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Abstract

ReaxFF is a computationally efficient force field to simulate complex reactive dy-

namics in extended molecular models with diverse chemistries, if reliable force-field

parameters are available for the chemistry of interest. If not, they must be calibrated

by minimizing the error ReaxFF makes on a relevant training set. Because this opti-

mization is far from trivial, many methods, in particular genetic algorithms (GAs), have

been developed to search for the global optimum in parameter space. Recently, two al-

ternative parameter calibration techniques were proposed, i.e. Monte-Carlo Force Field

optimizer (MCFF) and Covariance Matrix Adaptation Evolutionary Strategy (CMA-

ES), which have the potential to find good parameters at a relatively low computational
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cost. In this work, these two methods are tested, as implemented in ADF2018, using

three ReaxFF training sets, which have previously been used to benchmark GAs. Even

though MCFF and CMA-ES should not be considered as exhaustive global optimizers,

they can find parameters that are comparable in quality to those obtained with GAs.

We observe that CMA-ES leads to slightly better results and is less sensitive to the

initial guess of the parameters. Concrete recipes are provided for obtaining similar

results with new training sets.

Besides optimization recipes, a successful ReaxFF parameterization requires the

design of a good training set. At every trial set of parameters, ReaxFF is used to

optimize molecular geometries in the training set. When the optimization of some

geometries fails easily, it becomes increasingly difficult to find the optimal parameters.

We have addressed this issue by fixing several bugs in the ReaxFF forces and by

improving the robustness of the geometry optimization. These improvements cannot

eliminate all geometry convergence issues and we recommend to avoid very flexible

geometries in the training set.

Both MCFF and CMA-ES are still liable to converge to sub- or near-optimal param-

eters, which we detected by repeating the calibration with different random seeds. The

existence of distinct near-optimal parameter vectors is a general pattern throughout

our study and provides opportunities to improve the training set or to detect overfitting

artifacts.

1 Introduction

Molecular dynamics is a powerful tool to study the temporal evolution of various atom-

istic models (of materials, solute-solvent systems, biomolecular systems, etc.) under realistic

conditions, e.g. at constant temperature and pressure. An essential ingredient in such sim-

ulations is a computationally efficient method to reliably compute (at every discrete time

step) the forces acting on all atoms, which are needed to integrate Newton’s equation of

motion. The quantum-mechanical (QM) treatment of the molecular electronic wavefunction
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allows one compute these forces for any (reactive) chemical system, e.g. using density func-

tional theory (DFT) methods. However, for long molecular dynamics simulations (nano- to

microseconds) of extended atomistic models (up to millions of atoms), even DFT approxima-

tions becomes computationally prohibitive. Alternatively, one may use so-called force-field

(FF) or molecular mechanics approximations, where the electronic structure calculation is re-

placed by a much cheaper and approximate model to compute forces acting on atoms. Many

FFs model chemical bonds by simple springs with empirical parameters in Hooke’s law, which

immediately reveals their major drawback, i.e. most force fields cannot describe chemical re-

actions. Reactive FFs overcome this limitation with a more complex mathematical expression

that can describe reactive processes1–4 and ReaxFF5–8 is one of the most popular models in

this category. ReaxFF owes its popularity to a combination of unique advantages. It can

be reparameterized for different combinations of chemical elements, which makes ReaxFF

broadly applicable. ReaxFF is also computationally efficient compared (tight-binding) DFT

approximations9 and neural-network potentials.10 As opposed to hybrid QM/MM methods,

ReaxFF can describe complex systems where many reactive events occur simultaneously

throughout the atomistic model. A traditional example is the simulation of hydrocarbon

oxidation,11,12 where many chemical reactions quickly succeed each other. ReaxFF is also

applied in situations where reactive events go beyond a reaction network of small molecules,

e.g. to study the mechanical wear resistance of graphene.13

Even though a detailed description of the complete mathematical form of ReaxFF goes

beyond the scope of this paper, it is instructive to review a few of its essential aspects. The

ReaxFF model is a potential energy expression for an atomistic model that ultimately takes

the Cartesian coordinates of atomic nuclei and a set of empirical ReaxFF parameters as

input. Analytic differentiation of this energy towards the displacement of atomic positions

yields the forces needed in a molecular dynamics simulation. The ReaxFF energy is a sum
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of many contributions,

EReaxFF = Ebond + Eover + Eunder + Eval + Etors + EvdW + Echarge + Especific (1)

most of which are covalent terms responsible for describing local chemical phenomena: bond

breaking & formation (bond), over-coordination (over), under-coordination (under), valence

angle bending (val), bond torsion (tors). The next two terms describe non-covalent interac-

tions between all pairs of atoms within a cutoff distance, even when they are not chemically

bonded. The van der Waals (vdw) interaction is similar to the Morse potential and captures

all effects due to steric repulsion and dispersion interactions. The energy of the fluctuating

charge model (charge) includes the pairwise screened Coulomb interaction and the polariza-

tion cost of the fluctuating charges. An important intermediate step needed for the local

energy terms is the bond order for each pair of nearby atoms, which is derived from inter-

atomic distances. Because these bond-orders are re-computed at every atomic configuration,

ReaxFF is capable of describing chemical phenomena. Finally, ReaxFF contains several

optional terms, which are not used in all parameterizations:

Especific = Elp + Epen + Ecoa + Econj + Etrip + EH-bond + Elg (2)

These terms can handle phenomena that are only of interest in specific cases: interaction

with a lone pair (lp), penalty for valence angles between two double bonds (pen), conju-

gation correction for valence angles (coa), conjugation correction for bond torsions (conj),

triple-bond stabilization (trip) and hydrogen bonding (H-bond). The low-gradient (lg) pair-

wise R−6 term was introduced to better describe long-range dispersion interactions14 but is

rarely used in recent parameterizations. Another recent extension developed by van Duin is

eReaxFF, adding explicit electron or hole particles that can interact with the atoms.15

