be the ability to predict
compounds featuring elements which are completely
absent in the training data. With this in mind, we
discard this definition of extrapolation. Instead, our
object of interest is the identification of the material
compositions which have properties that extend be-
yond all values in the training data. To capture this
notion of extrapolation, we operationally define ex-
traordinary materials as any material in the top 1%
of our data set in terms of their properties (see Figure
1).

2.3 Data and Property Procurement

In order to evaluate the performance of our machine
learning-based extrapolation task, we use data avail-
able from AFLOWlib.org [30] whose properties are
calculated using structures from the ICSD library.
The following properties were available and deemed
appropriate in preparation for our study: bulk mod-
ulus, shear modulus, thermal conductivity, thermal
expansion, band gap, and Debye temperature. The

Figure 1: The distribution of bulk modulus data
is separated into ordinary and extraordinary com-
pounds.

data for these properties are available in a GitHub
repository [31]. In the case of Debye temperature,
thermal conductivity, and thermal expansion proper-
ties we scale the target by applying a base 10 loga-
rithm to more closely match a normal distribution for
learning purposes. To test the efficacy of our learning
models, we use the train-test scheme shown in Figure
2. First, we isolate the top 1% of properties, label
them as extraordinary, and add them to the test set.
Next, we randomly sample 15% of the bottom 99%;
these 15% are labeled as ‘ordinary’ and added to com-
plete the test set. The training set is represented by
the remaining data, and the highest 6% of this data
is then assigned ‘extraordinary’ labels to match the
same ratio of ordinary and extraordinary labels in the
test set. For clarity’s sake, the code to generate the
ordinary/extraordinary data is available on GitHub.

We also obtained compositions corresponding to
156 421 measured structures in the Pearson Crystal
Database (PCD) and a list of 10 590 computed elpa-
solite compounds [32]. After extracting the chemical
compositions from these data sets, we featurize and
scale them using the same steps as above. The result-
ing data is then input into our best screening tool, a
trained classification model, to obtain probabilities
which are then ranked to generate a list of interesting
compositions to investigate.

2.4 Models and Performance Metrics

To investigate whether extrapolation is possible, we
apply two linear models and two non-linear models.
For the task of predicting compound values we use a
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Figure 2: The train test split ensures that the top 1%
is never trained on. 15% of the non-extraordinary
(ordinary) data are included in the test set so we can
see whether our model can successfully distinguish
between extraordinary and ordinary values.

ridge regression and a support vector regression with
a radial basis function (rbf) kernel. We also approach
the problem as a classification task using a logistic re-
gression and a support vector classification (rbf). For
simplicity we employ the scikit-learn [33] imple-
mentation of these models and optimize parameters
using grid search techniques (see GitHub for details
of the implementation). To assess performance we
use the classification metrics of precision and recall,
which are defined in equations 1 and 2 where tp, tn,
fp, fn are true positive, true negative, false positive
and false negative, respectively. Precision is an ef-
fective metric to determine how often our predictions
result in extraordinary compounds. Recall is a met-
ric used to determine what fraction of extraordinary
compounds are correctly identified by those predic-
tions.

precision =
tp

tp+ fp
(1)

recall =
tp

tp+ fn
(2)

The use of these metrics requires that some thresh-
old value be established from which a label ‘extraor-
dinary’ or ‘ordinary’ can be assigned. It is natural to
use the default threshold of 0.5 for a classifier. For
the regression models, the we select these thresholds
by optimizing the F1 score on the training data. The
F1 score represents the harmonic mean of precision

and recall:

F1 = 2

(
precision · recall
precision+ recall

)
(3)

Although optimization on the F1 represents a good
compromise between the two metrics, one could fa-
vor precision or recall when choosing the threshold in
practice.