As a consequence of its wide adoption, several ReaxFF implementations were devel-

oped next to the original “Standalone ReaxFF” by van Duin.5,8,11 The development of new
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energy terms in ReaxFF were done in the original code and were later adopted in other im-

plementations. One of the earliest alternative (and parallel) implementations was presented

in LAMMPS.16 Other notable implementations of ReaxFF can be found in GULP,17 the

implementation by Nomura18 and in PureMD.19 The latter two implementations strongly

focus on efficient parallelization on high-performance clusters. One concern with various

implementations is that they are not fully compatible with the original code by van Duin,

e.g. because some were re-implemented from scratch. This introduces the risk that ReaxFF

parameterizations from the literature, calibrated with one implementation, may no longer

yield sensible results in another implementation. All results in this work were obtained with

ReaxFF in an alpha version of ADF2018. This implementation is directly based on the

original code by van Duin to assure that the functional form of the potential energy closely

follows the original. Still, many changes were made to improve the efficiency and parallel

scaling in ADF.20 Even though the potential energy is compatible, we fixed several bugs

in the force evaluation to make geometry optimization more robust, in the frame of this

project. We noticed, as will be discussed below, that such bug fixes sometimes trouble the

reproduction of literature results. Because fortuitous literature results that rely on bugs are

generally not transferable to production simulations, we prefer to implement the forces as

precisely as possible.

The ReaxFF energy expression contains many empirical parameters, which need to be

fixed somehow, before ReaxFF can be used for production simulations. While a consider-

able number of tuned parameter sets are published in the literature,5,11,21–27 one must extend

this effort whenever one wants to use ReaxFF for a new type of chemistry, which was not

considered previously in parameter optimization studies. In such a scenario, on the order

of 50 new parameters need to be estimated, by minimizing the deviations between ReaxFF

predictions and corresponding reference data, i.e. the training set, which consists of (usually

microscopic) properties of relevant small atomistic model systems. Finding the optimal pa-

rameters for a given training set is far from trivial. While this was traditionally a laborious
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task where one parameter was optimized at a time,28 more advanced and automated ap-

proaches were proposed over the last decade, most notably genetic algorithms (GAs)27,29–31

but also other methods, such as a Multi-Objective Evolutionary Strategy (MOES),32 a par-

allel local search method,33 Taguchi method based optimization,34 Monte-Carlo force-field

optimizer25,35 (MCFF) and Covariance Matrix Adaptation Evolutionary Strategy (CMA-

ES).36,37 The goal of this work is to compare the efficiency of two parameter optimization

strategies implemented in an alpha version of ADF2018: MCFF and CMA-ES. For this com-

parison, we will use the same reference data that was used in benchmarks and applications

of the GAs developed by Hartke (Ogolem),31 to facilitate comparison to their work. GAs

are also popular for the parametrization of other force fields38–43 and we expect that the

comparison in this work is therefore also useful beyond the scope of ReaxFF.

The reference data used to optimize ReaxFF parameters are collected in a training set.

This is a set of molecules or crystals for which properties, xi,ref, were measured experimentally

or computed with QM calculations. One also has to identify a set of ReaxFF parameters, pj,

which should be optimized to improve the ReaxFF predictions, xi,calc({pj}), of the properties

in the training set. The quality of a set of parameters is quantified by an error function,

hereafter referred to as the Error. We will use the same least-squares Error as in the original

work of van Duin:28

Error({pj}) =
n∑
i=1

(
xi,calc({pj})− xi,ref

σi

)2

(3)

where the sum runs over all items in the training set. For each reference property, also a

tolerance, σi, is defined in the training set, which is an estimate of the acceptable deviations

between a ReaxFF calculation and a reference value. In ADF2018, Error contributions due

to dihedral angles take into account angular periodicity. For example, a calculated dihedral

angle of −170 deg and a reference value of +170 deg only results in a difference of 20 deg.

Even though the Error is a simple sum of squares, it is in practice a very ill-behaved func-

tion of the parameters {pj}, with significant numerical noise and many local minima,25,31

because (i) the ReaxFF energy is a very non-linear and not exactly smooth function of the
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ReaxFF parameters and (ii) the predictions xi,calc often involve poorly converging geome-

try optimizations of the molecules and crystals in the training set. This poor convergence

is caused by several effects, such as small discontinuities in the ReaxFF potential energy,

very flexible molecules in the training set, poor optimization algorithms and bugs in the

implementation of the ReaxFF atomic forces. While many problems in the latter two cate-

gories were fixed in the development of ADF2018, as part of this work, we decided to keep the

ReaxFF potential energy as it is, except for an optional correction in the torsion term, which

will be discussed below. We also tried to use training sets from the literature without further

correcting them. (For one of the training set used, several corrections were unavoidable to

obtain useful results, as will be discussed below.) Our conservative attitude is motivated by

the need for compatibility with other ReaxFF implementations and to keep the assessment

of MCFF and CMA-ES realistic: we would like to know how these algorithms perform for

representative training sets from the literature.

Because the Error is such a rugged function of the ReaxFF parameters, with many local

minima, it seems most appropriate to test global optimization algorithms. Several groups

have designed GAs specifically for ReaxFF parameterization and showed that these can min-

imize the objective function equally well or even further than the successive one-parameter

parabolic extrapolation (SOPPE) originally introduced by van Duin.31,44 Furthermore, these

GAs no longer require manual intervention and human judgment while they minimize the

Error. A drawback of GAs is their large computational cost, typically requiring a HPC

infrastructure to perform the parameter optimization. The MCFF and CMA-ES algorithms

tested in this work are not global optimization algorithms in the strict sense but they can

handle the numerical noise in the Error and they can escape higher local minima to some

extent. Barcaro et al. noted that MCFF requires much less computing power (or Error

evaluations) than a GA45 and the goal of this work is therefore to test how well MCFF

and CMA-ES can still perform with relatively few Error evaluations. The tendency of these

optimizers to get trapped in a local minimum will be tested by restarting the optimization
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from the same initial guess or from different random initial parameter vectors.

When simply minimizing the Error in Eq. (3), there is a significant risk to overfit the

parameters. Such overfitted parameters have a low Error for the training set but they

may still produce very unphysical results when they are used in realistic ReaxFF molecular

dynamics simulations.46,47 While we recognize the importance of this problem, this work

solely focuses on the testing the efficiency of the MCFF and CMA-ES parameter optimization

algorithms. To avoid overfitting, one may introduce a so-called test set, in addition to the

training set. Overfitting can then be detected by an increase of the Error on the test set

while the error on the training set still decreases.27

The remainder of this paper is structured as follows. In the Methods section, we describe

ReaxFF geometry optimization details, training sets, parameter optimization algorithms

with their settings and the evaluation criteria used to compare MCFF and CMA-ES. The

performance of the algorithms is described and compared in section 3, where we also discuss

some implications on the design of an effective training set. Finally, section 4 summarizes

the main conclusions of this work and gives an outlook on future work.

2 Methods

2.1 Geometry optimization

Prior to the evaluation of the Error [Eq. (3)] with a set of trial parameters, the energy

of many (if not all) molecules in the training set needs to be minimized, resulting in the

optimal geometries for the trial parameters. The properties of these optimal geometries are

then used to evaluate the Error. Only when forces of non-equilibrium geometries are used in

the training set, the geometry optimization is not performed. Because the convergence of the

geometry optimization affects the value of the Error, and thus also the optimal parameters,

we used relatively stringent convergence settings and tuned the line-search algorithm in the

L-BFGS geometry optimizer to handle cases with negative curvature more gracefully. A
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geometry optimization is considered to be converged if the maximum force on any of the

atoms drops below 0.1 kcal mol−1 Å−1. In some difficult cases, convergence is still not reached

after 3000 steps, after which the algorithm is stopped and the last geometry is used instead

of the optimal one. Such convergence issues may appear when the optimal geometry is near

a point on the ReaxFF energy surface where the forces have discontinuities, or when the

Hessian matrix, representing the curvature of the potential energy surface, is ill-conditioned.

2.2 Training sets

The MCFF and CMA-ES algorithms were compared and tested for the optimization of

ReaxFF parameters using three training sets from the literature. In order of increasing

number of parameters, there is one training set for solid and liquid cobalt and defects in

cobalt crystals,24 one for silica clusters and (porous) crystals23 and one focusing on disulfide

mechanochemistry.27 Key properties of the three training sets are compared in Table 1,

which shows that these sets are fundamentally different in terms of types of information

they contain. For example, the Cobalt set only contains energy data, while the Disulfide set

is the only one containing atomic forces.

Table 1: Overview of ReaxFF training sets used in this work. The number of data points in
each training set is broken down into five categories: C (atomic charges), G (geometry, inter-
nal coordinates), F (Cartesian atomic forces), P (cell parameters) and E (reaction energies).
Note that unused geometries in the geo files were not counted and similarly non-existing
geometries in the trainset.in file were ignored. For the Disulfide training set, also the
literature value for the absolute minimum of the Error is included, for which the parameters
were reportedly overfitted.

Label Npar Ngeo
Number of data points Literature

Error
ADF2018α Error

C G F P E Total Default Torsion2013
Cobalt 12 146 144 144 1444 1459 1459
Silica 67 302 5 26 13 265 309 3196 17369 17484
Disulfide 87 231 255 4401 219 4875 12393 15577 16271
(overfitting) 7574 n/a

In the first place, a training set provides information to evaluate the Error, see Eq. (3).

This is the primary information and consists of a list of molecule or crystal geometries for
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which reference data is provided, which may include atomic charges, equilibrium geometries

(internal coordinates), Cartesian atomic forces, cell parameters and reaction energies. The

original papers from which the training sets were taken, also contain secondary information:

the final optimal parameters and constraints that were imposed during the parameter opti-

mization. We followed these constraints as closely as possible. In each training set, many

parameters are kept fixed at values from older ReaxFF parameterizations, for mainly two

reasons. First, a subset of the parameters is usually taken from an older force field, for

which the new training set contains no relevant data. This guarantees compatibility with

older models and simplifies the extension of ReaxFF with new chemical elements. Second,

a list of global ReaxFF parameters (not associated with chemical elements) is kept fixed,

also to maintain compatibility with older models. For each variable parameter, an interval

of allowed values is also provided, which will be denoted by [pmin
i , pmax

i ] for parameter pi in

the remainder of the text. In case of the Silica training set, we have slightly modified some

of these intervals, as explained in section S1 of the supporting information.

Despite the fact that we used training sets from the literature without modification,

except for one typographical error described in section S1 of the supporting information, we

did encounter difficulties reproducing literature values of the Error for optimal parameters

published with these training sets. The last three columns of Table 1 compare Errors reported

in the literature with the one we computed with ADF2018α. While the correspondence is

acceptable for the Cobalt training set, the Error computed with ADF for the Silica and

Disulfide training sets is significantly larger. These two training sets contain several very

flexible molecules, which are hard to fully optimize with ReaxFF. To facilitate these geometry

optimizations, we improved the robustness of the line-search in the L-BFGS algorithm and

we also fixed several bugs in the evaluation of the ReaxFF forces (without changing the

energy expression). In addition, the optional Torsion2013 improvement was implemented

to facilitate geometry optimization. (See supporting information, section S2 for technical

details.) We noticed that the default torsion energy term results in large discontinuities in
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the forces during bond breaking and formation, which impaired the geometry optimization.

Our Torsion2013 improvement heavily reduces these discontinuities without significantly

altering the energy landscape. For example, the last two columns of Table 1 show that the

Torsion2013 correction has little impact on the Error value. (The error for Cobalt is not

affected because this ReaxFF parameterization does not use torsional terms.) These bug

fixes and technical improvements facilitate geometry optimization, which significantly reduce

numerical noise in the Error function, which then facilitates the parameter optimization.

However, these improvements also have an adverse effect: using published parameters, we

can now find lower-energy structures for molecules in the Silica and Disulfide training sets.

These lower energy structures also existed prior to our improvements to the code but were just

no found by the geometry optimizer. Because these lower energy structures deviate further

from the reference data, we observe an increased Error compared to literature values, as can

be seen in Table 1.