3 Results & Discussion

The capability of machine learning to identify ex-
traordinary materials is tested for the following prop-
erties: bulk modulus, shear modulus, thermal expan-
sion, thermal conductivity, band gap and Debye tem-
perature. The regression and classification of these
properties seeks to optimize different loss functions.
Because of this, they each have their place for use as
screening tools. In this work, we are particularly in-
terested in materials discovery, or a model’s ability to
extrapolate to extraordinary materials and consider
the ability of both methods for this application.

3.1 Screening as a Regression Task

The ability to effectively train a regression model is
dependent on diverse data and a reasonable distribu-
tion of values. We demonstrate the ability to extrap-
olate to a majority of extraordinary materials for each
property. Figure 3a clearly shows the ability of a ridge
regressor to identify extraordinary compounds for the
property of bulk modulus. (Remaining property fig-
ures are available with the supplementary code.) The
threshold values in this figure are obtained from the
training data and used for generating classification
metrics. This performance is representative of all
properties tested.

3.2 Screening as a Classification Task

Classification is a great alternative to regression if one
is only interested in identifying extraordinary materi-
als. The trade off when using classification is that the
property value of extraordinary materials will not be
predicted. Additionally, as a real task, the process of
choosing how many true and false labels to use is un-
clear; a balance must be struck between precision and
recall. The performance of the logistic regression is vi-
sualized in Figure 3b for the same bulk modulus data.
In our implementation, classification is almost always
superior to the regression task, as demonstrated by a
consistently higher precision and a nearly equivalent
recall.

Moreover, classification does not depend on the
distribution of the data. However, the choice of thresh-
old for the training set will drastically affect how ag-
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Figure 3: a) The actual vs. predicted values for a ridge regression trained on bulk modulus. b) The actual
values vs. the probability of being extraordinary. All data in the training set has values lower than 300 GPa.
Data to the right of the vertical line represent extraordinary compositions.

gressive the classifier is. If too few data are labeled
as extraordinary the model will fail to generate suf-
ficient labels to represent the test set. If too many
are labeled as extraordinary the model is susceptible
to very high false positive rates, and therefore low
precision scores.

3.3 Quantifying Extrapolation

The results of this work show unambiguously that
both classification and regression-based machine learn-
ing approaches can identify and predict extraordinary
materials with properties beyond those present in the
training data. Although there are no previously de-
fined values that might constitute “adequate extrap-
olation performance”, it is clear that all four models
demonstrate the ability to identify a large fraction of
the compositions labeled as extraordinary.

This outcome provides a positive response to the
persistent question of whether or not materials infor-
matics approaches will be able to identify new com-
pounds with exceptional properties. Does this re-
search suggest that extrapolative studies for materials
discovery will be useful or even transformative? To
answer this question we need to consider three sce-
narios.

Scenario 1: Identifying extraordinary compounds
by random guessing. In our original data set we set
aside the top 1% as extraordinary and all of these
compounds were added to a mixture of 15% of the

lower 99% of ordinary compounds. Therefore, ran-
dom guessing would yield a 1/15 = 6% success rate
in classifying extraordinary compounds.

Scenario 2: Relying on chemical intuition. Re-
searchers almost never rely on random guessing when
screening for candidate materials. A researcher will
have a degree of domain expertise resulting from train-
ing as well as their ability to uptake information from
the published literature. However, a researcher will
also be impacted and biased by their “chemical intu-
ition” drawn from prior experience. Despite Scenario
2 being the modus operandi, the Materials Genome
Initiative [34] has urged the research community to
reconsider this approach. Not only is the outcome of
Scenario 2 highly variable and subjective, but history
has shown that this approach is slow and leads to lo-
cal optimization. Rather than exploring the breadth
of chemical whitespace, researchers have focused on
clusters of known chemistries and structures with pri-
marily minor elemental substitutions.

Scenario 3: Machine learning-based predictions of
benchmark materials combined with domain knowl-
edge and chemical intuition. Researchers seeking to
identify global optima in extraordinary materials will
benefit from this approach. Our research shows that,
depending on the property being predicted, models
typically exhibit a precision of ∼0.5. In other words,
every other compound suggested would be extraordi-
nary! In the subsequent section, we explain why this
will likely have reduced efficacy. However, if true,
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this represents a dramatic breakthrough for materi-
als discovery far superseding even the most optimistic
outcomes of Scenario 1 or 2. Moreover, researchers
could look at the list of candidate extraordinary ma-
terials and then focus specifically on examples that
fall outside of typically studied chemistries or crystal
structures in an attempt to identify globally optimal
extraordinary compounds. Finally, the recall values
are typically 0.75 or greater for all of the properties we
predicted. Therefore, in a best case scenario (where
i.i.d. holds true), this work suggests the ability to
identify a new benchmark material on average every
other attempt while capturing the vast majority of
possible extraordinary compounds.

Figure 4: All machine learning models are able to suc-
cessfully identify extraordinary compositions from the
test set. However, the classification models, shown
with dotted lines, also have the advantage of sig-
nificantly fewer false positives. Standard deviations
(shown via shading) were generated by assigning the
bottom 99% train-test split using 5 different random
seeds. The properties bulk modulus, thermal conduc-
tivity, shear modulus, band gap, Debye temperature
and thermal expansion are represented by their sym-
bols B, κ, G, Eg, TD, α.

3.4 Limitations and Cautions

The precision and recall of the models we report here
suggest exciting avenues for discovering new record-
breaking materials. However, we caution that this ap-

proach will have fundamental limitations which sug-
gest a more wary optimism.

The first limitation has to do with the mechanisms
associated with different properties. If a researcher is
looking to discover a new composition which achieves
a record-breaking property and does so with the same
fundamental mechanism present in the training data
compositions, they will likely be successful. On the
other hand, if a researcher is seeking to discover a
record-breaking material which achieves its extraordi-
nary properties by leveraging a new mechanism, not
common in the training data, this will be unlikely.
Without numerous examples to train from, this ex-
trapolation approach is unlikely to yield new physics
and mechanistic insight. For example, given many
compounds exhibiting Bardeen-Cooper-Schrieffer su-
perconductivity to train from, it is very unlikely that
cuprate oxides would have been identified as extraor-
dinary candidates for high-Tc superconductivity since
these operate on a completely different (and yet un-
explained) mechanism of superconductivity. At the
same time, careful examination of poor predictions
in the training data set could lead to physical in-
sight into new mechanisms. For example, if a spe-
cific chemistry or class of material are consistently
poorly predicted despite sufficient training data then
a researcher could postulate that their descriptors are
simply not capturing the unique physics operating in
that chemistry and could therefore be investigated in
more detail.

A second limitation centers around the critical
i.i.d. assumption in materials data used for materials
informatics. Despite emerging efforts from Citrine In-
formatics [35], the Materials Data Facility (MDF) [36],
and others, materials science as a discipline is still
lacking robust data repositories for many properties
of interest. Additionally, even where data is avail-
able there exist challenges with data heterogeneity,
inherent error in measurement or calculation of ma-
terials properties, imbalanced classes, sparsity, bias
towards high performing materials, and more [37, 38,
39]. Models are truly only as good as the data avail-
able to train from. Or, as Charles Babbage [40] put
it:

“On two occasions I have been asked, ‘Pray,
Mr. Babbage, if you put into the machine
wrong figures, will the right answers come
out?’. . . I am not able rightly to appre-
hend the kind of confusion of ideas that
could provoke such a question.”