In case of the Silica training set, there is a second reason for the large deviation between

our computed Error and the literature value. In this case, it was not possible to use the

optimal parameters from the literature because these often resulted in unphysical geometries

for molecules in the training set, also due to the improved geometry optimization. Hence,

we used a minimally corrected set of parameters instead, as described in section S1 of the

supporting information. For example, some of the original parameters exceeded their allowed

interval, sometimes even with a change of sign. This caused unrealistic behavior of the

ReaxFF force field, such as molecules collapsing into a single point in space. Such unphysical

results only appeared after we introduced a more robust geometry optimization algorithm

in our ReaxFF implementation. We assume similar issues were not encountered previously

due to weaknesses of geometry optimization algorithms in other ReaxFF implementations.
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2.3 Initial guess of the parameter vector

We used different types of initial guesses for the parameters, to test the influence of the

quality of the guess on the outcome of the MCFF and CMA-ES optimizers. The ‘best’ type

of initial guess is somewhat artificial, in the sense it is the optimal parameter vector previ-

ously reported for these training sets (except for modifications described in the supporting

information, section S1). This ‘best’ guess may not be optimal in this work for two reasons:

(i) we improved the numerical stability of the Error function in several ways and (ii) the

literature parameters were in some cases the result of an early-stopping algorithm to avoid

overfitting.

A more realistic ‘educated’ initial guess was constructed from a database of ReaxFF force-

field parameters maintained by SCM.48 We only extracted information from parameter sets

that were published before the corresponding training set. For each parameter, the following

steps were taken:

1. All unique historical parameter values were looked up for the same type of parameter,

associated with the same combination of chemical elements. Only those lying in the

allowed interval for the training set, [pmin
i , pmax

i ], were retained and used to compute a

median value as guess.

2. If in the previous step, no historical parameters were found in the allowed interval, the

search for unique historical parameters was extended and they only had to be of the

same type but they were allowed it to be associated with other chemical elements. Of

all these values, we took the median.

3. If again no historical values could be found in the previous step, we just took the center

of the allowed interval as initial guess.

In case of the Cobalt training set, there is only one older parameterization predating the

training set22 and the result of the above procedure is that the educated guess for Cobalt

coincides with the parameters from Ref. 22.
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Finally, we also constructed for each training set, 10 ‘random’ initial parameter vectors.

For each parameter, we sampled random values from a uniform distribution over the interval

[pmin
i + (pmax

i − pmin
i )/4, pmax

i − (pmax
i − pmin

i )/4], that is, the central segment of the allowed

interval spanning half the width.

2.4 MCFF

The Monte-Carlo force field optimizer25 uses simulated annealing to find optimal parame-

ters.35 While this is in principle a global optimization method, a true global optimization

with simulated annealing requires very slow cooling rates, which can be too costly to realize

in practice. At every iteration, MCFF makes a small change to the parameter vector and

computes the corresponding change in Error function. In this work, the small step con-

sisted of a random change, of 10% of the parameters, sampled from a uniform distribution

over the interval [−(pmax
i − pmin

i )/100, (pmax
i − pmin

i )/100]. The step-size rescaling feature of

MCFF was disabled as we found it often lead to premature convergence. When the error

decreases, the step is always accepted. In case of an increase, it is accepted with a probability

exp(−βn∆Error), where βn is the inverse dimensionless temperature at iteration n.

For each combination of training set and initial guess of the parameters, we performed

three MCFF runs with 9k, 3x3k and 45k iterations. In case of 3x3k, 3 MCFF runs of 3000

steps were done in series, where the second and the third run are restarts using the optimal

parameters from the previous run as initial guess.10 The initial inverse temperature was

always determined by

β0 =

√
Npar

2

1

C1Error0

, (4)

where Npar is the number of optimized parameters, Error0 is the Error for the initial param-

eters. In case of the second and third segment of a 3x3k run, β0 is derived from the initial

Error of the current restart, not the Error of the initial guess. C1 is approximately the initial

magnitude of relative thermal fluctuations of the Error and was set to 1, such that MCFF
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can escape local minima easily. If one prefers MCFF to perform a more local search, C1

should be reduced by one or two orders of magnitude. The final inverse temperature is set

to

βN =

√
Npar

2

1

C2

, (5)

where C2 is approximately the absolute fluctuation on the error at the final iterations and was

set to 5. Such a small value for C2 will let MCFF converge to the bottom of a (local) minimum

in the Error. The above relation between Error fluctuations and inverse temperature would

be exact if the Error were a quadratic function of the ReaxFF parameters and the sampling

were complete, as shown in section S3 of the supporting information. In practice, these

relations are approximate because the Error is a more intricate function and the number of

steps is too small for a complete sampling, especially when the Error is nearly flat in some

directions.29 To obtain an annealing simulation, βn is divided by a constant factor at every

iteration of the MCFF algorithm:

βn
βn+1

=
N

√
C2

C1Error0

(6)

where N is the total number of iterations. The above configuration of the MCFF algorithm

can be implemented with the control parameters in Table 2.

2.5 CMA-ES

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is a stochastic gradient-

free optimization algorithm proposed by Hansen et al.36,49 Starting from a user-provided

initial guess, CMA-ES iteratively improves a multivariate normal distribution in the param-

eter space to find a distribution whose random samples minimize the objective function. In

essence, one iteration consists of the following steps and we refer to Ref. 36 for a detailed

description:

1. A population of λ = 4 + b3 lnNparc random points (trial parameter vectors) is drawn
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Table 2: MCFF and CMA-ES settings used in the ReaxFF control file. Control parameters
not included in the table are left to their default value.

MCFF

mcffit N = 9000, 3000 or 45000 Number of MCFF iterations.

mcbeta β0 =
√

Npar

2
1

C1Error0
Initial inverse temperature.

mcbsca βn
βn+1

= N
√

C2

C1Error0

Value by which the inverse temperature is
divided at each step.

mcstep 1.0

Controls the (initial) step size. The maxi-
mum change of a parameter in one MC step
is mcstep/mcrxdd.

mcrxdd 100 Controls the (initial) step size.

mcscps 1.0
Controls step size rescaling. By setting it to
1.0, step size rescaling is disabled.

mcacpf 0.1

Fraction of the parameters that is changed in
one MCFF step.