Inherent to the issue of data sampling is the way
in which a researcher chooses to generate a list of po-
tential candidates to screen over. In our setup, this
is trivial. However, an honest attempt to screen for
extraordinary properties must confront this in a rea-
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sonable way. As a most simple approach, researchers
could use a database of known compounds. We demon-
strate this method by utilizing the Pearson Crystal
Database as a list of potential candidates to ensure
that predicted compositions are viable on a physical
level. An alternative approach may be to generate a
list of possible compositions and to screen these fic-
tional compositions similarly to the elpasolite work of
Faber et al [32]. One such list could then be taken
and an attempt to simulate or synthesize materials
from the given composition could be made in order
to validate the results. However, regardless of selec-
tion, one cannot be sure that the resulting data is
amenable to learning from the trained model.

We see evidence of this limitation when we com-
pare the compositions of the extraordinary bulk mod-
ulus materials predictions generated from the PCD vs
those top 1% that were assigned from the AFLOW
repository data. The ranked elemental prevalence of
identified extraordinary compounds shows that while
nearly all the same elements are present, the propor-
tion and ratio of these is highly variable suggesting a
lack of parity between training data and those com-
pounds which have been synthesized. This is further
highlighted by the fact less than 0.1% of composi-
tions from the PCD are predicted as extraordinary
while the the top 1% of training data were labeled
as extraordinary for model generation. The dispar-
ity between the AFLOW data and the elpasolite data
could not even be evaluated as the model failed to
label a single composition as extraordinary.

Additional shortcomings in this approach are that
the input for the prediction is the chemical formula
for an individual compound, but many of the most
important materials are actually composite mixtures
of phases which synergistically produce a desired out-
come. For example, ductile ferrite and brittle cemen-
tite in steels or precipitate hardened aluminum alloys.
To our knowledge, there are not yet examples in the
materials informatics literature where authors make
predictions of a composite property by training a ma-
chine learning model on each individual phase using
a structure or composition-based feature vector.

A related problem is associated with rare events
such as doping where a few percent elemental substi-
tution can lead to drastic changes in properties due
to complicated defect chemistry. For instance, doping
silicon with phosphorus from 1012 cm−3 (∼ 0%) up
to 1021 cm−3 (∼ 2%) is accompanied by a change of
electrical conductivity approximately eight orders of
magnitude [41]!

It is not that machine learning is fundamentally
incapable of modeling composite materials or the ef-
fect of rare events like doping. However, in order
to capture these effects it will be necessary to have
training data which includes these phase mixtures

and dopant compositions with sufficient granularity
to train models on their effect. Put plainly, a database
of stoichiometric compounds will not be able to pre-
dict the influence of doping, but rather, it will require
a database where many slight dopant compositions
are reported with an associated material property.

Figure 5: The ranked elemental prevalence of com-
pounds labeled extraordinary in the original AFLOW
data versus those screened from the PCD.

4 Conclusion

The predictive power of machine learning is estab-
lished in the field of materials science. Researchers
have demonstrated many different models that can ef-
fectively map chemical compositions to material prop-
erties. One of the most promising aspects of this is
the use of machine learning predictions for screen-
ing materials. Unfortunately, many of these models
start with fundamental assumptions that would imply
an inability to extrapolate into unique and interest-
ing chemical species. For this reason it is natural to
question whether we should be using machine learn-
ing to screen for high performance materials. In this
work we show that materials from the top 1% of 6 dif-
ferent materials properties can be identified using the
most basic machine learning approaches. Moreover, a
classification-based approach identifies a near equiv-
alent amount of extraordinary compositions while re-
turning fewer false positives.

Overall, this work demonstrates promise in us-
ing machine learning models to facilitate the discov-
ery of record-breaking materials. Unfortunately we
also show that predictions made on the PCD fail to
break into new or unexpected compositions in the
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case of bulk modulus. Despite the inability to find
new chemistries, the models do a great job of iden-
tifying the extraordinary compositions that are in-
cluded in the dataset we used. On average they iden-
tify more than half of the extraordinary compounds.
If this is a trend that holds in reality, a single lab
could likely generate multiple record-breaking mate-
rials every year. A feat that would be nothing less
than. . . extraordinary.
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