CMA-ES

mcffit N = 20000 Maximum number of CMA-ES iterations.

ffotol TolX = 10−6 or 10−5
CMA-ES convergence criterion. (See text for
details.)

mcrxdd Nσ = 4
Controls the width of the initial normal dis-
tribution in parameter space.
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from the normal distribution.

2. The Error is computed for each trial parameter vector.

3. The population is sorted by increasing Error and only the first λ/2 points are retained

and assigned a weight.

4. The mean (center) and covariance of the normal distribution are updated using the

weighted points, using heuristic rules explained in Ref. 36.

5. When σ‖pg‖ and σmaxi
√
Cii drop below a threshold, TolX, convergence is reached and

the algorithm stops. In these criteria, σ is a variable step size, C is the current estimate

of the covariance matrix and pg is an average over previous steps with an exponential

window. More details on these quantities can be found in Ref. 36. Alternatively, one

may also stop after a maximum number of iterations.

The value of the objective function at each trial point is thus only used to rank the points,

which makes CMA-ES invariant to any rank-preserving (strictly increasing) transformation

of the objective function. As the evaluation of each trial point is completely independent of

the rest of the population, this step of CMA-ES is trivially parallel.

Starting from the initial guess, the covariance matrix C is incrementally improved by the

feedback from sampled points and tends to approximate the inverse Hessian matrix, thus

capturing the relative sensitivities of the parameters and also the correlations between them.

The step length σ (overall width of the sampled distribution) is automatically controlled by

the algorithm in every iteration, depending on the directions of previous steps. If subsequent

steps tend to move in a similar direction, the step length is increased accordingly. If, instead,

subsequent steps tend to be in opposite directions, the algorithm is overshooting an optimum

and thus responds by scaling down the step length.

The initial mean of the normal distribution is set to the initial guess (see section 2.3) and

the initial covariance is diagonal with each diagonal element set to ((pmax
i −pmin

i )/Nσ)2, where
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Nσ = 4. With this value of Nσ, CMA-ES starts with a relatively broad initial distribution,

such that the algorithm explores a large portion of the parameter space before converging.

One may turn CMA-ES into a more local optimizer with higher values of Nσ. We used

TolX = 10−6 for the Cobalt training set and TolX = 10−5 for the two other training sets.

These convergence criteria are very tight and will let CMA-ES continue even if it would seem

practically converged. This allows us to test if there is anything to be gained by letting the

algorithm continue for many steps. Finally, we also terminate CMA-ES when it reaches 20k

steps. Our configuration of the CMA-ES algorithm can be implemented with the control

parameters in Table 2.

The CMA-ES algorithm is implemented using the c-cma-es library.50 The upper and

lower bounds on the parameters (pmin
i and pmax

i ) are imposed by setting the Error to the

largest possible double precision number (approximately 1.8 × 10308) whenever parameters

fall outside their allowed interval.

Because multiple Error evaluations are used in one CMA-ES iteration (λ defined above),

one must be careful when comparing the efficiency with MCFF, in terms of number of

iterations needed to achieve a low Error. For the Cobalt, Silica and Disulfide training sets,

λ is 11, 16 and 17, respectively. In a serial calculation, this would be the relative cost of one

CMA-ES iteration compared to MCFF. However, in ADF, multiple Error evaluations can

be carried out in parallel and within one Error computation parallelism is further exploited.

In practice, this means that CMA-ES can make better usage of parallelism than MCFF.

2.6 Evaluation criteria

While the main performance criterion in this work is obviously the lowest value of the Error

reached during an optimization, we also check other aspects of the trajectories through

parameter space followed by the optimization algorithms. For each combination of training

set, initial guess and optimizer settings, we performed 10 optimizations. Each optimization

run is ranked by the lowest Error reached at any point during the optimization. The lowest
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Error for the best, second best and worst run are compared to test (i) the sensitivity to the

initial guess and (ii) the tendency of the algorithm to get locked into local minima. We also

report the number of iterations needed to reach this lowest Error for the best run, which

is a good indication for the computational cost of the optimization. To asses how much

the parameters have changed, we also compute the distance (Euclidean norm) d1 between

the initial guess and the parameter vector of the lowest Error (for the best run) in reduced

parameter units:

p̃i =
pi

pmax
i − pmin

i

(7)

Finally, we also compute the distance d2 between the optimal parameters of the best and

second best run, to investigate parameter degeneracies. It was previously observed that

the Error is not sensitive to certain linear combinations of parameters, making the optimal

parameters degenerate.29

3 Results and discussion

In total 36 sets, with 10 parameter optimizations each, were carried out in this study. There is

one set for every combination of (i) three different training sets (Cobalt, Silica and Disulfide),

(ii) two optimizers (MCFF and CMA-ES) with three different cooling rates in MCFF and

(iii) three different qualities of the initial guess (best, educated and random). A summary

of the numerical results for each set, in line with the evaluation criteria discussed above,

is given in Table 3. In addition, Figure 1 shows the decrease of the error as function of

optimizer iteration for three representative sets out of the 36. Similar plots for all 36 sets

are included in section S4 of the supporting information.

The most important result in Table 3 is that, with any of the 36 sets of optimization runs,

there is a significant spread on the lowest Error, i.e. the difference between best and worst

run. The variation over 10 runs in one set is in the first place due the initialization of the

random seed, which affects results because the optimizers are stochastic. Obviously, when
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Table 3: Overview of all parameter optimization results. Each row summarizes 10 opti-
mization runs carried out with identical settings. (See text for details.) d1 is the distance
from the initial guess to the optimal parameter vector for the best run. d2 is the distance
between the optimal parameter vectors in the best and second best runs. Distances are in
dimensionless parameter units, see Eq. (7).

Trai-
ning
set

Algo-
rithm

#iter
max

[k]

Guess
Best run 2nd-best

run

Worst
run d1 d2

#iter to
lowest [k]

Lowest
Error

Lowest
Error

Lowest
Error

C
ob

al
t

MC
FF

9
best 8.2 1358 1367 1420 0.18 0.43
edu 9.0 1468 1724 2392 0.57 0.39

rand 9.0 1486 1563 4189 0.39 0.64

3x3
best 2.8 1360 1364 1435 0.15 0.10
edu 8.9 1465 1591 2322 0.63 0.42

rand 8.9 1615 1663 4055 0.41 0.70

45
best 35 1358 1365 1392 0.48 0.25
edu 45 1337 1354 1740 0.81 0.79

rand 36 1369 1691 3786 0.86 1.40

CMA
-ES

20
best 4.5 1180 1199 2437 1.45 0.43
edu 8.1 1157 1172 2467 1.47 0.99

rand 2.1 1150 1168 3013 1.01 0.70

S
il
ic

a

MC
FF

9
best 9.0 3690 3692 5069 0.88 0.81
edu 9.0 4405 4424 6350 0.85 1.06

rand 7.8 28789 40679 442882 0.90 1.75

3x3
best 9.0 3718 3762 5518 0.77 0.92
edu 9.0 4395 4545 5896 0.96 1.01

rand 8.9 9407 9712 241855 1.24 2.06

45
best 44 3608 3634 5913 1.34 1.95
edu 45 3897 3995 5894 1.74 2.07

rand 44 4966 6377 71165 1.92 2.82

CMA
-ES

20
best 6.0 3791 3890 10217 2.14 2.21
edu 7.2 3742 3870 10539 2.08 2.40

rand 13 3727 4097 7888 2.68 2.75

D
is

u
lfi

d
e MC

FF

9
best 8.2 11899 11981 14305 1.80 2.49
edu 8.4 14852 15721 19655 2.93 3.06

rand 8.7 11960 14332 25634 2.75 2.77

3x3
best 8.9 10914 11248 13389 1.44 1.79
edu 5.9 13754 14595 20816 2.65 2.79

rand 6.0 13886 14311 39381 2.71 3.10

45
best 34 10605 11719 15341 2.83 3.18
edu 44 9608 11828 19898 3.27 3.33

rand 44 8507 9684 15274 2.90 2.69

CMA
-ES

20
best 18 8994 10337 13257 2.34 2.89
edu 15 8693 9128 15386 3.12 2.79

rand 15 6716 9386 14665 3.10 2.57
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Figure 1: Representative plots of the Error as function of MCFF (a, b) and CMA-ES (c)
iteration. Each plot displays the progress of the Error for 10 optimizations, with square
boxes showing the lowest error achieved in each run. (Training set and algorithm settings
indicated in each panel.) Differences within one plot are due to the stochastic behavior of
the optimization algorithms and in panel (b) also due to the different random initial guesses.
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random initial guesses are used within one set, the differences in initial guess also affect the

outcome. (For the best and educated guess, the same guess is used 10 times.) The lowest

Error in the worst run is in most cases too high to be useful, e.g. compared to the Error

values from the literature in Table 1. Therefore, we recommend to repeat the optimization

several times with different random seeds to obtain a sufficiently low Error.

A second important observation is that for the Cobalt and Disulfide training sets, we often

see Error values significantly below those reported in the literature, e.g. those obtained with

genetic algorithms (GA). This is somewhat surprising because GAs are often portrayed as

effective global optimizers and expected to find (to good approximation) the global minimum

of the Error. It seems that we can still outperform GAs for two of the three training sets

with CMA-ES (and for the Cobalt set also with MCFF). While both algorithms are generally

not considered to be exhaustive global optimizers, they are still remarkably effective. This

positive result may also be due to several improvements and bug fixes in ReaxFF forces

and geometry optimization in the frame of this work. These improvements result in a

smoother (and thus easier to minimize) Error function. In addition, these improvements

may also directly result in a lower (or higher) Error for the same set of parameters, which

may also cause differences with literature values of the Error. Finally, as mentioned in the

introduction, the low Error from the best run may imply some overfitting, which can be

detected by also computing the Error on a validation set.

When comparing MCFF to CMA-ES, the Error as function of iteration is markedly

different, as shown in Figure 1. MCFF slowly cools down the parameters and the lowest

Error is usually encountered close to the end. Longer MCFF runs (45k steps) lead to lower

Errors for the best runs in Table 3, as one would expect from any simulated annealing

method. Only for the Silica training set, with a random initial guess, the restarts (3x3k

steps) are advantageous over one slower annealing of 9k steps. This suggests that restarting

MCFF can, in some cases, indeed reduce the risk of converging to a higher local minimum

in the Error landscape.10 Because these restarts do not dramatically deteriorate the lowest
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Errors for the other training sets, it can be safely used by default. There are often still

significant improvements in the last restart, see e.g. Figure 1b, such that more restarts could

lead to even lower Error values. CMA-ES first explores a wide region of the parameter space,

resulting in very high initial Errors. Afterwards, it exhibits a very rapid decrease of the Error

in the first 500 iterations, after which the Error levels off. Even when taking the difference

in cost of a single MCFF (1 Error evaluation) versus CMA-ES (10 to 20 Error evaluations)

in account, the initial decrease of the Error is more efficient in the case of CMA-ES. 83 of

the 90 CMA-ES runs reach within 4000 steps an Error below 1.01 times the lowest Error

over the entire run. Nevertheless, in a few runs, even when the Error has reached a plateau

after 4000 CMA-ES steps, it may still suddenly decrease in later steps. Therefore, when

using CMA-ES, it is useful to implement a pruning scheme,37 where one first performs a

series of short CMA-ES optimization with different initial guesses or random seeds and then

continues only the most promising ones with additional CMA-ES iterations. The number of

steps needed in the short runs depends on the complexity of the training set and the number

of free ReaxFF parameters. For the training sets considered in this work, a few thousand

steps would have been sufficient.

CMA-ES clearly outperforms MCFF in case of the Cobalt and Disulfide trainings set,

reaching significantly lower Error values. CMA-ES is also performing well for the Silica

training set, except that in one case MCFF reaches even a lower Error (best guess, 45k

steps) When also considering the worst out of 10 runs in each set, CMA-ES gives more

consistent results, independent of the initial guess, while MCFF may converge at very high

Error values when using a random initial guess, e.g. in case of the Silica trainig set with a

random initial guess. The superior efficiency of CMA-ES, especially in the first 500 iterations

can be easily understood. The covariance matrix in CMA-ES models the shape of the Error

function, allowing for more intelligent choices of new trial parameter vectors. In contrast,

MCFF uses no such information when stepping through the parameter space.

The quality of the initial guess may have some positive influence on the lowest Error,
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but the effect is marginal and in many cases reversed. A logical example can be found

when optimizing parameters with MCFF over 9k steps for the Cobalt set: the lowest Error

with best, educated and random guess are 1358, 1468 and 1486, respectively. An interesting

counter example is the optimization of parameters for the Disulfide set with CMA-ES, where

the lowest Error with best, educated and random guess are 8994, 8693 and 6716, respectively.

In addition, in all sets of 10 runs with random initial guesses, there is no significant rank

correlation between Error for the initial guess and the lowest Error. The limited impact

of the initial guess is consistent with our settings of MCFF and CMA-ES, i.e. they will

explore a significant part of the parameter space in the first iterations in an attempt to

avoid convergence to local minima with a high Error. This also implies that the parameter

trajectories quickly depart from the initial guess. One may lower the initial fluctuations

in MCFF (lower C1 in Eq. 4) or the initial width in CMA-ES (higher Nσ) to let these

algorithms stay closer to the initial guess. Obviously, this also increases the risk of getting

trapped in local minima with a high Error.

Finally, we observed that two solutions with nearly identical Errors, obtained with the

same initial guess and the same algorithm, can have significant differences in the parame-

ters. An illustrative example is the optimization of parameters for the Silica training set with

CMA-ES using the educated initial guess. In this case, the best and second-best runs have

similar Errors: 3742 and 3870, respectively. Yet, the distance between these two solutions

(d2 = 2.40) is of the same order as the distance from the initial guess to the optimal param-

eters of the best run (d1 = 2.04). This is a general pattern: comparable (low) Errors can

be obtained with very different parameter vectors. This is most likely due to the presence

of several local minima with a similar depth in the Error function. To shed some light on

origin of distinct solutions with nearly the same Error, Figure 2 shows the Error as function

of a linear interpolation (in 1000 steps) between the solution from the best and second-best

run (CMA-ES and educated guess), for the three training sets. These scans show that the

Error is not a convex function and may thus have several local minima. Our findings do
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not exclude the possibility that the Error is insensitive to certain linear combinations of

parameters, which could also result in multiple solutions with a similar Error.29

The curves in Figure 2 also exhibit a significant degree of noise for the Disulfide and

to larger extent for the Silica training set, which was also observed in previous works.25,44

It may even be surprising that there is no visible noise in case of the Cobalt training set,

probably because the Cobalt force field only uses two-body terms, thereby eliminating some

sources of noise. To illustrate the severity of the noise, the Error of neighboring points in

Figure 2(b) can differ by 1000 units, while the parameters change by less than 0.5%. Such

levels of noise alone can create many local minima, most of which are irrelevant. For this

reason, noise-resistant (and thus certainly gradient free) parameter optimization techniques

are needed. Even though MCFF and CMA-ES can still function with some noise, it does

degrade the performance of any optimization algorithm. It appears that the jumps in Figure

2 are caused by 8 of 309 items in the Silica training set and 11 of 4875 items in the Disulfide

training set. After removing these items, one obtains the Error plotted in red, which is much

smoother. We repeated some of the CMA-ES runs after removing the problematic items

from these training sets. While the lowest Error for the worst run decreases notably, the

results for the best run do not improve significantly. This means that the problematic items

in the training set mainly increase the risk that CMA-ES ends at a higher local minimum.

It is therefore desirable to design training sets that result in minimal noise in the Error.

To understand the origin of the noise in Figure 2, we investigated every term in the Error

function separately (see Eq. (3)) along the linear scan. For a given amount of noise in a

ReaxFF prediction, ∆xi, around a mean value 〈xi〉, the noise in the Error becomes (to first

order):

∆E ≈ 2
|〈xi〉 − xi,ref|∆xi

σ2
i

(8)

When we observe significant noise in the Error, this can be either due to a large first or second

factor. This is consistent with earlier work of Larsson et al,44 where it was observed that

the Error function becomes smoother near the optimal parameters, which can be explained
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Figure 2: The Error as function of a linear interpolation between two parameter vectors, for
each training set. The end points are the solutions of the best and second best run when
optimizing the parameters with CMA-ES using the educated initial guess. The black curve
is the total Error. In case of the Silica and Disulfide training sets, the red curve is the Error
without those contributions that cause large discontinuous jumps in the scan.
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by a decrease of the first factor.

For the Silica training set, apparently only 8 out of the 309 Error terms are responsible

for the largest jumps in Figure 2. Several smaller discontinuities are also present due to

other items in the training set, which we will not discuss here. They appear for exactly the

same reasons as the larger jumps. Most of the problematic terms in the Error are related

to molecules for which at least two (but often many more) metastable conformations or

configurations exist. Two examples are shown in Figure 3. The 12-membered silica ring in

Figure 3a can have many slightly different conformations due to the high flexibility of the Si-

O-Si angles. Figure 3b represents the products of a silica condensation reaction. The water

molecule is weakly bound to the condensed silica cluster, with two possible relative positions

of water. In both cases, which of the possible configurations is found after optimization,

is very sensitive to the force-field parameters and the corresponding energies differ by 20

kcal/mol, resulting in sudden changes of the Error by approximately 300 units. One could

avoid these problems by (a) using more rigid molecules and (b) by including reaction products

as separate molecules in the training set instead of combining them into a single complex.

Another problematic case is the energy of a slightly expanded unit cell of quartz. The

training set specifies that this geometry should only be optimized for five steps, instead

of the usual 3000. The energy after five steps is very sensitive to the exact parameters,

even though the geometry differences are very small. In this case, the geometry is far from

converged after five steps and it is still on a very steep slope of the potential energy surface,

such that small changes in geometry cause large differences in energy. The exact geometry

after five steps can be very sensitive to algorithmic details of the geometry optimizer, which

is usually irrelevant when assessing the performance of a force field. In this case, allowing

for more geometry iterations should be helpful but it also increases the computational cost

of the Error.

For the Disulfide training set, 11 out of 4875 Error terms are responsible for all the vis-

ible noise in Figure 2. These 11 terms measure errors on dihedral angles (torsions about
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Figure 3: Two of the problematic molecules in the Silica training set responsible for dis-
continuous jumps in Figure 2b: (a) a 12-membered silica ring and (b) the product of a
ring-closing condensation reaction of a linear silica trimer. For each molecule, 100 optimized
geometries are shown in overlay, obtained with different ReaxFF parameters along the scan.
In part (b), the water molecule, which is a product from this condensation reaction, is part
of this geometry, for which ReaxFF predicts roughly two stable positions relative to the
three-ring.

C-O and C-S bonds) in the four molecules shown in 4. The geometry optimization of the

four molecules is usually not complete after 3000 steps. In case of convergence failure, the

last geometry is used to evaluate the Error, because it’s expected to be the best available

approximation of a converged result. However, due to the incomplete convergence, the inter-

nal coordinates contain a virtually random component. Even though we have improved the

geometry optimizer and fixed bugs in the computation of the forces to reduce geometry con-

vergence issues, it appears extremely challenging to eliminate this problem completely. This

is partially caused by small discontinuities in the ReaxFF forces, when any pair of atoms

passes the bond-order cutoff. While the discontinuities are small, they become significant

when the geometry optimizer is nearly converged. Even with perfectly smooth forces, similar

problems may still arise. For example, if the curvature of the PES is very ill-conditioned for

a set of trial parameters, the optimal geometry becomes ill-defined. Another problematic

situation appears when a molecule has two or more conformations with comparable energies.

With small changes in force field parameters, the geometry optimizer may converge to one
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or the other conformer, resulting in a discontinuous Error. In short, it is in principle still

valuable to improve the ReaxFF geometry convergence in future versions of ADF, but this

will never completely eliminate noise from the Error function. For an effective parameter

optimization with ReaxFF, every geometry optimization in the training set must be carefully

designed to avoid convergence issues. Alternatively, one could also avoid geometry optimiza-

tion altogether, but that would significantly raise the challenge of designing good training

sets.

Figure 4: Four molecules in the Disulfide training set, whose Errors on the dihedral angles
are responsible for the noise in Figure 2c.

The relation between geometry convergence and noise in the Error provides a second
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explanation for the observation of Larsson et al. that the Error becomes smoother near the

optimal parameters. The geometries provided in the training set are normally the optimal

ones that ReaxFF should reproduce. Hence, with good ReaxFF parameters, fewer geometry

optimization steps are needed, such that there is a lower risk for geometry convergence

failures and corresponding discontinuities in the Error function.

4 Conclusions and outlook

We have systematically compared the performance of the MCFF and CMA-ES optimizers

for three ReaxFF training sets, which have been used to asses genetic algorithms in the

literature. Based on our results, we can make the following recommendations for an efficient

ReaxFF parameter optimization with the methods considered in this work:

1. CMA-ES is generally preferred over MCFF for its robustness w.r.t the initial guess

and the low Error values that can be reached. In some cases, most notably with the

Silica training set and random initial guesses, MCFF may converge at very high Error

values.

2. Good or clever initial guesses for the parameters have a limited impact on the perfor-

mance of CMA-ES with the settings used in this work. (See Table 2.) Instead of trying

to carefully construct one initial guess, we recommend to repeat the optimization with

many random guesses.

3. Because CMA-ES nearly converges in the first few thousand iterations, a pruning

scheme with multiple runs is more efficient than running all of them until convergence.

This can be implemented by first performing a series optimizations for a fixed number

of iterations, with different guesses or random seeds. Only those few runs that have

reached a relatively low Error within a fixed number of iterations, are then worth

continuing until CMA-ES reaches convergence.
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For two of the three training sets considered in this work, the optimal parameters have

lower Error values than those reported in the literature with genetic algorithms. While the

optimizers tested in this work should not be considered as exhaustive global optimizers, their

ability to find low minima of the Error is very encouraging. In terms of computational cost,

CMA-ES is also attractive compared to a GA. With the above recommendations, optimal

parameters can be found with a few 10k Error evaluations, which is an order of magnitude

less than a GA.27

Our benchmarks resulted, for each of the training sets considered, in clearly different

ReaxFF parameters (most likely different minima in the Error function) but with a compa-

rably low Error value. Intuitively, one may simply prefer the lowest minimum. However,

the availability of different solutions of comparable quality opens up new opportunities for

future work. For example, one of these solutions may suffer less from overfitting, which

can be checked by computing the Error on a validation set. In that case, the lowest Error

on the validation set could be a good selection criterion. In addition, these multiple solu-

tions may be used to estimate the reliability of a ReaxFF production run. If different sets

of near-optimal parameters give inconsistent outcomes, the simulations are not reliable. To

overcome this issue, one may identify properties of molecules that are predicted differently by

the near-optimal parameter sets and add them to the training set. Including such reference

data will narrow down the region in the parameter space where the Error is low, potentially

also reducing overfitting artifacts.

Our assessment also revealed the importance of a robust geometry optimization for the

calibration of ReaxFF parameters. When geometries converge poorly, the corresponding

ReaxFF predictions contain some numerical noise, impairing the calibration of parameters.

In the course of this work, we have refined the geometry optimization algorithm used in the

ADF2018 implementation of ReaxFF and we eliminated several bugs in the computation of

the forces, resulting in a smoother Error function. While such improvements are clearly ben-

eficial, discontinuities in the Error may still appear when optimized geometries have a high
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sensitivity to the force field parameters, e.g. in case of very flexible systems in the training set

with different possible conformations. For an effective ReaxFF parameter calibration, one

must carefully analyze each geometry optimization to avoid convergence issues or multiple

(meta)stable configurations.
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